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1 Introduction

Let K be a convex body and let p0 be a point. Suppose that every section
of K through p0 is centrally symmetric, then Rogers proved in [7] that K is
centrally symmetric, although p0 may not be the centre of K. If this is the
case, Aitchison, Petty and Rogers [1] and Larman [2] proved that K must be
an ellipsoid. Suppose now that for every direction we can choose continuously a
section of K that is centrally symmetric, if K is strictly convex, then Montejano
[3] proved that K must by centrally symmetric. Consider now the following
example: Let D be a solid sphere centered at the origin in which two symmetric
caps are deleted. Then, D is centrally symmetric with respect the origin and has
a lot of circular sections whose center is not the origin. In fact, we can choose
continuously, for every direction, a section of D which is centrally symmetric
in such a way that not all these sections pass through the origin. Nevertheless,
no matter how we choose these sections, there is always many of them that
necessarily pass through the origin. For those sections, of course, we have not
impose really any condition which explain the fact that D is not a quadric
elsewhere.

Let K be a convex body centrally symmetric and suppose that for every
direction we can choose continuously a section ofK which is centrally symmetric.
The purpose of this paper is to prove that if in addition those sections through
the centre are ellipses, then K is an ellipsoid.

2 Chairal Chords and Equichordal Theorems

In this section, let K ⊂ R2 be a convex figure with 0 ∈ intK . Let Σ(K) =
bdK ∩ bdK be the symmetric part of the boundary of K.

∗This research was supported by CONCYTEG (Mexico), Grants 03-02-K118-037 and 04-
02-K117-037.

1



Let ∆ be a subarc of S1 and let δ : ∆→ R be an even continuous map, that
is, suppose that δ(v) = δ(−v), whenever {v,−v} ⊂ ∆. For every v ∈ ∆, let us
define the line Lv = {tv + δ(v)v⊥ | t ∈ R} and if Lv ∩K 6= φ, let τv = max{t ∈
R | tv+δ(v)v⊥ ∈ K} and δv = τvv+δ(v)v⊥. So, L±v ∩K = [δ−v, δv], whenever
{v,−v} ⊂ ∆

Definition 1 We say that the chord Lv ∩K is chairal if it has the same length
of the chord (−Lv) ∩K.

If this is the case, and Lv ∩ intK 6= φ, let δ∗v be the point of (−Lv) ∩ bdK
such that

δ∗v−δ∗−v
|δ∗v−δ∗−v|

= v. Hence δv − δ−v = δ∗v − δ∗−v.

Lemma 1 Suppose that Lv ∩K is a nonempty chairal chord. Then δv ∈ Σ(K)
if and only if δ−v ∈ Σ(K).

Proof. Since δv ∈ Σ(K), we have that −δv ∈ (−Lv) ∩ bdK and thus
−δv = δ∗−v. Furthermore, using the fact that Lv ∩ K is chairal, we have that
δv − δ−v = δ∗v − δ∗−v and hence that 0 = δv + δ∗−v = δ∗v + δ−v. Consequently
−δ−v = δ∗v, but δ

∗
v ∈ bdK.

For 0 < � < π, let S1� = {(cos θ, sin θ) | −� ≤ θ ≤ �} ⊂ S1 and S+� =
{(cos θ, sin θ) | 0 ≤ θ ≤ �} and S−� = {(cos θ, sin θ) | � ≤ θ ≤ 0}.

Lemma 2 Let K ⊂ R2 be a convex figure with 0 ∈ intK and such that K ∩
{(t, 0) | t ∈ R} = [(−1, 0), (1, 0)]. Let δ : S+� → R be a C1 map,0 < � < π, with
the property that the chord Lv∩K is chairal. Suppose that δ−1(0)∩S+� = {(1, 0)}
and the limit of {L(1,0) ∩ Lv}, when v → (1, 0) exists and lies in the interior of
K.Then there is 0 < ρ < �such that {δv | v ∈ S+ρ } ⊂ Σ(K).

Proof. Let C+� = {δv | v ∈ S+� } ⊂ bdK and C−� = {δ−v | v ∈ S1� } ⊂ bdK.
By calculating the coordinates of Lv∩Lw in terms of δ (see [6]) we can see that:
i) the limit of {Lw ∩ Lv}, when v → w exist if and only if the derivative of δ
at w exist and ii) The map H : S+� × S+� → R2 given by H(w, v) = Lw ∩ Lv,
if v 6= w and H(w,w) =lim {Lw ∩ Lv | v → w} is continuous. Therefore,
if the limit of {L(1,0) ∩ Lv}, when v → (0, 1), is in the interior of K, then
we have that {Lv ∩ Lw | v, w ∈ S1�0} ⊂ intK, for 0 < �0 < �. So, the map
δ−v → δv is a homeomorphism between C+�0 and C−�0 . Furthermore, the map
v → δv is a homeomorphism between S1�0 and C+�0 . Also, using the fact that
δ−1(0)∩S1� = {0},we may assume, without loss of generality, that {L(1,0) ∩Lv |
v ∈ S+�0} ⊂ ((0, 0), (1, 0)), otherwise change K by −K.

Let Ψ : C+�0 → C+�0 and E : C+�0 → R2 be defined as follows. For every δv ∈
C+�0 , let E(δv) = δv + δ∗−v. Furthermore, since L(1,0) ∩ Lv ∈ ((0, 0), (1, 0)),then
δ∗−v ∈ C−�0 and hence there is a unique u ∈ S1�0 , such that δ

∗
−v = δ−u. So define

Ψ(δv) = δu.
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Note that δv ∈ Σ(K) if and only if −δv = δ∗−v if and only if E(δv) = 0.
Note also that −δ∗−v + E(δv) ∈bdK. Finally, observe that δv ∈ Σ(K) if and
only if Ψ(δv) ∈ Σ(K). We will prove that −δ∗−v + E(Ψ(δv)) ∈ bdK. In fact,
since δ∗−v = δ−u and δu − δ−u = δ∗u − δ∗−u, we have that E(Ψ(δv) = E(δu) =
δu + δ∗−u = δ∗u + δ∗−v.

Since L(1,0)∩Lv ∈ ((0, 0), (1, 0)) andK∩{(t, 0) | t ∈ R} = [(−1, 0), (1, 0)],then
δ∗−v lies in the relative interior of subarc of C

−
�0 ⊂ bdK with extreme points

δ−v and (−1, 0). This implies that δu = Ψ(δv) lies in the relative interior
of subarc of C+�0 ⊂ bdK with extreme points δv and (1, 0). Consequently,
if Ψn(δv) = Ψ(Ψn−1(δv)), then the sequence {Ψn(δv)} converges to a point
δw ∈ C+�0 with the property that Ψ(δw) = δw, so {Ψn(δv)} converges to (1, 0).
Observe that for a chord of K, the property of being chairal is invariant

under linear isomorphisms, so we may assume, without loss of generality, that
{(1, t) | t ∈ R} is a support line of K at (1, 0). Let 0 < ρ < �0 be so small that
every point of C+ρ ⊂ bdK has negative slope. From the fact that

−δ∗−v +E(δv), and −δ∗−v +E(Ψ(δv))

it follows that for v ∈ S1ρ , | Π(E(δv)) | ≥ | Π(E(Ψ(δv))) |, where Π : R2 → R
is the orthogonal projection onto the first factor. So, having in mind that
{| Π(E(Ψ(δv))) |} converges to | E((1, 0)) |= 0, we have that E(δv) = 0 for
every v ∈ S+ρ and hence that C

+
ρ ⊂ Σ(K).

Theorem 1 Let K ⊂ R2 be a convex figure such that 0 ∈ intK. Let δ : S1 → R
be a even continuous map with the property that δ is C1 in a neighborhood of
δ−1(0) and for every w ∈ δ−1(0), cl{Lw ∩ Lv | v ∈ S1} ⊂ intK. Suppose that
for every v ∈ S1, either ν ∈ δ−1(0) and 0 is the midpoint of the chord K ∩ Lv
or ν /∈ δ−1(0) and the chord K ∩ Lv is chairal. Then K is centrally symmetric
with respect to the origin.

Proof. For every point P ∈ bdK, let P ∗ ∈ bdK be such that the origin lies
in the interval with extreme points P and P ∗. Note that P ∈ Σ(K) if and only
if P ∗ ∈ Σ(K). Let now v, u ∈ S1 and let C be the subarc of S1 between v and
u that does not contain −v and −u. Suppose that δ−1(0)∩C = {u, v}.Without
loss of generality, we may assume that there is 0 < � < π such that v =
(1, 0), u = (cos �, sin �) and C = S+� . Moreover, assume that for every w ∈ S+� ,
L(1,0) ∩ Lw ∈ [(0, 0), (1, 0)], otherwise change u by −u and v by −v. The fact
that the derivative of the function δ at the point (1, 0) exists implies that the
limit of {L(1,0) ∩ Lv}, when v → (1, 0) exists and clearly lies in the interior of
K. By Lemma 2, there is 0 < ρ < �, such that C+ρ = {δv | v ∈ S+ρ } ⊂ Σ(K).
Let Ω = {(x, y) = r(cos θ, sin θ) ∈ R2 | r ∈ R, 0 ≤ θ ≤ �}. Note that since

δ−1(0) ∩ S+� = {(1, 0), (cos �, sin �)}, then for every Q ∈ Ω there is w ∈ S+� such
that Q lies in Lw. We will prove that bdK ∩ Ω ⊂ Σ(K). For that purpose let
P0 = δw0 ∈ bdK∩Ω∩{(x, y) ∈ R2 | y ≥ 0}, with w0 ∈ S+� . Since P

∗
0 ∈ Ω, then

there is w1 ∈ S+� such that P ∗0 ∈ Lw1 and hence P
∗
0 = δ−w1 . Define P1 = δw1 .

Observe that P0 ∈ Σ(K) if and only if P1 ∈ Σ(K).
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Since Lw1 ∩ L(1,0) ∈ [(0, 0), (1, 0)], we have that P1 lies in the subarc of
C+� ⊂bdK between P0 and (1, 0). Analogously, define inductively from Pi =
δwi ∈ bdK ∩ Ω ∩ {(x, y) ∈ R2 | y ≥ 0}, with wi ∈ S+� , the point Pi+1 = δwi+1 ,
with wi+1 ∈ S+� in such a way that Pi+1 lies in the subarc of C

+
� ⊂bdK between

Pi and (1, 0) and Pi ∈ Σ(K) if and only if Pi+1 ∈ Σ(K).
The sequence of points {Pi} converges to P ∈ C+� . We will prove that

P = (1, 0). Let {wij} be a subsequence of {wi} that converge to w ∈ S+� . So,
the sequence of lines {Lwij } converge to the line Lw that contains P. By con-
struction, the distance between the line Lwi+1 and the line that passes through
Pi and P ∗i tends to cero as i tends to infinity, thus the origin lies in Lw. This
implies that w = 0 and hence that P = (1, 0).

By the above, for i sufficiently large, Pi ∈ C+ρ ⊂ Σ(K),and therefore P0 ∈
Σ(K).This implies that bdK ∩ Ω ⊂ Σ(K). In order to prove the theorem, let
P ∈ bdK. If P ∈ δ−1(0), then P ∈ Σ(K). If P /∈ δ−1(0), then there are v, u ∈ S1

such that if C is the subarc of S1 between v and u that does not contain −v
and −u, then δ−1(0) ∩ C = {u, v} and P is in the relative interior of the cone
generated by C, but in this case again P ∈ Σ(K). This concludes the proof of
the theorem.

3 Shaken False Centre Theorem

The purpose of this section is to prove our main theorem but first we need some
definitions.

Let L be a line through the origin. Define T∂(K,L) as the union of all
tangent lines of K parallel to L. The shadow boundary of K in the direction
of L is defined as S∂(K,L) = T∂(K,L) ∩ K. If v 6= 0, denote by S∂(K, v) =
S∂(K,L) and T∂(K, v) = T∂(K,L), where L is the line through the interval
[0, v]. Blaschke’s classic characterization of ellipsoids states thatK is an ellipsoid
if and only if every shadow boundary of K is planar.

Remember that the empty section is a centrally symmetric section.

Theorem 2 Let K ⊂ R3 be a convex body centrally symmetric with respect the
origin. Let δ : S2 → R be an even continuous map which is C1 at a neighborhood
of δ−1(0) . Suppose that for every v ∈ S2, either ν ∈ δ−1(0) and K ∩Hv is an
ellipse or ν /∈ δ−1(0) and the section K ∩Hv is centrally symmetric. Then K is
an ellipsoid.

Proof. For the proof, we shall use a variation of Blaschke’s characterization
of ellipsoids (Proposition 2 of [5]) which states that if for every plane H through
the origin there is a line LH such that bd(H ∩K) ⊂ S∂(K,LH), then K is an
ellipsoid.

For every v ∈ S2 let cv be the centre of the section K∩Hv.We start proving
that for every v /∈ δ−1(0), bd(v⊥ ∩ K) ⊂ S∂(K, cv), where v⊥ is the plane
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through the origin orthogonal to v. For this purpose, it will be enough to prove
that, for t > 0 sufficiently small, the section (v⊥+tcv)∩K is centrally symmetric
with respect tcv, because, if this is the case, for t > 0 sufficiently small, we have
that (v⊥+tcv)∩K−2tcv = (v⊥−tcv)∩K, which implies that bd(v⊥∩K)+{λcv |
λ ∈ R} = T∂(K, vH) and hence that bd(v⊥ ∩K) ⊂ S∂(K, cv).

In order to prove that (v⊥ + tcv) ∩ K is centrally symmetric with respect
tcv we shall use our Shaken Equichordal Theorem 1. For every w ∈ (cv)⊥ ∩ S2,
let Lw = Hw ∩ (v⊥ + tcv). Note that the pedal function of the system of lines
{Lw | w ∈ (cv)⊥ ∩ S2} in the plane (v⊥ + tcv), with respect to the point tcv, is
basically the restriction of δ to (cv)⊥ ∩ S2. Define, for every w ∈ (cv)⊥ ∩ S2, the
chord Iw = Lw ∩K of the convex figure (v⊥+ tcv)∩K. Consequently, in order
to apply our Shaken Equichordal Theorem 1, we need to prove the following
facts. For t > 0, sufficiently small and:

i) for every w0 ∈ (cv)⊥ ∩ S2 such that cv ∈ Lw0 , we have that cv is the
midpoint of Iw0 ,

ii) for every w0 ∈ (cv)⊥ ∩ S2 such that cv ∈ Lw0 , we have that cl{Lw0 ∩Lw |
w ∈ (cv)⊥ ∩ S2} ⊂ relint((v⊥ + tcv) ∩K), and
iii) for every w ∈ (cv)⊥ ∩ S2, let cw be the line of the plane (v⊥ + tcv)

symmetric to the line Lw with respect the point cv and let Jw = cw ∩K be the
corresponding chord of the convex figure (v⊥+ tcv)∩K. Then, the length of the
chords Iw and Jw coincide.

Proof of i). If w0 ∈ (cv)⊥ ∩ S2 is such that cv ∈ Lw0 , then 0 ∈ Hw0 and
hence K ∩Hw0 is an ellipse with centre at 0. Furthermore, Hw0 ∩Hv ∩K is a
chord of Hv∩K through the centre cv and hence cv is the midpoint of the chord
Hw0∩Hv∩K of the ellipse Hw0 ∩K. So, the line {tcv | t ∈ R} is a diametral line
of the ellipse Hw0 ∩K, but hence tcv is the midpoint of the chord Iw0 ,because
Hw0 ∩Hv ∩K and Iw0 = Lw0 ∩K are parallel chords of the ellipse K ∩Hw0 .

Proof of ii). If w0 ∈ (cv)⊥ ∩ S2 is such that cv ∈ Lw0 , then 0 ∈ Hw0 and
hence K ∩Hw0 is an ellipse with centre at 0. If w ∈ (cv)⊥ ∩ S2, then Hw0 ∩Hw

is a line parallel to the diametral line {tcv | t ∈ R} of the ellipse Hw0 ∩K. By
hypothesis, Hw0 ∩Hw intersects the interior of K, So cl{Hw0 ∩Hw ∩ v⊥ | w ∈
(cv)

⊥ ∩S2} ⊂relint(v⊥ ∩K). So, for t > 0, sufficiently small, cl{Lw0 ∩Lw | w ∈
(cv)

⊥ ∩ S2} ⊂ relint((v⊥ + tcv) ∩K).
Proof of iii). For every w ∈ (cv)⊥ ∩ S2, Mw = Hv ∩Hw ∩K is a chord of

Hv∩K and a chord of Hw∩K. FurthermoreM∗w = Hv∩(−Hw)∩K is a chord of
Hv ∩K which is symmetric to Mw with respect the centre vH and consequently
both chords have the same length. Moreover, −M∗w = (−Hv) ∩ Hw ∩ K is a
chord of Hw ∩K with the same length that Mw. So, one of the following two
situations hold:

a) the centre of Hw ∩K lies in v⊥, or

b) for −1 ≤ λ ≤ 1, the length of the chords Hw ∩ (v⊥ + λcv) ∩K is the length
of the chord Mw.
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In the first case, since Hw ∩ K is centrally symmetric with centre at the
plane v⊥, we have that the length of Iw coincide with the length of the chord
Hw ∩ (v⊥ − tcv) ∩ K and by symmetry of K that the length of Iw coincide
with the length of the chord (−Hw) ∩ (v⊥ + tcv) ∩K which is precisely Jw, for
0 ≤ t ≤ 1. Similarly, in the second case, the length of the chords Iw and Jw also
coincide.

Using all the above and the Shaken Equichordal Theorem 1.1, we have that,
for t > 0 sufficiently small, the section (v⊥+tcv)∩K is centrally symmetric with
respect tcv and consequently that for every v /∈ δ−1(0), bd(v⊥∩K) ⊂ S∂(K, cv).

Let now v ∈ intδ−1(0).We will prove next that bd(v⊥ ∩K) = S∂(K,w), for
some w ∈ S2.This follows inmedately from the following well known fact: Let
K be a convex body centrally symmetric with respect the origin. Let U be an
open set of S2 with the property that u ∈ S2 if and only if −u ∈ S2, and let
u0 ∈ U. Suppose that for every v ∈ S2, the section v⊥ ∩K is an ellipse. Then
there is an open neighborhood V of u⊥0 ∩ bdK in bdK which is an ellipsoid
and consecuently bd(u⊥0 ∩K) = S∂(K,w), for some w ∈ S2.
With this we have proven that there is a dense, open subset Ω of S2 with

the property that for every v ∈ Ω,bd(v⊥∩K) = S∂(K,w), for some w ∈ S2. Let
{vi} ⊂ Ω such that vi → v. Then, limi→∞ bd(v

⊥
i ∩K) = bd(v⊥ ∩K). Suppose

bd(v⊥i ∩K) = S∂(K,wi), with wi ∈ S2 and without loss of generality suppose
that wi → w. Then limi→∞ S∂(K,wi) ⊂ S∂(K,w). So, bd(v⊥∩K) = S∂(K,w).
Therefore, we may assume Ω = S2 and therefore by Proposition 2 of [5] we have
that K is an ellipsoid.
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