Two Applications of Topology to Convex Geometry

L. Montejano¹

Received May 2004

Abstract— The purpose of this paper is to prove two theorems of convex geometry using the techniques of topology. The first theorem states that if, for a strictly convex body K, one may choose continuously a centrally symmetric section, then K must be centrally symmetric. The second theorem states that if every section of a three-dimensional convex body K through the origin has an axis of symmetry, then there is a section of K through the origin which is a disk.

1. A SHAKEN ROGERS THEOREM

Let K be a convex body and let p_0 be a point. Suppose that every section of K through p_0 is centrally symmetric. Then, Rogers proved in [5] that K is centrally symmetric, although p_0 may not be the center of K. If this is the case, Aitchison, Petty, and Rogers [1] and Larman [2] proved that K must be an ellipsoid. The purpose of this section is to prove a shaken version of the Rogers theorem; that is, we essentially prove that if, for every direction, one can choose continuously a section of K that is centrally symmetric, then K is centrally symmetric.

Let $\delta \colon S^2 \to \mathbb{R}$ be a continuous function such that $\delta(-x) = -\delta(x)$. Let us denote by $[\delta]$ the following set of hyperplanes in \mathbb{R}^3 :

$$[\delta] = \left\{ H_y^{\delta} = \left\{ x \in \mathbb{R}^3 \mid x \cdot y = \delta(y) \right\} \right\}_{y \in S^2}.$$

If this is the case, we say that $[\delta]$ is a 2-cycle of planes in E^3 . This 2-cycle should be considered as a subset of the Grassmannian manifold $G(3,4)=P^3$ (identifying E^3 with a hyperplane of E^4 that does not contain the origin and every plane of E^3 with the hyperplane of E^4 that passes through the origin and contains the plane). The cohomology ring $H^*(G(3,4), Z_2) = \{Z_2[x]; \varkappa^4 = 0\}$, where the generator $\varkappa \in H^1(G(3,4), Z_2) = Z_2$, by duality, can be realized through every 2-cycle of planes.

the generator $\varkappa \in H^1(G(3,4), Z_2) = Z_2$, by duality, can be realized through every 2-cycle of planes. Let now $K \subset E^3$ be a convex body and, for every $y \in S^2$, let $K_y^{\delta} = K \cap H_y^{\delta}$. We say that $\{K_y^{\delta}\}_{y \in S^2}$ is a 2-cycle of sections of K if

$$K_x^\delta \cap K_y^\delta \cap \operatorname{int}(K) \neq \varnothing$$

for every $x, y \in S^2$.

Lemma 1.1. Let $[\delta_1]$ and $[\delta_2]$ be two 2-cycles of planes in E^3 and let $p \in E^3$. Then, there is $x_0 \in S^2$ such that $p \in H_{x_0}^{\delta_1} = H_{x_0}^{\delta_2}$.

Proof. Let $[\delta_3]$ be the 2-cycle of planes that pass through p. It is enough to prove that $[\delta_1] \cap [\delta_2] \cap [\delta_3] \neq \emptyset$, that is, that there exists $x_0 \in S^2$ such that $H_{x_0}^{\delta_1} = H_{x_0}^{\delta_2} = H_{x_0}^{\delta_3}$; but this is true because any 2-cycle of planes realizes the generator $\varkappa \in H^1(G(3,4), Z_2) = Z_2$ and we know that \varkappa^3 , the generator of $H^3(G(3,4), Z_2) = Z_2$, is not zero.

Lemma 1.2. Let $[\delta]$ be a 2-cycle of planes in E^3 and let L be a line in E^3 . Then, there is $x_0 \in S^2$ such that $L \subset H_{x_0}^{\delta}$.

¹Instituto de Mathemáticas, Universidad Nacional Autónoma de México, Mexico. E-mail: luis@math.unam.mx

Proof. Let p_1 and p_2 be two different points of L and let $[\delta_i]$ be the 2-cycle of planes that pass through p_i , i = 1, 2. As in the above lemma, we have $[\delta_1] \cap [\delta_2] \cap [\delta] \neq \emptyset$; that is, there exists $x_0 \in S^2$ such that $L \subset H_{x_0}^{\delta}$.

Theorem 1.1. Let K and L be strictly convex bodies and let δ_i be such that $\{K_y^{\delta_1}\}_{y\in S^2}$ is a 2-cycle of sections of L. Suppose that, for every $x\in S^2$,

 $K_{x_0}^{\delta_1}$ is a translation of $L_{x_0}^{\delta_2}$.

Then, K is a translation of L.

Proof. Let \aleph be the set of diametral lines of K. Since K is a strictly convex body, there is exactly one diametral line in every direction. Note first that, by Lemma 1.1, if ℓ is a diametral line of K, then there is $x \in S^2$ such that $\ell \subset H_x^{\delta_1}$.

We start proving that there are $x_0 \neq y_0 \in S^2$ such that $H_{x_0}^{\delta_1} \cap H_{y_0}^{\delta_1}$ is a diametral line of K. Suppose not. Then, for every diametral line ℓ of K, there is a unique plane $H \in [\delta_1]$ such that $\ell \subset H$. Define $\varphi \colon \aleph \to [\delta_1]$ in such a way that $\varphi(\ell) \in [\delta_1]$ is the unique plane of $[\delta_1]$ that contains the diametral line ℓ . Note that φ is continuous. To see this, suppose that $\ell_i \to \ell$ but $\varphi(\ell_i) \to \varphi(L)$. Since $[\delta_1]$ is compact, there is a subsequence $\varphi(\ell_{ij})$ such that $\varphi(\ell_{ij}) \to H$ in $[\delta_1]$ but $\varphi(\ell) \neq H$. By hypothesis, $\ell_{ij} \subset \varphi(\ell_{ij})$, which implies that $\ell \subset H$; hence, by the definition of φ , $\varphi(\ell) = H$, which is a contradiction. This proves that φ is continuous. Next, to every plane Γ through the origin, we associate continuously a line $\Phi(\Gamma) \subset \Gamma$ as follows: let Γ be a plane through the origin and let $\ell \in \aleph$ be orthogonal to Γ ; define $\Phi(\Gamma)$ as the unique line through the origin contained in Γ that is parallel to $\Gamma \cap \varphi(\ell)$. Clearly, the map $\Gamma \to \Phi(\Gamma)$ is continuous, but this is impossible. Then, there exist $x_0 \neq y_0 \in S^2$ such that $\mathcal{L} = H_{x_0}^{\delta_1} \cap H_{y_0}^{\delta_1}$ is a diametral line of K.

Let \mathcal{L}' be the diametral line of L parallel to \mathcal{L} . Then, we have length $(\mathcal{L} \cap K) = \text{length}(\mathcal{L}' \cap L)$. If not, suppose, without loss of generality, that length $(\mathcal{L} \cap K) < \text{length}(\mathcal{L}' \cap L)$. Hence, by Lemma 1.2, there is $z_0 \in S^2$ such that $\mathcal{L}' \subset H^{\delta_2}_{z_0}$. If this is so, \mathcal{L}' is also a diametral line of $L^{\delta_2}_{z_0}$, and by hypothesis, since $L^{\delta_2}_{z_0}$ is a translation of $K^{\delta_1}_{z_0}$, there is a chord of K whose length is the length of $\mathcal{L}' \cap L$, which contradicts the fact that \mathcal{L} is the diametral line of K. By the same arguments and since L is strictly convex, we have $\mathcal{L}' = H^{\delta_2}_{x_0} \cap H^{\delta_2}_{y_0}$.

Assume, without loss of generality, perhaps after a translation of L, that $K_{x_0}^{\delta_1} = L_{x_0}^{\delta_2}$ and $K_{y_0}^{\delta_1} = L_{y_0}^{\delta_2}$. Therefore, $H_{x_0}^{\delta_1} = H_{x_0}^{\delta_2}$, $H_{y_0}^{\delta_1} = H_{y_0}^{\delta_2}$, and $\mathcal{L} = \mathcal{L}'$. We will prove that K = L. For this purpose, it will be enough to prove that $\mathrm{bd}\,K \subset \mathrm{bd}\,L$. Let $p \in \mathrm{bd}\,K$ and, by Lemma 1.1, let $w_0 \in S^2$ be such that $p \in H_{w_0}^{\delta_1} = H_{w_0}^{\delta_2}$. Note that $K_{w_0}^{\delta_1}$ is a translation of $L_{w_0}^{\delta_2}$ and both convex figures lie in the same plane. Furthermore, by definition, $H_{w_0}^{\delta_1=\delta_2} \cap H_{x_0}^{\delta_1=\delta_2} \cap \mathrm{int}\,K \neq \varnothing$, $H_{w_0}^{\delta_1=\delta_2} \cap H_{x_0}^{\delta_1=\delta_2} \cap \mathrm{int}\,L \neq \varnothing$, $H_{w_0}^{\delta_1=\delta_2} \cap \mathrm{int}\,K \neq \varnothing$, and $H_{w_0}^{\delta_1=\delta_2} \cap H_{y_0}^{\delta_1=\delta_2} \cap \mathrm{int}\,L \neq \varnothing$. Consequently, either $\mathrm{bd}\,K_{w_0}^{\delta_1} \cap \mathrm{bd}\,L_{w_0}^{\delta_2}$ has more than three points or $\mathrm{bd}\,K_{w_0}^{\delta_1} \cap \mathrm{bd}\,L_{w_0}^{\delta_2}$ has exactly two points that are the extreme points of a common diametral chord. In any case, since $K_{w_0}^{\delta_1}$ is a translation of $L_{w_0}^{\delta_2}$, we have $K_{w_0}^{\delta_1} = L_{w_0}^{\delta_2}$; therefore, $p \in \mathrm{bd}\,L$. This completes the proof of the theorem.

Theorem 1.2. Let K be a strictly convex body and let δ be such that $\{K_y^{\delta}\}_{y \in S^2}$ is a 2-cycle of sections of K. Suppose that, for every $x \in S^2$, $K_x^{\delta_1}$ is centrally symmetric. Then, K is centrally symmetric.

Proof. Let $\delta_1 = \delta$, L = -K, and $\delta_2 = -\delta$. Therefore, by hypothesis, for every $x \in S^2$, we have that $L_x^{\delta_2} = -K_x^{\delta_1}$ is a translation of $K_x^{\delta_1}$. Consequently, by the above theorem, L = -K is a translation of K, which implies that K is centrally symmetric.

Corollary 1.1. Suppose that K is a strictly convex body with the property that the hyperplane that divides the area (surface) in two is centrally symmetric. Then, K is centrally symmetric.

Corollary 1.2. Let K be a strictly convex body and let δ be such that $\{K_y^{\delta}\}_{y \in S^2}$ is a 2-cycle of sections of K. Suppose that, for every $x \in S^2$, $K_x^{\delta_1}$ is affinely equivalent to a fixed convex body L. Then, K is centrally symmetric.

Proof. We follow the ideas and notation of [4]. As in the proof of Theorem 1 of [4], there is a complete turning of L in E^3 . So, by Lemma 2 of [4], L is centrally symmetric; hence, by our Theorem 1.2, K is centrally symmetric.

2. ON THE BEZDEK CONJECTURE

Let $K \subset E^3$ be a convex body. Suppose that every section of K is axially symmetric. Then, K. Bezdek conjectured that K must be a body of revolution or an ellipsoid. Consider two different and concentric circles in E^3 of the same radius with center at the origin, and let K be the convex hull of these two circles. Then, it is not difficult to see that every section of K through the origin is axially symmetric. The purpose of this section is to prove the following theorem.

Theorem 2.1. Let $K \subset \mathbb{R}^3$ be a convex body and let $p_0 \in \text{int } K$. Suppose that every plane through p_0 has an axis of symmetry. Then, there is a section of K through p_0 that is a disk.

First, we need a definition.

Definition. A collection of lines $\{L_1, \ldots, L_n\}$ is called an *n*-starline with vertex x_0 if the lines L_i lie in a plane and are concurrent at x_0 and the angle between two consecutive lines is $\frac{2\pi}{n}$. If H is a plane and $L \subset H$ is a line through a point x_0 , we denote by $\operatorname{st}_n(H, L, x_0)$ the unique n-starline with vertex x_0 contained in H that has L as a member.

The following theorem is our main topology ingredient and follows immediately from the results of Mani in [3] (see also [4]).

Theorem 2.2. Let $1 \le n < \infty$ be a positive integer. It is impossible to choose continuously, for every plane H through the origin in \mathbb{R}^3 , an n-starline contained in H with vertex at the origin.

Proof. A continuous selection of an *n*-starline for every plane through the origin in \mathbb{R}^3 gives rise to a field of regular *n*-gons tangent to S^2 , contradicting the main theorem of [3].

The proofs of the following results are straightforward and are left to the reader.

I. Let Φ be a plane convex figure and let $\{L_1, \ldots, L_n\}$ be the collection of all its orthogonal lines of symmetry. Then, $\{L_1, \ldots, L_n\}$ is an *n-starline*.

II. Let $K \subset \mathbb{R}^3$ be a convex body and let $\{H_i\}$ be a sequence of planes that intersect int K. If $H_i \to H$, then $H_i \cap K \to H \cap K$ in the Hausdorff metric.

III. Let $K \subset \mathbb{R}^3$ be a convex body and let $\{H_i\}$ be a sequence of planes that intersect int K. Suppose that $H_i \to H$, $L_i \subset H_i$ is an axial line of symmetry of $H_i \cap K$, and $L_i \to L$; then, by II, L is an axial line of symmetry of $H \cap K$.

Definition. Let K be a convex body and let H be a plane that intersects int K. We say that $\mu(H) = n$ if $H \cap K$ has exactly n axial lines of symmetry. Note that $\mu(H) = \infty$ implies that $H \cap K$ is a disk.

IV. Let $K \subset E^3$ be a convex body and let $\{H_i\}$ be a sequence of planes that intersect K. If $H_i \to H$ and $\mu(H_i) \to \infty$, then, by II, $H \cap K$ is a disk.

Proof of Theorem 2.1. By IV, we may assume that $1 \leq \mu(H) \leq n$ for every plane H through p_0 . Let m = n!. For every plane Γ through the origin, let $\operatorname{st}_m \Gamma = \operatorname{st}_m(\Gamma, L, 0)$, where L is parallel to an axial line of symmetry of $p_0 + \Gamma$. Note that $\operatorname{st}_m \Gamma$ does not depend on the choice of the axial line of symmetry. We will prove that the function $\Gamma \to \operatorname{st}_m \Gamma$ is a continuous function. For this purpose, let $\Gamma_i \to \Gamma$ and suppose that $\operatorname{st}_m \Gamma_i$ does not converge to $\operatorname{st}_m \Gamma$. Then, there is a subsequence Γ_{i_j} such that $\operatorname{st}_m \Gamma_{i_j}$ converges to an m-starline Ω contained in Γ with vertex 0, different

from $\operatorname{st}_m \Gamma$. Let $L_{i_j} \in \operatorname{st}_m \Gamma_{i_j}$ be such that there is an axis of symmetry of $(p_0 + \Gamma_{i_j}) \cap K$ parallel to L_{i_j} . We may assume, without loss of generality, perhaps by taking a subsequence, that $L_{i_j} \to L$. So, $L \in \Omega$, and therefore $L \notin \operatorname{st}_m \Gamma$. But, by III, L is parallel to an axis of symmetry of $(p_0 + \Gamma) \cap K$, which is a contradiction. Therefore, $\Gamma \to \operatorname{st}_m \Gamma$ is continuous, contradicting Theorem 2.1.

REFERENCES

- 1. P. W. Aitchison, C. M. Petty, and C. A. Rogers, "A Convex Body with a False Centre Is an Ellipsoid," Mathematika 18, 50–59 (1971).
- 2. D. G. Larman, "A Note in the False Centre Problem," Mathematika 21, 216-227 (1974).
- 3. P. Mani, "Fields of Planar Bodies Tangent to Spheres," Monatsh. Math. 74, 145-149 (1970).
- 4. L. Montejano, "Convex Bodies with Homothetic Sections," Bull. London Math. Soc. 23, 381–386 (1991).
- 5. C. A. Rogers, "Sections and Projections of Convex Bodies," Port. Math. 24, 99–103 (1965).

This article was submitted by the author in English