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Two Applications of Topology to Convex Geometry
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Abstract— The purpose of this paper is to prove two theorems of convex geometry using the
techniques of topology. The first theorem states that if, for a strictly convex body K, one may
choose continuously a centrally symmetric section, then K must be centrally symmetric. The
second theorem states that if every section of a three-dimensional convex body K through the
origin has an axis of symmetry, then there is a section of K through the origin which is a disk.

1. A SHAKEN ROGERS THEOREM

Let K be a convex body and let p0 be a point. Suppose that every section of K through p0 is
centrally symmetric. Then, Rogers proved in [5] that K is centrally symmetric, although p0 may
not be the center of K. If this is the case, Aitchison, Petty, and Rogers [1] and Larman [2] proved
that K must be an ellipsoid. The purpose of this section is to prove a shaken version of the Rogers
theorem; that is, we essentially prove that if, for every direction, one can choose continuously a
section of K that is centrally symmetric, then K is centrally symmetric.

Let δ : S2 → R be a continuous function such that δ(−x) = −δ(x). Let us denote by [δ] the
following set of hyperplanes in R

3:

[δ] =
{
Hδ

y = {x ∈ R
3 | x · y = δ(y)}

}
y∈S2 .

If this is the case, we say that [δ] is a 2-cycle of planes in E3. This 2-cycle should be considered
as a subset of the Grassmannian manifold G(3, 4) = P 3 (identifying E3 with a hyperplane of E4 that
does not contain the origin and every plane of E3 with the hyperplane of E4 that passes through
the origin and contains the plane). The cohomology ring H∗(G(3, 4), Z2) = {Z2[x]; κ4 = 0}, where
the generator κ ∈ H1(G(3, 4), Z2) = Z2, by duality, can be realized through every 2-cycle of planes.

Let now K ⊂ E3 be a convex body and, for every y ∈ S2, let Kδ
y = K ∩ Hδ

y . We say that
{Kδ

y}y∈S2 is a 2-cycle of sections of K if

Kδ
x ∩ Kδ

y ∩ int(K) �= ∅

for every x, y ∈ S2.
Lemma 1.1. Let [δ1] and [δ2] be two 2-cycles of planes in E3 and let p ∈ E3. Then, there is

x0 ∈ S2 such that p ∈ Hδ1
x0

= Hδ2
x0

.
Proof. Let [δ3] be the 2-cycle of planes that pass through p. It is enough to prove that

[δ1] ∩ [δ2] ∩ [δ3] �= ∅, that is, that there exists x0 ∈ S2 such that Hδ1
x0

= Hδ2
x0

= Hδ3
x0

; but this is true
because any 2-cycle of planes realizes the generator κ ∈ H1(G(3, 4), Z2) = Z2 and we know that
κ

3, the generator of H3(G(3, 4), Z2) = Z2, is not zero.
Lemma 1.2. Let [δ] be a 2-cycle of planes in E3 and let L be a line in E3. Then, there is

x0 ∈ S2 such that L ⊂ Hδ
x0

.
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Proof. Let p1 and p2 be two different points of L and let [δi] be the 2-cycle of planes that
pass through pi, i = 1, 2. As in the above lemma, we have [δ1] ∩ [δ2] ∩ [δ] �= ∅; that is, there exists
x0 ∈ S2 such that L ⊂ Hδ

x0
.

Theorem 1.1. Let K and L be strictly convex bodies and let δi be such that {Kδ1
y }y∈S2 is

a 2-cycle of sections of K and {Lδ2
y }y∈S2 is a 2-cycle of sections of L. Suppose that, for every

x ∈ S2,

Kδ1
x0

is a translation of Lδ2
x0

.

Then, K is a translation of L.

Proof. Let ℵ be the set of diametral lines of K. Since K is a strictly convex body, there is
exactly one diametral line in every direction. Note first that, by Lemma 1.1, if � is a diametral line
of K, then there is x ∈ S2 such that � ⊂ Hδ1

x .
We start proving that there are x0 �= y0 ∈ S2 such that Hδ1

x0
∩ Hδ1

y0
is a diametral line of K.

Suppose not. Then, for every diametral line � of K, there is a unique plane H ∈ [δ1] such that
� ⊂ H. Define ϕ : ℵ → [δ1] in such a way that ϕ(�) ∈ [δ1] is the unique plane of [δ1] that contains
the diametral line �. Note that ϕ is continuous. To see this, suppose that �i → � but ϕ(�i) � ϕ(L).
Since [δ1] is compact, there is a subsequence ϕ(�ij ) such that ϕ(�ij ) → H in [δ1] but ϕ(�) �= H. By
hypothesis, �ij ⊂ ϕ(�ij ), which implies that � ⊂ H; hence, by the definition of ϕ, ϕ(�) = H, which
is a contradiction. This proves that ϕ is continuous. Next, to every plane Γ through the origin, we
associate continuously a line Φ(Γ) ⊂ Γ as follows: let Γ be a plane through the origin and let � ∈ ℵ
be orthogonal to Γ; define Φ(Γ) as the unique line through the origin contained in Γ that is parallel
to Γ ∩ ϕ(�). Clearly, the map Γ → Φ(Γ) is continuous, but this is impossible. Then, there exist
x0 �= y0 ∈ S2 such that L = Hδ1

x0
∩ Hδ1

y0
is a diametral line of K.

Let L′ be the diametral line of L parallel to L. Then, we have length(L∩K) = length(L′∩L). If
not, suppose, without loss of generality, that length(L∩K) < length(L′∩L). Hence, by Lemma 1.2,
there is z0 ∈ S2 such that L′ ⊂ Hδ2

z0
. If this is so, L′ is also a diametral line of Lδ2

z0
, and by hypothesis,

since Lδ2
z0

is a translation of Kδ1
z0

, there is a chord of K whose length is the length of L′ ∩ L, which
contradicts the fact that L is the diametral line of K. By the same arguments and since L is strictly
convex, we have L′ = Hδ2

x0
∩ Hδ2

y0
.

Assume, without loss of generality, perhaps after a translation of L, that Kδ1
x0

= Lδ2
x0

and
Kδ1

y0
= Lδ2

y0
. Therefore, Hδ1

x0
= Hδ2

x0
, Hδ1

y0
= Hδ2

y0
, and L = L′. We will prove that K = L. For this

purpose, it will be enough to prove that bdK ⊂ bdL. Let p ∈ bdK and, by Lemma 1.1, let w0 ∈ S2

be such that p ∈ Hδ1
w0

= Hδ2
w0

. Note that Kδ1
w0

is a translation of Lδ2
w0

and both convex figures lie in the
same plane. Furthermore, by definition, Hδ1=δ2

w0
∩Hδ1=δ2

x0
∩ intK �= ∅, Hδ1=δ2

w0
∩Hδ1=δ2

x0
∩ int L �= ∅,

Hδ1=δ2
w0

∩ Hδ1=δ2
y0

∩ int K �= ∅, and Hδ1=δ2
w0

∩ Hδ1=δ2
y0

∩ int L �= ∅. Consequently, either bdKδ1
w0

∩
bdLδ2

w0
has more than three points or bdKδ1

w0
∩ bdLδ2

w0
has exactly two points that are the extreme

points of a common diametral chord. In any case, since Kδ1
w0

is a translation of Lδ2
w0

, we have
Kδ1

w0
= Lδ2

w0
; therefore, p ∈ bdL. This completes the proof of the theorem.

Theorem 1.2. Let K be a strictly convex body and let δ be such that {Kδ
y}y∈S2 is a 2-cycle

of sections of K. Suppose that, for every x ∈ S2, Kδ1
x is centrally symmetric. Then, K is centrally

symmetric.

Proof. Let δ1 = δ, L = −K, and δ2 = −δ. Therefore, by hypothesis, for every x ∈ S2, we
have that Lδ2

x = −Kδ1
x is a translation of Kδ1

x . Consequently, by the above theorem, L = −K is a
translation of K, which implies that K is centrally symmetric.

Corollary 1.1. Suppose that K is a strictly convex body with the property that the hyperplane
that divides the area (surface) in two is centrally symmetric. Then, K is centrally symmetric.
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Corollary 1.2. Let K be a strictly convex body and let δ be such that {Kδ
y}y∈S2 is a 2-cycle of

sections of K. Suppose that, for every x ∈ S2, Kδ1
x is affinely equivalent to a fixed convex body L.

Then, K is centrally symmetric.
Proof. We follow the ideas and notation of [4]. As in the proof of Theorem 1 of [4], there is

a complete turning of L in E3. So, by Lemma 2 of [4], L is centrally symmetric; hence, by our
Theorem 1.2, K is centrally symmetric.

2. ON THE BEZDEK CONJECTURE

Let K ⊂ E3 be a convex body. Suppose that every section of K is axially symmetric. Then,
K. Bezdek conjectured that K must be a body of revolution or an ellipsoid. Consider two different
and concentric circles in E3 of the same radius with center at the origin, and let K be the convex
hull of these two circles. Then, it is not difficult to see that every section of K through the origin
is axially symmetric. The purpose of this section is to prove the following theorem.

Theorem 2.1. Let K ⊂ R
3 be a convex body and let p0 ∈ intK. Suppose that every plane

through p0 has an axis of symmetry. Then, there is a section of K through p0 that is a disk.
First, we need a definition.
Definition. A collection of lines {L1, . . . , Ln} is called an n-starline with vertex x0 if the

lines Li lie in a plane and are concurrent at x0 and the angle between two consecutive lines is 2π
n .

If H is a plane and L ⊂ H is a line through a point x0, we denote by stn(H,L, x0) the unique
n-starline with vertex x0 contained in H that has L as a member.

The following theorem is our main topology ingredient and follows immediately from the results
of Mani in [3] (see also [4]).

Theorem 2.2. Let 1 ≤ n < ∞ be a positive integer. It is impossible to choose continuously,
for every plane H through the origin in R

3, an n-starline contained in H with vertex at the origin.
Proof. A continuous selection of an n-starline for every plane through the origin in R

3 gives
rise to a field of regular n-gons tangent to S2, contradicting the main theorem of [3].

The proofs of the following results are straightforward and are left to the reader.
I. Let Φ be a plane convex figure and let {L1, . . . , Ln} be the collection of all its orthogonal lines

of symmetry. Then, {L1, . . . , Ln} is an n-starline.
II. Let K ⊂ R

3 be a convex body and let {Hi} be a sequence of planes that intersect intK. If
Hi → H, then Hi ∩ K → H ∩ K in the Hausdorff metric.

III. Let K ⊂ R
3 be a convex body and let {Hi} be a sequence of planes that intersect int K.

Suppose that Hi → H, Li ⊂ Hi is an axial line of symmetry of Hi ∩ K, and Li → L; then, by II,
L is an axial line of symmetry of H ∩ K.

Definition. Let K be a convex body and let H be a plane that intersects int K. We say that
µ(H) = n if H ∩K has exactly n axial lines of symmetry. Note that µ(H) = ∞ implies that H ∩K
is a disk.

IV. Let K ⊂ E3 be a convex body and let {Hi} be a sequence of planes that intersect K. If
Hi → H and µ(Hi) → ∞, then, by II, H ∩ K is a disk.

Proof of Theorem 2.1. By IV, we may assume that 1 ≤ µ(H) ≤ n for every plane H
through p0. Let m = n!. For every plane Γ through the origin, let stm Γ = stm(Γ, L, 0), where L
is parallel to an axial line of symmetry of p0 + Γ. Note that stm Γ does not depend on the choice
of the axial line of symmetry. We will prove that the function Γ → stm Γ is a continuous function.
For this purpose, let Γi → Γ and suppose that stm Γi does not converge to stm Γ. Then, there is a
subsequence Γij such that stm Γij converges to an m-starline Ω contained in Γ with vertex 0, different
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from stm Γ. Let Lij ∈ stm Γij be such that there is an axis of symmetry of (p0 + Γij) ∩ K parallel
to Lij . We may assume, without loss of generality, perhaps by taking a subsequence, that Lij → L.
So, L ∈ Ω, and therefore L /∈ stm Γ. But, by III, L is parallel to an axis of symmetry of (p0 +Γ)∩K,
which is a contradiction. Therefore, Γ → stm Γ is continuous, contradicting Theorem 2.1.
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