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Abstract

In this paper we study the space of configurations of n lines in affine

space of dimension n+k. We give a topological description of these spaces,

in terms of some fibre spaces, and describe more specifically some inter-

esting cases.

1

1 Introduction

The origin of the problem we are interested in can be traced back to a paper
by Gelfand, Goresky, Mac Pherson and Serganova [4]. They study the complex
Grassmann manifold of (n − k)-dimensional subspaces of C

n. More specifi-
cally, they study a descomposition of the Grassmannian into strata, governed
by matroids, that comes from projective configurations of points in a complex
projective space. The same descomposition can be obtained from three different
points of view: the first one arising from the geometry of Schubert cells in the
Grassmann manifold, a second one from the theory of of convex polyhedra and
a third one from the theory of combinatorial geometries.

Something similar happens with real affine configurations of points, i.e. k
-tuples of points that affinely span modulo the affine group. This space is
also a Grassmann manifold, but with a different descomposition into strata,
corresponding to oriented matroids [2]. In [3], Bracho, Montejano and Oliveros
studied the space of m-transversals to a family F of convex sets, i.e. the space
of all m-planes transversal to all elements of F , and proved that the homotopy
of this space is governed by the strata of the space of affine configurations of
points.

In [1] Arocha, Bracho and Montejano raise the following question: what hap-
pens when one considers flats other than 0-dimensional? what are the spaces
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so obtained and what are the combinatorics that govern their natural strati-
fications? This is the context of this paper. We answer the question of what
are the spaces obtained by taking configurations of n lines in the affine space of
dimension n + k, modulo the affine group.

The quotient space of an arbitrary space modulo the action of a non com-
pact group, as is the affine group, is not necessarily a manifold. There might
be, for example, a dense orbit. Or the space obtained might not be Haussdorff,
as in the case of 4 lines in the affine plane A2 studied in [1]. In our case this is
what happens, we do not obtain a “good” quotient space unless we introduce
certain “rules”, that is, we have to restrict ourselves to an open dense subset,
which we define in section II of this paper. Section III contains some more or
less technical considerations, and in section IV we define for each configuration
of lines a set of invariants, which contains all the information about the con-
figuration. At first we define our invariants only as points in some topological
spaces (Grassmannians and products of Grassmannians), and then, in section
VI we describe the topology of our configuration spaces by means of a fibre
bundle (defined in section V), obtaining a topological description of the space
of configurations of n lines in the affine space of dimension n + k. Finally we
focus on some particular cases.

2 Definitions.

Given two non-negative integers n 6= 0 and k, we first will consider the set of
all n-tuples of lines in Rn+k:

F1 = {(L1, L2, ..., Ln) : each Li is a line in R
n+k }.

The Affine group Af(n + k) acts on Rn+k and induces an action on F1: given
T ∈ Af(n + k) and (L1, ..., Ln) ∈ F1,

T ((L1..., Ln)) = (T (L1), ..., T (Ln))

where T (Li) is the line {T (x) : x ∈ Li}.

Definition. (L1, ..., Ln) fixes if T (L1, ..., Ln) = (L1, ..., Ln) for T ∈ Af(n+
k) implies that T is the identity in Af(n + k).

Let F2 be the following subset of F1:

F2 = {(L1, ..., Ln) ∈ F1 : (L1, ..., Ln) fixes}.

Then F2 is the subset of F1 where the action of Af(n + k) is free. Now let
F3 be the open subset of F2 consisting of the n-tuples of lines whose directions
are linearly independent in Rn+k.

Definition. The configuration space of n lines in Affine (n + k)-space,
1
nAn+k, is the quotient space

1
nA

n+k = F3/Af(n + k).
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By a configuration of n lines in Affine (n + k)-space we mean [L1, ..., Ln] ∈
F3/Af(n + k).

In all that follows, G(m, r) is the Grassmannian space of m-dimensional
subspaces of Rm+r.

Since F3 is a open subset of the n-fold product of G(2, n + k − 1), the
dimension of 1

nAn+k is 2n(n + k− 1)− (n + k)(n + k + 1). Hence, 2n(n + k− 1)
can not be less than (n + k)(n + k + 1), and this will happen only if k is less or
equal to n − 3.

3 Preliminaries

Let (L1, ..., Ln) be an element of F3. If we complete the directions of L1, ..., Ln

to a base of Rn+k, there is always a linear transformation that takes this base
to the canonical base e1, ..., en+k. This means that in each equivalence class
[L1, ..., Ln] ∈1

n An+k there is (L1, ..., Ln) such that, for i = 1, ..., n, Li can be
written as

Li = {tei +
n

∑

j=1

ai
jej +

n+k
∑

j=n+1

bi
jej : t ∈ R}.

where ai
i = 0. Let E be the space of n-tuples of lines that fix and are in the

form described above.

Let G be the subgroup of Af(n + k) consisting of the affine transformations
whose linear part is





















λ1 0 0 0 y1
n+1 ... y1

n+k

0 λ2 0 0 y2
n+1 ... y2

n+k

0 0 ... 0 ... ... ...
0 0 0 λn yn

n+1 ... yn
n+k

0 0 0 0 λn+1 ... yn+1
n+k

0 0 0 0 ... ... ...

0 0 0 0 yn+k
n+1 ... λn+k





















with none of λ1, ..., λn+k equal to zero. It is not hard to prove that G is a

subgroup of Af(n + k), that the action of G on E is free and that E/G is
homeomorphic to 1

nAn+k = F3/Af(n + k).

Every element (L1, ..., Ln) of E is completely determined by the coefficients
ai

j y bi
j , i = 1, ..., n and j = 1, ..., n+k. Therefore, (L1, ..., Ln) can be represented

as a pair (A, B), where
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(i) A =













0 a1
2 ... ... a1

n

a2
1 0 a2

3 a2
4 a2

n

... ... 0 ... ...
an−1
1 an−1

2 ... 0 an−1
n

an
1 an

2 ... an
n−1 0













is an n × n matrix with all

diagonal elements equal to zero.

( ii ) B =





b1
n+1 ... b1

n+k

... ... ...
bn
n+1 ... bn

n+k



 is a k × n matrix.

If (A1, ..., An) are the columns of A, and (Bn+1, ..., Bn+k) are the columns
of B, then Bn+1, ..., Bn+k and each Ai, i = 1, ..., n, are vectors in Rn.

We will use the following
Notation.
We will denote by πi the projection of Rn onto the subspace whose elements

have i-th coordinate equal to zero.
We denote by Rn

i the subspace πi(R
n)

The vector (1, 1, 1, ..., 1) ∈ Rn will be written as 1.
And < Y1, ...Yr > is the subspace spanned by Y1, ...Yr, where Y1, ...Yr can

be vectors or other subspaces.

Now we write the condition of fixing in terms of the pair (A, B) representing
(L1, ..., Ln).

Lemma 1. Let (L1, ..., Ln) be such that for each i = 1, ..., n, Li can be
written as

Li = {tei +
n

∑

j=1

ai
jej +

n+k
∑

j=n+1

bi
jej : t ∈ R}.

Then (L1, ..., Ln) ∈ E if and only if
( i ) The vectors Bn+1, ..., Bn+k, 1 are linearly independent.
( ii ) For every i ∈ {1, ..., n}, the vectors Ai, πi(Bn+1), ..., πi(Bn+k), πi(1) are

linearly independent.

Proof.
By definition, (L1, ..., Ln) fix if and only if given g ∈ Af(n+k) with g(Li) =

Li for all i = 1, ..., n, g has to be the identity. Since g has to preserve the
directions of the lines, g has to be in G, that is g has to be the composition of
a linear part in the form





















λ1 0 0 0 y1
n+1 ... y1

n+k

0 λ2 0 0 y2
n+1 ... y2

n+k

0 0 ... 0 ... ... ...
0 0 0 λn yn

n+1 ... yn
n+k

0 0 0 0 yn+1
n+1 ... yn+1

n+k

0 0 0 0 ... ... ...

0 0 0 0 yn+k
n+1 ... yn+k

n+k




















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and a translation T (x) = x + r, where

r =









r1

r2

...
rn+k









.

The condition g(Li) = Li for i = 1, ..., n, yields for each i = 1, ..., n a system of
equations (I)

a1
i λi + b1

n+1y
i
n+1 + b1

n+2y
i
n+2 + ... + b1

n+kyi
n+k + ri = a1

i

a2
i λi + b2

n+1y
i
n+1 + b2

n+2y
i
n+2 + ... + b2

n+kyi
n+k + ri = a2

i

...

ai−1
i λi + bi−1

n+1y
i
n+1 + bi−1

n+2y
i
n+2 + ... + bi−1

n+kyi
n+k + ri = ai−1

i

ai+1
i λi + bi+1

n+1y
i
n+1 + bi+1

n+2y
i
n+2 + ... + bi+1

n+kyi
n+k + ri = ai+1

i

...

an
i λi + bn

n+1y
i
n+1 + bn

n+2y
i
n+2 + ... + bn

n+kyi
n+k + ri = an

i

and for each j = 1, ..., k a system of equations (II)

b1
n+1y

n+j
n+1 + b1

n+2y
n+j
n+2 + ... + b1

n+kyn+j
n+k + rn+j = b1

n+j

b2
n+1y

n+j
n+1 + b2

n+2y
n+j
n+2 + ... + b2

n+kyn+j
n+k + rn+j = b2

n+j

...

bn
n+1y

n+j
n+1 + bn

n+2y
n+j
n+2 + ... + bn

n+kyn+j
n+k + rn+j = bn

n+j

The configuration fixes if and only if all this systems have a unique solution.
The identity is a solution. It is unique for the systems of type (I) if and only if
Ai, πi(Bn+1), ..., πi(Bn+k), πi(1) are linearly independent; And for the systems
of type (II) if a

b1
n+1y

n+j
n+1 + b1

n+2y
n+j
n+2 + ... + b1

n+kyn+j
n+k + rn+j = b1

n+j

b2
n+1y

n+j
n+1 + b2

n+2y
n+j
n+2 + ... + b2

n+kyn+j
n+k + rn+j = b2

n+j

...

bn
n+1y

n+j
n+1 + bn

n+2y
n+j
n+2 + ... + bn

n+kyn+j
n+k + rn+j = bn

n+j

The configuration fixes if and only if all this systems have a unique solution.
The identity is a solution. It is unique for the systems of type (I) if and only if
Ai, πi(Bn+1), ..., πi(Bn+k), πi(1) are linearly independent; And for the systems
of type (II) if and only if Bn+1, ..., Bn+k, 1 are linearly independent. �

4 Invariants

We will assign to each n-tuple of lines in F3 a set of invariants, consisting of a
point P in G(k + 1, n − k − 1) and an n-tuple of pairs, ((P1, H1), ..., (Pn, Hn)),
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each pair (Pi, Hi) in G(k + 1, n − k − 2) × G(k + 2, n − k − 3) and with the
property that Pi ⊂ Hi.

We start by defining the invariants for lines in E, using the canonical basis
e1, ..., en+k of Rn+k. This definition can be extended to all elements of F3, using
another basis and then proving that the definition is independent of the choice
of basis.

We will prove that (L′

1, ..., L
′

n) is affine image of (L1, ..., Ln) if and only if
their invariants coincide. Thus, every configuration in F3/Af(n + k) =1

n An+k

is uniquely determined by its invariants.

The main invariant.
Let φ : E → G(k + 1, n− k − 1) be defined as follows: given (A, B) ∈ E, we

know that each of the columns Bn+1, ..., Bn+k belongs to Rn. Let φ(A, B) be

φ(A, B) =< Bn+1, ..., Bn+k, 1 > .

Then φ is well defined because one of the conditions on the elements of E is
that Bn+1, ..., Bn+k, 1 are linearly independent.

Now we prove that φ is constant on the orbits of the action of G in E. Let
(A′, B′) be in G(A, B). Then there is g ∈ G with g(A, B) = (A′, B′). By the
definition of the action of G, we have that for all j = n + 1, ..., n + k there are
yj

n+1, ..., y
j
n+k, rj ∈ R such that

B′

j = yj
n+1Bn+1 + ... + yj

n+kBn+k + rj1.

Hence, < B′

n+1, ..., B
′

n+k, 1 >⊆< Bn+1, ..., Bn+k, 1 >. Both subspaces being of
the same dimension, they have to be equal.

Secondary invariants.
For each i ∈ {1, ..., n}, we will define functions ϕi that assign to each (A, B) ∈

E a pair (Pi(A, B), Hi(A, B)), where Pi(A, B) is a (k + 1)-dimensional sub-
space of R

n
i , Hi(A, B) is a (k + 2)-dimensional subspace of R

n
i , and Pi(A, B) ⊂

Hi(A, B).

Define Pi(A, B) = πi(φ(A, B)) =< πi(Bn+1), ..., πi(Bn+k), πi(1) > .

This is a (k+1)-dimensional subspace because of the conditions on the elements
of E.

We know that Ai ∈ Rn
i .

Define Hi(A, B) =< Pi(A, B), Ai > .

We have hereby defined a function ϕi from E to the set

{(P, H) : P ∈ G(k + 1, n− k − 2), H ∈ G(k + 2, n − k − 3), P ⊂ H}.

Now we prove that ϕi is constant on the orbits of the action of G in E. Take

(A′, B′) in G(A, B). Then there is T ∈ G with T (A, B) = (A′, B′), which means

6



that for each i ∈ {1, .., n} there are λi, y
i
n+1, y

i
n+2, ..., y

i
n+k, ri ∈ R, where λi 6= 0,

such that

A′

i = λiAi + yi
n+1πi(Bn+1) + yi

n+2πi(Bn+2) + ... + yi
n+kπi(Bn+k) + riπi(1).

We already proved that Pi(A
′, B′) = Pi(A, B). We have then that Hi(A

′, B′) ⊆
Hi(A, B). Both subspaces being of the same dimension, they have to be equal.

Suppose now that (A, B) and (A′, B′) have the same invariants. Since
φ(A, B) = φ(A′, B′) we have that < Bn+1, ..., Bn+k, 1 >=< B′

n+1, ..., B
′

n+k, 1 >.

In other words, for all j = n + 1, ..., n + k there are yj
n+1, ..., y

j
n+k, rj ∈ R such

that
B′

j = yj
n+1Bn+1 + ... + yj

n+kBn+k + rj1.

Since (Pi(A, B), Hi(A, B)) = (Pi(A
′, B′), Hi(A

′, B′)) for all i ∈ {1, ..., n}, there
are λi, y

i
n+1, y

i
n+2, ..., y

i
n+k, ri ∈ R with λi 6= 0 such that

A′

i = λiAi + yi
n+1πi(Bn+1) + yi

n+2πi(Bn+2) + ... + yi
n+kπi(Bn+k) + riπi(1).

Let g ∈ G be such that the linear part of g is





















λ1 0 0 0 y1
n+1 ... y1

n+k

0 λ2 0 0 y2
n+1 ... y2

n+k

0 0 ... 0 ... ... ...
0 0 0 λn yn

n+1 ... yn
n+k

0 0 0 0 yn+1
n+1 ... yn+1

n+k

0 0 0 0 ... ... ...

0 0 0 0 yn+k
n+1 ... yn+k

n+k





















followed by the traslation T (x) = x + r with

r =









r1

r2

...
rn+k









.

Then g(A, B) = g(A′, B′). Hence, (L1, ..., Ln) and (L′

1, ..., L
′

n) represent the
same configuration if and only if their invariants coincide.

Invariants in F3.
Let (L1, ..., Ln) be any element in F3. Let d1, ..., dn be the directions of the

lines L1, ..., Ln. Let H be the subspace of Rn+k orthogonal to < d1, ..., dn >
and dn+1, ..., dn+k a basis for H . Each of the lines L1, ..., Ln can be written as
a linear combination of d1, ..., dn+k. As before, we can use this expresion for
L1, ..., Ln to associate to (L1, ..., Ln) a pair of matrices (A, B), where A consists
of the coefficients of d1, ..., dn and B of the coefficients of dn+1, ..., dn+k. Again,
the columns of B are in R

n and each column Ai of A is in R
n−1
i . Using this

matrices (A, B), we define the set of invariants as we did before, for lines in E.
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Theorem 1. The invariants are well defined in F3. Moreover, (L1, ..., Ln)
and (L′

1, ..., L
′

n) represent the same configuration in 1
nAn+k = F3/Af(n + k) if

and only if their invariants coincide.

Proof.
Given (L′

1, ..., L
′

n) ∈ F3 with directions d1, ..., dn, the linear transformation
that takes d1, ..., dn+k to e1, ..., en+k takes (L′

1, ..., L
′

n) to an n-tuple of lines
(L1, ..., Ln) in E, such that the matrices A and B associated to (L1, ..., Ln)
are identical to those associated to (L′

1, ..., L
′

n). This, together with the other
results in this section, implies the theorem.�

Up to this point our invariants are only points in certain sets. We have not
taken into account the topological properties of our configuration spaces. We
will do this by using a fibre bundle, which we describe in what follows.

5 The fibre bundle ξ.

Definition of ϑk,n−2.

Let ϑk,n−2 be the fibre bundle

P n−k−3 ↪→ Ek,n−k

↓
G(k, n − k − 1)

where the base space is the Grassmannian space G(k, n − k − 2); the total
space is

Ek,n−2 = {(P, H) : P ∈ G(k, n − k − 2), H ∈ G(k + 1, n− k − 3), P ⊂ H}

together with the projection map π : Ek,n−2 → G(k, n − k − 2) given by
π(P, H) = P . The fibre π−1(x) is the Projective space P n−k−3.

Definition of a map f : (G(k, n − k − 1) − ∆) →
∏n

G(k, n − k − 2).
Consider now the Grassmannian space G(k, n−k−1). Let H ∼= Rn−1 be the

subspace of Rn orthogonal to 1. Using the embedding j : Rn−1 → H ⊂ Rn, each
P ∈ G(k, n − k − 1) can be regarded as a k-dimensional subspace of H ⊂ R

n.

Given a k-dimensional subspace P of H ⊂ Rn and i ∈ {1, ..., n}, the image
of P under the projection πi is again a k-dimensional subspace, now of R

n−1
i ,

which may or may not contain πi(1). Define ∆ as

∆ = {P ∈ G(k, n − k − 1) : for some i = 1, ..., n, πi(1) ∈ (πi ◦ j)(P )}.

Let qi be the projection of R
n−1
i onto the subspace of R

n−1
i orthogonal to

πi(1). Then the composition qi ◦πi ◦ j assignes to each P ∈ G(k, n− k− 1)−∆,
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a k-dimensional subspace in qi(R
n−1
i ) ∼= Rn−2. We have hereby defined for each

i ∈ {1, ..., n}, a map

fi = qi ◦ πi ◦ j : (G(k, n − k − 1) − ∆) → G(k, n − k − 2)

Define f : (G(k, n−k−1)−∆) →
∏n G(k, n−k−2) as f(P ) = (f1(P ), ..., fn(P )).

Definition of ξ.
The space

∏n G(k, n−k−2) is the base space of the product bundle ϑk,n−2×
... × ϑk,n−2. Let ξ be the pullback f∗(ϑk,n−2 × ... × ϑk,n−2). This is equivalent

to the Whitney sum f∗

1 (ϑk,n−2) ⊕ ... ⊕ f∗

n(ϑk,n−2).
The codimension of the set ∆.
Recall that

∆ = {P ∈ G(k, n − k − 1) : for some i = 1, ..., n, πi(1) ∈ (πi ◦ j)(P )}.

Since j is an embedding, ∆ is homeomorphic to the set

{P ⊂ H : for some i = 1, ..., n, πi(1) ∈ πi(P )}.

Suppose that P belongs to this set. Then P ∩ π−1
i (πi(1)) 6= ∅ for some i ∈

{1, ..., n}. But observe that H ∩ π−1
i (πi(1)) is a one point set, say {p}, with

p 6= 0. Then < p >⊂ P . That is, P belongs to the set of all k-dimensional
subspaces of H ∼= Rn−1 that contain < p >. This set is homeomorphic to
G(k − 1, n− k − 1). Since ∆ is contained in G(k − 1, n− k − 1), and this set is
of codimension at least 2, the codimension of ∆ is greater or equal to 2.

6 The space 1
nAn+k.

Let ξ be the bundle defined in the above section, E its total space and π∗ : E →
G(k, n − k − 1) − ∆ its projection map.

Theorem 2. The space 1
nAn+k is homeomorphic to E . Moreover, the space

of principal invariants is homeomorphic to G(k, n − k − 1) − ∆ and each fiber
(π∗)−1(P ) corresponds to configurations of lines having the same main invariant.

Proof.
First we prove that the space of main invariants is homeomorphic to G(k, n−

k− 1)−∆. Recall that the main invariant function φ : E → G(k + 1, n− k− 1)
is constant on the orbits of the action of G in E, and so we have:

φ : E/G → G(k + 1, n− k − 1).

The space of all main invariants is the image of φ. We shall describe this image.
Any (k+1)-dimensional subspace of Rn in the image of φ contains, by definition
of φ, the vector 1. Let P be any (k + 1)-dimensional subspace of R

n containing
1. Let Bn+1, ..., Bn+k, 1 be a set of vectors spanning P . If for some i ∈ {1, ..., n}
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we have that πi(Bn+1), ..., πi(Bn+k), πi(1) are not linearly independent, then P
is not in the image of φ (see lemma 1).

Suppose then that for all i = 1, ..., n the set πi(Bn+1), ..., πi(Bn+k), πi(1)
is linearly independent. Then they span a (k + 1)-dimensional subspace in
R

n−1
i

∼= R
n−1. Since k ≤ n− 3, we can choose Ai in R

n−1
i linearly independent

of πi(Bn+1), ..., πi(Bn+k), πi(1). And then, by lemma 1, the line configuration
corresponding to (A, B) = ((A1, ..., An), (Bn+1, ..., Bn+k)) is in E, and its image
under φ is P .

Therefore, the image of φ is the subset of G(k + 1, n − k − 1) consisting of
those (k + 1)-dimensional subspaces of Rn that contain 1 and such that for all
i = 1, ..., n their projection in R

n−1
i is again of dimension k +1. Projection onto

the subspace H orthogonal to 1 gives a homeomorphism of the image of φ and
G(k, n − k − 1) − ∆.

For each i = 1, ..., n we have the secondary invariant function ϕi and, as
above, this gives us a function

ϕi : E/G → {(P, H) : P ∈ G(k + 1, n− k− 2), H ∈ G(k + 2, n− k− 3), P ⊂ H}.

Now we prove that the image of ϕi is homeomorphic to Ek,n−2. Take (Pi(A, B), Hi(A, B))
in the image of ϕi. Then, by definition of ϕi, πi(1) ∈ Pi(A, B) ⊂ Hi(A, B).
Composition with qi (the projection onto the subspace orthogonal to πi(1))
gives a homeomorphism between the image of ϕi and Ek,n−2.

Now we define a homeomorphism ϕ : E/G → E . By definition, the space E
is

E = {(P, ((P1, H1), ..., (Pn, Hn))) ∈ (G(k, n − k − 1) − ∆) × (Ek,n−2 × ... × Ek,n−2)

: f(P ) = (P1, ..., Pn)}.

Given (A, B) ∈ E/G, define

ϕ(A, B) = ((p ◦ φ)(B), ((q1 ◦ ϕ1)(A, B), ..., (qn ◦ ϕn)(A, B)).

Recall that ϕi(A, B) = (Pi(A, B), Hi(A, B)). For ϕ to be well defined we only
need

f((p ◦ φ)(B)) = (q1(P1(A, B)), ..., qn(Pn(A, B))).

But

f((p ◦ φ)(B)) = (f1(p(φ(A, B))), ..., f1(p(φ(A, B))))

= (q1(π1(φ(A, B))), ..., qn(πn(φ(A, B)))

= ((q1 ◦ ϕ1)(A, B), ..., (qn ◦ ϕn)(A, B)).

This suffices to prove the theorem since we have already proved the bijectivity
of ϕ when we proved that the set of invariants is unique for each configuration,
and we also know that the maps assigning to a set of vectors the subspace
spanned by them and the projections are continuous and open, and E/G has
the quotient topology.
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Finally, take P ∈ G(k, n − k − 1) − ∆. Then the fibre (π∗)−1(P ) is

(π∗)−1(P ) = {(P, ((P1, H1), ..., (Pn, Hn))) ∈ E : f(P ) = (P1, ..., Pn)}

Taking ϕ−1((π∗)−1(P )), the fibre over P corresponds to

{(A, B) : ϕ(A, B) ∈ (π∗)−1(P )} = {(A, B) : (p ◦ φ)(A, B) = P}.

Since, in the image of φ, p is a homeomorphism, two configurations are in the
same fibre if and only if they have the same main invariant.�

7 Some examples.

The space 1
nAn of configurations of n lines in An is homeomorphic to

the product of n Projective spaces P n−3.
When k = 0, a configuration (L1, ..., Ln) is described by the matrix A of

section III, and the condition for a configuration to fix reduces to: for all i =
1, ..., n, Ai and π1(1) are linearly independent.

The main invariant is given by the one dimensional subspace < 1 > in R
n,

and is the same for every configuration. The secondary invariants are, for each
i ∈ {1, ..., n} a pair (Pi, Hi), where Pi =< πi(1) > for every configuration
and Hi is a 2-dimensional subspace of R

n−1
i that contains < πi(1) >. By

theorem 2, 1
nAn is homeomorphic to a fibre bundle with base space a single

point and fibre the n-fold product of projective spaces P n−3, each arising from
projecting all planes in R

n−1
i containing < πi(1) > onto the space orthogonal to

< πi(1) >. Thus, the space of configurations of 4 lines in R4 is homeomorphic
to T 4 = P 1 × P 1 × P 1 × P 1; the space of configurations of 5 lines in R

5 is
homeomorphic to the product of five Projective spaces P 2, and so on.

The space 1
nA2n−3 of configurations of n lines in A2n−3 is homeo-

morphic to the Grassmannian G(n − 3, 2) − ∆, where ∆ is a simplicial
complex of dimension 2(n − 4).

In this case, k = n−3. Since 0 ≤ k ≤ n−3, in this case k takes its maximum
value. Here, the main invariant is given by a (n − 2)-dimensional subspace of
Rn containing 1; and for each i ∈ {1, ..., n}, the secondary invariant is given by
a pair (Pi, Hi) where Pi is a (n−2)-dimensional subspace of Rn−1, and Hi must
be a (n−1)-dimensional subspace of R

n−1
i , and therefore, for all configurations,

Hi must be R
n−1
i . Since Pi can be obtained from the main invariant by means of

the projection πi, all the information about a configuration must be contained
in the main invariant.

Theorem 2 reflects this fact: according to it, 1
nA

2n−3 is homeomorphic to a
fibre bundle with base space G(n− 3, 2)−∆ (the space of the main invariants),
and fibre the n-fold product of P n−(n−3)−3 = P 0, which is a point.

In section V we showed that ∆ is contained in the union of n spaces G(n−4, 2)
(one for each i = 1, ..., n). In fact, from the same argument it can be seen that ∆
is equal to the union of this spaces. Then we have that, 1

4A5 is homeomorphic to
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the projective space P 2 with 4 points removed; 1
5A7 is homeomorphic to G(2, 2)

with 5 projective spaces P 2 removed, and so on.

The space 1
5A6of configurations of five lines in A6.

In this case, neither the space of main invariants nor the space of sec-
ondary invariants are trivial. For each configuration, the main invariant is a
2-dimensional plane in R5 and for each i ∈ {1, ..., 5}, the secondary invariant is
a pair (Pi, Hi) where Pi is a 2-dimensional plane in R

4
i containing 1 and H is a

3-dimensional subspace of R4
i containing Pi.

Let us look more closely at the construction of the bundle ξ for this case.
Recall that ϑ1,3 is the bundle with base space the projective space P 2; total space
the set of all pairs (P, H) where P is a line in R3, and H a plane containing P ;
and the projection map takes every pair (P, H) to P . This is the projectivization
of the tangent bundle of P 2 (see [5]). Then we take the product of five of these
bundles, and the map f : (P 3 − ∆) → (P 2 × P 2 × P 2 × P 2 × P 2). Here ∆
consists of five points and in each coordinate the map f retracts P 3 without
these points to a P 2 not containing one of the points.
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