CHARACTERIZATION OF ELLIPSOIDS AND POLARITY IN
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ABSTRACT. By introducing the concept of polarity in convex sets, we are able,
in a natural way, to generalize several classic characterizations of ellipsoids,
showing that all of them depend upon and are related to the concept of pro-
jective center of symmetry. Using these ideas, we are also able to develop new
characterizations of ellipsoids and to propose new problems.

1. INTRODUCTION

The classical and geometrically elementary characterizations of ellipsoids, stud-
ied by Buseman in [5], are fundamental tools in the proofs of a number of powerful
and interesting geometrical results, such as the False Centre Theorem [1], [14]; Gru-
ber’s Theorem about caustics and ellipsoids [12], [3]; Hobinger-Burton-Larman’s
Theorem [8], [2], and many other important geometric results (see for example [6],
[7], [9], [10], [11], [15] and [16]).

As we shall see later, from different points of view, these classical characteriza-
tions are formulated in a restricted manner. So, the purpose of this paper is to
place them in the general setting of ”polarity in convex sets”. This will allow us to
extend naturally these classical characterizations and to show that all of them are
related and have as a basic notion the concept of projective centre of symmetry.
Under this new point of view, natural generalizations and variations of interesting
results, new proofs and conjectures will arise naturally.

2. PoOLES AND POLARS IN CONVEX SETS

From now on, K will be a smooth, compact, strictly convex body in euclidean
n-space K™, n > 2. We complete K™ to the n-dimensional projective space P"
by adding the hyperplane at infinity. If € P™ — K, then the union of all lines
through € that intersect K will be denoted by Cq(K). If A is a hyperplane of P™
and 2 € P" — (K U A), then the projection of K from Q into A, is defined by:
Po(A,K) = Co(K)NA. Finally, f I' € P* — K is a k-plane, 0 < k < n — 2, the
shadow boundary of K with respect I', SO(K,T'), is the topological (n—k—2)-sphere
contained in 8K, defined by:

SO(K,I')={HNK / H is a supporting hyperplane of K through I'} =
{ANK / A is a supporting (k¥ + 1)-plane of K through I'}.

Let O € P* — 0K. We say that O is a pole of K if there is a hyperplane H of
P™ with the property that for every line . through O such that K N L = {A, B},
we have that the cross section of A, B, O and the intersection of L and H is minus
one. That is:

[A,B;O0,LNH|]=-1.
1
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If this is so, we say that H is a polar hyperplane of K and also that H is the
polar of the pole O.

If O € intK is a pole of K, then we say that O is a projective center of symmetry
of K because, in this case, the polar of K is a hyperplane H that does not intersect
K and if 7 is a projective isomorphism that sends H to the hyperplane at infinity,
then 7 (K) is a compact centrally symmetric convex body with center 7 (O). In
fact, O € intK is a pole of K, or a projective center of symmetry of K if and only
if there is a projective isomorphism 7 : P* — P™ with the property that 7 (K) is
a compact, centrally symmetric, convex body with center 7 (O).

If O € P*" — K is a pole of K, then its polar H will be called a projective
hyperplane of symmelry of K. In this case, H N K # ¢, in fact, it is not difficult
to see that

(1) HNoK = Sa(K,0).

If 7 is a projective isomorphism that sends 7 (K) into a compact convex body
and 7 (O) into a point at infinity, then 7 (H) is a hyperplane of symmetry of K.
In fact, a hyperplane H is a projective hyperplane of symmetry of K if and only if
there is a projective isomorphism 7 : P* — P™ with the property that 7 (H) is a
hyperplane of symmetric of the compact convex body 7 (K).

Let £ C E™ C P™ be an ellipsoid. Then every point O € P"™ — 9€ is a pole of £
and every non-tangent hyperplane of £ is a polar of &£.

Let O € P" — 0K and let A € K. We say that B € 9K is a O-anlipode of
A if the line L through O and A is such that L. N 8K = {A, B}. Suppose now
that O € P" — 0K is a pole of K with polar hyperplane H and let A, B be two
different O-antipodes of K. Then, the supporting hyperplanes of K through A and
B intersect in a (n-2)-plane contained in H. In fact:

(2) {I'/TCc H— K is a (n— 2)-plane} =

{HaNHg / Ha and Hg are supporting hyperplanes of K at O-antipode points A
and B of 9K }.

The converse is essentially true (see [5;16.17]), that is:

Theorem 2.1. Let H be a hyperplane of P™ with H N K = ¢. Suppose that O €
ntK is such that the supporting hyperplanes of K through O-antipodal points in-
tersect in a (n-2)-plane contained in H, then O is a pole or projective center of
symmetry of K with polar hyperplane H.

If O € P" — K, then a similar result is not true. Counterexamples can easily be
constructed. In this direction we have the following straightforward result:

Lemma 2.2. Let U be an open set of S Land let f,g : S*~1 — RT be two smooth
functions. Let Vy = {f(v)u € R"/u e U} and V, = {g(u)u € R"/u € U}. Then,
there is a constant k such that f = kg if and only if for every u € U the tangent
hyperplanes of Vy at f(u)u and the tangent hyperplane of V, at g(u)u are parallel
(intersect in a (n-2)-plane contained in the hyperplane at infinity).

Let K C P™ be such that 7(K) C E™ C P™ is a strictly convex body for some
projective isomorphism 7 : P* — P". Let O € P" — 0K and let H C P™ be a
hyperplane. We say that O is a pole of K with polar hyperplane H if w(O) is a
pole of 7(K') with polar hyperplane 7(H).
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Let Cn C P™ be a convex cone with apex the point € P™ Let H be a
hyperplane and L a line of P™ through 2. We say that L is a pole of Cq with polar
hyperplane H if given a hyperplane I' that does not pass through €2, the point LNT
is a pole of Co N T with polar hyperplane H N I'. Note that our definition does
not depend on the choice of T'. Note also that if we identify the set of lines of P™
through Q with P! and also C and H with the set of lines through € contained
in Cq and H, respectively, our definitions of poles and polars of Cq coincide.

Theorem 2.3. Characterization of Poles and Polars. Let K C E" be a
conver body, O € P* — 0K and let H C P™ be a hyperplane. The point O is a pole
of K with polar hyperplane H if and only if for every Q@ € H — K the line through
Q and O is a pole of Co(K) with polar hyperplane H.

Proof. Suppose first O is a pole of K with polar H. Let & € H — K and let
A be a hyperplane that doesn’t contain Q. We shall prove that mo(A,0) is a
pole of mo(A, K) with polar hyperplane AN H. Let ¢ c A be any line through
O’ = mo(A,0) and suppose that £ NdTo(A, K)={A',B'},and ¢ NH =Q'. We
must prove that [A",B;0",Q'] = —1. Let A,B € 9K be such that To(A, A) =
A’ and (A, B) = B' and let II be the plane generated by Q and ¢. Hence,
19, Q',0', A" B A, B, O} C 11, furthermore, O is a pole of K NIl with correspond-
ing polar the line IIN H that passes through €2 and Q/. Since the supporting lines of
KNIl at A and B meet at €2, then by (2), A and B are O-antipodes and therefore
there is a line £ C Il such that {4, B,O} C {. Therefore, [A, B; O, N H] = —1. Con-
sequently, since mo (¢, A) = A, 7q(¢',B) = B',1q(¢ ,0) =0, and mo({ , (N H) =
Q',then [A",B;0,Q'] = —1.

For the converse, let ¢ be a line through O and suppose {NAK = {A, B}. We shall
prove that [A, B;O,¢N H|] = —1. Let H4 and Hp be the supporting hyperplanes
of K at A and B, respectively and let Q € Hy N Hg N H # ¢. Furthermore, let T’
be a hyperplane through ¢ that does not contain ). Then, O is a pole of To(T, K)
with polar hyperplane H NT'. Since A, B € d1q(l, K), then [A, B; 0,(N H] = —1.
This concludes the proof of the theorem. ]

Remark 2.1. The above theorem is the dual version of the following trivial fact:
The point O is a pole of K with polar hyperplane H if and only if for every hyper-
plane T' through O that intersects the interior of K, the point O is a pole of TN K
with polar hyperplane I' N H.

3. POLARITY AND CHARACTERIZATION OF ELLIPSOIDS

A classic characterization of ellipsoids [5;16.13] states that if K is a convex body
with the property that for every direction d, the middle point of all chords of K,
parallel to d, lies in a hyperplane of P™, then K is an ellipsoid.

From our point of view, this well known characterization can be restated as
follows:

Theorem 3.1. Let K C E™ be a convex body and let H be a hyperplane of P™
such that H N K = ¢. If every point of H is a pole of K, then K is an ellipsoid.

Essentially the same ideas as in the classic proof of the above theorem may be
used to prove the following sort of dual theorem:
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Theorem 3.2. Let K C E™ be a convex body and let P € intK be a point. If every
hyperplane through P is a polar hyperplane of K, then K is an ellipsoid.

Our next purpose is to prove an analogous characterization of ellipsoids for hy-
perplanes H that intersect the interior of K. Related results may be found in [13]
and Theorem 2 of [2].

Theorem 3.3. Let K C E™ be a convex body and let H be a hyperplane of P™
such that HN intK # ¢. Then, each one of the following condilions implies that K
is an ellipsoid:

a) Every point of HN intK is a pole of K.

b) Every point of H — K is a pole of K.

Proof. By Remark 2.1 and Burton’s Theorem [6], it is enough to prove the theorem
for n=2.

Proof of a). Let K C E? be a compact convex figure and let I be a line with the
property that LN intK # ¢ and for every point O € LN intK, O is a pole of K.
Let {A,B} = LN &K and La, Lp the supporting lines of K through A and B,
respectively. Let {P} =LaNLg € P

We shall start proving that the polars of the poles in LN intK all pass through
P. 'This is so because if O € LN intK, then A, B are O-antipodal points and hence,
by (2), La N Lg = {P} is contained in the polar of the pole O.

Next, note that PP must be a pole of K with corresponding polar L, because for
every line ¢ that intersects intK and is such that ¢NIK = {X,Y}, we have that
[X,Y;¢NnL,Pl=-1. Let {NnL = {0}, Lx and Ly the supporting lines of K
through X and Y, respectively, and Lo the polar of the pole O. Then, by (2), since
P is a pole of K with polar L and since X and Y are P-antipodal points, we have
that Lx NLy C L. Furthermore, O is a pole of K with polar Lo and since X and
Y are also O-antipodal points, we have that Lx NLy = L N Lo.

Let now & be an ellipse with the property that {4, B} C € and the supporting

lines of £ through A and B are, respectively, L 4 and Lg. Note first that the polar
of £ with respect to the pole P is L. Furthermore, note that O € LN intK is a pole
of & with polar Lo, because [A, B;0,L N Lol = —1. Thus, if {X1,Y1} = ¢NJE
and Lx,, Ly, are the supporting lines of £ through X; and Y7, respectively, then,
Lx, N Ly, =LNLc=LxNLy. Consequently, by Lemma 2.2, sending L to the
line at infinity, we have that K is a projective image of the ellipse £, which implies
that K is an ellipse.
Proof of b). Let K C E? be a compact convex figure and let  be a line with the
property that LN intK # ¢ and for every point O € I — K, O is a pole of K. We
shall follow the proof of a). Let {A, B} = LN &K and L4, Lg the supporting lines
of K through A and B, respectively. Let {P} =L NLg € P™

We shall start proving that the polars of the poles in L — K all pass through P.
This is so because if O € I, — K, then A, B are O-antipodal points and hence, by
(2), LaN L ={P} is contained in the polar of the pole O.

Let £ be the polar of K corresponding to the pole O, {Z} = LN¢, (NOK = {X,Y}
and Lx, Ly the supporting lines of K through X and Y, respectively. Hence P € /¢
and, by (1), Lx N Ly = {0}.

Let now & be an ellipse with the property that {4, B} C € and the supporting
lines of £ through A and B are, respectively, L 4 and Lg. The point O is a pole
of &, furthermore, by (2), the polar of £ with respect the pole O pass through
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P and since [A, B; O, Z] = —1, the polar of £ with respect the pole O is ¢. Let
{X1,Y1} =¢N3€ and let Ly, , Ly, be the supporting lines of & through X; and
Y1, respectively. Hence, by (1), Lx,N Ly, = {O}. Consequently, by Lemma 2.2,
sending L to the line at infinity, we have that K is a projective image of the ellipse
&, which implies that K is an ellipse. This concludes the proof of the theorem. i

The following sort of dual theorem can be proved using the same ideas.

Theorem 3.4. Let K C E" be a convex body and let P € P" — K be a poini.
Then, each one of the following conditions implies that K is an ellipsoid:

a) Every hyperplane through P that does not intersect K is a polar.

b) Every hyperplane through P that intersects the interior of K is a polar.

Our next purpose is to state a characterization in the spirit of Hobinger-Burton-
Larman’s Theorem [8]. The proof follows exactly the ideas in [2], but now using
our Theorems 3.1 and 3.3. Before stating the theorem, we require some definitions.

A slab in E™ | in the direction u € S" 1, is a set of the form {z € E" /
§ < (x,u) < a}. The slab is said to be degenerate if § = o and in this case it is
just a hyperplane. The slab is transversal to K if every hyperplane in the slab
intersects the interior of K.

Theorem 3.5. Let K C E™ be a convez body, n >3, and let Y ,,i=1,...,n—1,
be a collection of slabs transversal to K [slabs that do not intersect K, respectively]
in linearly independent directions. Suppose that every hyperplane in these slabs is
a polar hyperplane of K and at least one of the slabs is non-degenerated. Then K
is an ellipsoid.

4. K-POLARITY AND SHADOW BOUNDARIES

Let I be a k-plane of P™ and let A be a (n—k —1)-plane of P*. 0 < k <n—1.
Suppose that TN A = ¢ and I" U A is not contained in a hyperplane of P". We say
that I is a polar k-plane of a convex body K with dual polar the (n — k — 1)-plane
A if for every line L that meets I', A and intK, we have that

[A7B7P7Q] = _17
where LNOK = {A, B}, LNT = {P} and LNA = {Q}. If this is so, then for every
(k+1)-plane A through I'y AN A consists of a single point which is a pole of ANK
with polar hyperplane I'.

Note that if " is a polar k-plane of a convex body K with dual polar the (n—k—1)-

plane A and I'N K = ¢, then
ANIK = S9(K,T).

Let K C P™ be such that 7(K) C E™ C P™ is a strictly convex body for some
projective isomorphism 7 : P* — P". Let I' C P" be a k-plane. We say that I is
a polar k-plane of K if w(T') is a polar k-plane of 7(K).

Let Cn C P™ be a convex cone with apex the point 2 € P”. Let H be a k-plane
of P™ through ). We say that H is a polar k-plane of Cq if there is a (n—k)-plane
A through €2 such that ANH = {1} and with the property that given a hyperplane
', transversal to H, that does not pass through 2, then I'NH is a polar (k—1)-plane
of CoNT = Cq(T', K) with dual polar the (n — k — 1)-plane I' N A. Note that our
definition does not depend on the choice of T'.
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Theorem 4.1. Characterization of Polar k-Planes. Lel K C E" be a convex
body and let H be a k-plane of P*". 1 < k<mn-—1,n > 3. The k-plane H is a polar
k-plane of K if and only if for every Q € H — K, H is a polar k-plane of Cqo(K).

Proof. Suppose first H is a polar k-plane of K. Let 2 € H — K be any point and
let T" be a hyperplane, transversal to H, that does not contain §). We shall prove
that the (k —1)-plane I'N H is a polar (k — 1)-plane of mo(I, K). Let A be the dual
(n—k—1)-polar plane of K to H. By definition, for any (k+1)-plane II through H,
we have that II N A consists of a single point P. Furthermore, if IT intersects int K,
then P is a pole of IIN K with polar H.

The projection 7 (I, 1) is a k-plane with the property that mo(I', INNH = HNIL.
Furthermore, mo(I', 1IN K) = 7o(L, 1) N7o (L, K). Since P is a pole of I'N K with
polar H and  is a point of H — (K UT'), then by Theorem 2.3, mo(T’, P) is a pole
of (I, IIN K) = 7o (L, ) N7e(T, K) with polar 7o(I', A)NH =T'N H. Thus, H
is a polar k-plane of Cp(K) with dual the (n — k)-plane generated by A and €.

For the converse, let us prove first the case k = n— 1. Let us take a hyperplane I'
transversal to H, that is HNT is a (n — 2)-plane. Then, for every @ € H — (K UT),
HNT is a polar hyperplane of 7o (I, K) with pole co € I'. We shall prove that the
lines Lq through €2 and cq are concurrent in a point Q ¢ H UK. For that purpose,
it is easy to see that it is enough to show that for every line L C H — K, there is
a plane A through L that contains | Jo.; La. To see this, let 9 = L NT and let
us consider E the set of all supporting 2-planes of K through L. Then {IINT /
IIe =} ={¢CT /{is asupporting line of 7p(I", K) through )}, where P is any
point of . Thus, Cq,(7p(I", K)) is independent of the point P € L. By hypothesis
H NT is a polar hyperplane of wp(I’, K) with pole cp, hence by Theorem 2.3,
H NT is a polar hyperplane of the cone Cq,(7p(I', K)) with pole the line through
cp and g, Therefore {CP / P € L} is contained in a line that passes through
Qo. Consequently, every line L C H — K, Jg.;, La. is contained in a 2-plane and
therefore the lines Lg through €2 and cq are concurrent in a point @) ¢ HU K. Note
that since for every Q2 € H — (K UT), HNT is a polar hyperplane of 7o (T", K) with
pole cq = (I, (), then by Theorem 2.3, H is a polar hyperplane of K with pole
Q.

Suppose now k < n — 1. For every (k + 1)-plane A through H that intersects
intK and every Q € H — K, H is a polar k-plane of Cq(K) but also of Co(K N A).
By the proof of this theorem for the case Kk = n — 1, H is a polar hyperplane of
KNA with pole ¢y € A. The proof will be complete if we show that the set © of all
points ¢y, for all (k+ 1)-planes A through H that intersect intK, is contained in a
(n—k—1)-plane, but this is so because 7o (I, ©) is contained in a (n — k —1)-plane,
for every Q) € H — K. This finishes the proof of the theorem. [

Remark 4.1. For I parallel to H and k = n— 1, the hypothesis of Theorem 4.1 is
the hypothesis of the classical Hobinger’s Conjecture [8].

The following characterizations of ellipsoids are generalizations of our previous
results.

Theorem 4.2. Let K C E™! be a convex body and let H C P be a non-
supporting hyperplane of K. Let 0 < k <n — 1. If every k-plane A C H— K is a
polar k-plane of K, then K is an ellipsoid.
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Proof. The proof of the theorem follows by induction on k. Theorem 3.4 b) takes
care of thecase k = 0. If k > 0, let 2 € H— K be any point and let I" be a hyperplane
that does not contain 2. By Theorem 4.1, every (k—1)-plane L. C (I'NH)—7o(T, K)
is a polar (k— 1)-plane of 7o (I", K'), which implies by induction that 7o (T, K) is an
ellipsoid and also that the cone C(K) is an elliptic cone. The theorem follows now
by the dual version of Burton’s Theorem [6] that states that if there is a hyperplane
H with the property that for every point 2 € H — K, the cone Cq(K) is an elliptic
cone then K is an ellipsoid. i

As a consequence of the above results we have the following important charac-
terization of ellipsoids in terms of planar shadow boundaries.

Theorem 4.3. Let K C E™ be a convex body and let H C P"be a non-supporting
hyperplane of K, n > 3. Let 0 < k <mn —3. The body K is an ellipsoid if and only
if for every k-plane T C H — K, the shadow boundary SO(K,T') is contained in a
(n—k —1)-plane.

Proof. For every k-plane I' C H — K, let H(I') be the (n — k — 1)-plane containing
SO(K,T). For every (k+1)-plane L. C H — K, SO(K, L) = SO(K,T'1)NSI(K,Ts),
where I'; and I'y are two k-planes that generate L. Therefore SO(K, L) = (H((I'1)N
H(T'9)) N 9K, where H((I'y) N H(I'g) is a linear plane of P™ whose dimension is
n—k — 2 because SI(K, L) has dimension n — &k — 3. Thus, for every (k + 1)-plane
L C H—K let H(L) be the (n—k —2)-plane containing S(K, L). Note that I' C L
if and only if H(L) C H(T'). Furthermore, if A is a (n — k — 1)-plane through H (L),
then it is easy to see that there is a k-plane I' C L such that H(I') = A. We shall
prove that every (k + 1)-plane L C H — K is a polar (k + 1)-plane of K with dual
polar (n — k — 2)-plane H(L). For that purpose, it will be enough to prove that if
A is a (k + 2)-plane through L that meets int(K), then O = H(L) N A is a pole of
ANK with polar L. To see this last, it is enough, by Theorem 2.1, to prove that if
A and B are O-antipodes in AN K and Ly, Lg are the supporting (k + 1)-planes
of ANK C A at A and B, respectively, then L4 N Lg C L. This is so because if A
is the (n — k — 1)-plane through H (L) containing A and B, then there is a k-plane
I' C L such that H(I') = A. That is, 9K N A = SO(K,T') and therefore, L4 is the
(k + 1)-plane generated by I' and A, Lg is the (k + 1)-plane generated by I' and B
and then L4 N Lg =T. Consequently, by Theorem 4.1, K is an ellipsoid. I

Remark 4.2. Theorem 4.2, when HNK = ¢ and k =0, is a classic characteriza-
tion of ellipsoids (see for example [16] and [5;16.14]). It is interesting to note that
Theorem 4.2, for k = 0, concerning planar shadow boundaries, is easily proved to
be equivalent to Theorem 4.1, when k = 1. Note also that Theorem 4.1, for k = 0,
is equivalent to the classic characterization of ellipsoids concerning middle points
of chords [5;16.13].

Theorem 4.4. Let K C E™ be convex body and let P € P"—0K. Let 1 <k <n-—1.
If every k-plane T through P that intersects the interior of K is a polar k-plane of
K, then K is an ellipsoid.

Proof. The proof is by induction on 7 — 1 — k. Theorem 3.4 b) takes care of the
case n — 1 — k = 0. Suppose now that & < n — 1. Let A be a hyperplane through P
that intersects the interior of K. For every k-plane I' C A through P that intersects
the interior of K, we have that I" is a polar k-plane of AN K. By induction, A NK
is an ellipsoid and hence, by Burton’s Theorem [6], K is an ellipsoid.
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Theorem 4.5. Let K C E™ be a convex body and let P € P" — 0K, n > 3. Let
1<k <n—2. The body K is an ellipsoid if and only if for every (k + 1)-plane T
through P, there is a (n — k — 2)-plane A such that SO(K,A) =T.

Proof. For every (k+ 1)-plane I" through P, let H(I') be the (n— k — 2)-plane such
that SO(K, H(I')) = T'NJK. For every k-plane L through P, let I'y and I'y be two
(k+1)-planes such that I'y NI’y = L and let H(L) be the linear plane generated by
H(T'y) and H(T'g). Thus SO(K, H(L)) = SO(K, H(I'1)) N SH(K, H(I'3)). Therefore
SO(K,H(L)) = ('t NT'3) N8K = L NJK. Note that H(L) is a linear plane of
P™ whose dimension is (n — &k — 1) because SO(K, H(L)) has dimension &k — 1.
Thus, for every k-plane L through P let H(L) be the (n — k — 1)-plane such that
SO(K, H(L)) = L. It is easy to see now that {H(I') / I is a (k+1)-plane I" through
L}y ={A / Aisa (n—k — 2)-plane contained in H(L)}. Exactly, as in the proof
of Theorem 4.2, this implies that every k-plane L through P is a polar plane with
dual polar plane the (n — k — 1)-plane H (). Consequently, by Theorem 4.3, K is
an ellipsoid. i

5. THE FALSE PLANE OF SYMMETRY; A CONJECTURE

Let K C E™ be a convex body and let H C K" be a hyperplane that intersects
the interior of K. We say that H is a hyperplane of symmetry of K if H is a polar
hyperplane of K whose pole is a point at infinity. Note that, if this is the case, then
there is a direction with the property that the middle point of all chords of K in
this direction lies in H.

Conjecture 5.1. Let K C E™ be a convex body and let H C E™ be a hyperplane,
n > 3. Suppose that for every hyperplane T that intersects the interior of K and is
orthogonal to H, we have that T N K has a (n — 2)-hyperplane of symmetry parallel
to H. Then, either K has a hyperplane of symmetry parallel to H, in the direction
orthogonal to H or K is an ellipsoid.
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