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Abstract. The main theorem of this paper generalizes a classic Aumann’s
characterization of compact convex sets, via the acyclicity of their hypersec-
tions, to arbitrary weakly closed subsets of a locally convex linear space.

1. Introduction

Throughout this paper we will consider homology and cohomology with compact
supports and coefficients in a field. We shall say that a subset X, of locally convex
linear space, is homologically acyclic if for every λ ≥ 0, Hλ(X) = 0. Similarly, X
is cohomologically acyclic if for every λ ≥ 0, Hλ(X) = 0. In our case, for fields as
coefficients, both notions coincide [2], so we shall just say thatX is acyclic. Further-
more, we shall say that a subset X, of locally convex linear space, is tomographically
acyclic if all its sections by hyperplanes are acyclic.
After this definition we can formulate Aumann’s Theorem [1] .

Aumann’s Theorem. Every tomographically acyclic compact subset of a finite
dimensional linear space is convex.

The main result of the paper is the following theorem.

Closure Theorem. Let E be a locally convex linear space with the weak topology.
Then the closure of every acyclic and tomographically acyclic subset of E is convex.

To understand that the noncompact case, in our result, is very specific, let us
consider Kosinski’s Theorem [4], which is a local version of Aumann’s theorem.

Kosinski’s Theorem. Let C be a compact subset of a finite dimensional linear
space E. If a point x ∈ E belongs to the convex hull of C and does not belong to
C, then there is a hyperplane passing through x whose intersection with C is not
acyclic.

The following example shows that Kosinski’s theorem is not valid for arbitrary
closed sets.

Example. Let H+ be a half-space of Rn with boundary H, a hyperplane through
the origin, let S be the unit hemisphere in Rn given by S = H+ ∩ Sn−1 and let p
be a point on the boundary of S, that is, p ∈ H ∩ Sn−1 ⊂ S. Note that for every
hyperplane Γ of Rn through the origin O, the section Γ ∩ (S − {p}) is acyclic. Let
us consider now a projective isomorphism π that sends only the point p to infinity
and let C = π(S − {p}) ⊂ Rn. Hence, C is a closed subset of Rn. Furthermore,
π(O) ∈ Rn is a point that belongs to the convex hull of C and does not belong to
C, but the intersection of every hyperplane of Rn through π(O) with C is acyclic.
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Our next theorem is the following generalization. We say that a map f : X → Rn

is tomographically acyclic if the preimage of every hyperplane is acyclic.

Mapping Closure Theorem. The closure of the image of a tomographically
acyclic map is convex.

Finally, as a corollary of our techniques, it is easy to derive the following:

Open Set Theorem. Tomographically acyclic open subsets of Euclidean space are
convex.

For the infinite dimensional case, this theorem is true when the set is a regular
open set (i.e. coincides with the interior of its closure in the strong topology and
has the same closure in weak and strong topologies). Another form of this result is
the following: the weak closure of every tomographically acyclic strongly open set
is convex. This form presents a strengthening of the Closure Theorem because the
condition of global acyclicity of the set is omitted. In fact, we conjecture that the
Closure Theorem is true without the global acyclicity hypothesis.
It is impossible to characterize closed sets only by support sections as it is done

in [3]. For example the complement to an open ball is a subset which does not have
supporting hyperplanes.

2. The Proof of the Theorems.

The �-neighborhood, O�H, of a plane H, will be called a thick plane.

Thick Plane Intersection Lemma. If a set S is acyclic in dimension k and
tomographically acyclic, then the intersection of S with O�H is acyclic in dimension
k for any hyperplane H.

Proof. Here we will work with cohomology. Let H be a hyperplane, and let H± be
two half-spaces with H = H+ ∩ H− and Rn = H+ ∪ H−. Since the intersection
S ∩H = (S ∩H+) ∩ (S ∩H−) is acyclic, using the cohomological Mayer-Vietoris
exact sequence for the decomposition S = (S ∩H+) ∪ (S ∩H−), the isomorphism
H∗(S) ∼= H∗(S ∩ H+) ⊕ H∗(S ∩ H−) follows. Furthermore, from the fact that
H∗(S) = 0, one concludes that H∗(S ∩ H±) = 0. Therefore, the intersection
of S with any closed half-space is cohomologically acyclic and hence, homologi-
cally acyclic. Since every open half-space is the direct limit of closed subspaces,
this implies that intersections of S with open subspaces are homologically acyclic.
For every hyperplane H, its open �-neighborhood is the intersection of two open
half-spaces. As the intersections of S with both half-spaces is acyclic, the same
consideration, but now using the homological Mayer-Vietoris exact sequence, leads
to the conclusion that the intersection of S with O�H is acyclic, for every H.

Cycle Decomposition Lemma. Let X = U ∪ V , where U and V are open.
Then, every cycle z ∈ H∗(U ∩V ) which is trivial in X can be presented as the sum
z = z1 + z2, where z1 bounds in U and z2 bounds in V .

Proof. Let us consider the Mayer-Vietoris exact sequence for pair U, V modulo the
intersection U ∩ V .

→ Hk(U ∩ V,U ∩ V )→ Hk(U,U ∩ V )⊕Hk(V,U ∩ V )→ Hk(X,U ∩ V )→
Hk−1(U ∩ V,U ∩ V )→
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Since Hk(U ∩ V,U ∩ V ) = 0, for all k, one obtain isomorphisms Hk(U,U ∩ V )⊕
Hk(V,U ∩ V ) = Hk(X,U ∩ V ).
Now, suppose a cycle z ∈ Hk(U ∩ V ) is the boundary of a chain z0 in X. The

chain z0 represents a cycle in Hk+1(X,U ∩ V ), but the above isomorphism implies
that z0 = z01 − z02, where z

0
1 ∈ Hk+1(U,U ∩ V ) and z02 ∈ Hk+1(V,U ∩ V ). In this

case, z = ∂z0 = ∂z01 + ∂z02 is the desired decomposition of z.

Intersection Bounding Lemma. Let X = U ∪ V , where U and V are open. If
Hk+1X = 0, then every cycle z ∈ Hk(U ∩V ) which bounds in U as well as in V is
trivial.

Proof. By virtue of the conditionHk+1X = 0, from the Mayer-Vietoris sequence one
obtains that the homomorphism Hk(U∩V )→ Hk(U)⊕Hk(V ) is a monomorphism.
This immediately implies our conclusion.

Lemma on Banach Spaces. Let H ⊃ L be two planes in a Banach space such
that dimH = dimL + 1. Let H+ and H− be the closed half-planes on which L
divides H. Then for every � one has the equality O�H

+ ∩O�H
− = O�L.

Proof. If x ∈ O�H
+ ∩ O�H

−, then there are points y+ ∈ H+ and y− ∈ H− such
that kx− y+k ≤ � and kx− y−k ≤ �. The segment [y−, y+] intersects L in a point
z = ty+ + (1 − t)y− for some t ∈ [0, 1]. For this point we have that kz − xk =
kty++(1−t)y−−(tx−(1−t)x)k ≤ kt(y+−x)k+k(1−t)(y−−x)k ≤ t�+(1−t)� = �.
So, x ∈ O�L.

The following lemma is a crucial one. It works for any exact homology theory
with compact supports. In particular, it works for the Steenrod-Sitnikov homology
with any coefficients.

Rotational Lemma. Let S be a subset of a finite dimensional Banach space, let
L be a codimension ≥ 2 plane and let � be a positive number. If for every plane H
containing L, such that dimH = dimL+ 1, the inclusion induced homomorphism
Hk(O�(L) ∩ S) → Hk(O�(H) ∩ S) is trivial and Hk+1( O�(H) ∩ S) = 0, then
Hk(O�(L) ∩ S) = 0.

Proof. A plane which contains L and has dimension equal to dimL + 1 will be
called an L-plane. Let us fix some orientation α on L. Any L-plane H is divided
by L into two half-planes. For every orientation β of H, let us denote by Hβ the
half-plane of H which induces on L the orientation α.
Let H be an oriented L-plane with an orientation β. A cycle z ∈ Hk(O�(L)∩S)

will be called Hβ-bounded if it bounds in O�(H
β) ∩ S. If this is so, the plane H

with the orientation β will be called a z-bounding oriented plane. Since the set of
all oriented L-planes is connected, it is sufficient to prove that the set consisting of
all z-bounding oriented planes is open and closed.
It is easy to see that the set of all z-bounding oriented planes is open. Indeed, if z

bounds in O�(H
β), then there is a compact set C ⊂ O�(H

β) in which z bounds, but
C is also contained in O�(H

β0

1 ), if H1 is a L-plane with the orientation β
0 sufficiently

close to the plane H with the orientation β.
Let us prove that the set of z-bounding oriented planes is closed. Suppose z

is Hβi
i -bounded for some sequence of planes Hi with orientation βi convergent to

a plane H with orientation β. Since z bounds in O�(H) ∩ S, bearing in mind
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that O�(H) = O�(H
β) ∪ O�(H

−β) and O(�L) = O�β) ∩ O(�H−β), from the Cycle
Decomposition Lemma, one obtains that z = z1+z2, where z1 bounds in O�(H

β)∩S
and z2 bounds in O�(H

−β)∩S. By the openness of the zi-bounding oriented planes,
one obtains that the planes Hi with orientation βi are z1-bounding and z2-bounding
for all but finitely many i’s. For every such i, one has the following situation:
z1 bounds in O�(H

βi), z2 bounds in O�(H
−βi) and z1 + z2 bounds in O�(H

βi).
Hence, z2 also bounds in O�(H

βi). In this case, from the Intersection Bounding
Lemma, one gets that z2 bounds in O�(L) ∩ S. Therefore, z2 bounds in O�(H

β)
and z = z1 + z2 also bounds in it. The closedness is proved.
Now let us consider any cycle z ∈ Hk(O�(L)∩ S). Let H be an L-plane with an

orientation β. By the Cycle Decomposition Lemma, z = z1 + z2, where z1 bounds
in O�(H

β) and z2 bounds in O�(H
−β). But z1 has to bound in O�(H

−β) as well.
Therefore, by the Intersection Bounding Lemma, z1 is trivial in O�(L). The same
is true for z2. Therefore, z bounds in O�(L).

Functional Rotational Lemma. Let S be a subset of a finite dimensional Ba-
nach space. Let f : S → B be a continuous mapping into a Banach space B, let
L be a codimension ≥ 2 plane of B and let � be a positive number. If for every
plane H containing L such that dimH = dimL + 1, the inclusion induced homo-
morphism Hk(f

−1(O�L))→ Hk(f
−1(O�H)) is trivial and Hk+1(f

−1(O�(H))) = 0,
then Hk(f

−1(O�L)) = 0.

Proof. To get the proof of the lemma it is sufficient to follow the proof of the
Rotation Lemma changing all intersections with S to preimages under f−1.

Lemma on the Convexity of the Closure. Let S be a subset of a topological
linear space E. If for every pair of points x, y ∈ S the segment [x, y] belongs to the
closure of S, then the closure of S is convex.

Proof. Let x, y be a pair of points in the closure of S and let z be any point of the
segment [x, y]. Then z = λx+ µy, where λ and µ are nonnegative and λ+ µ = 1.
Let U be any neighborhood of z. The mapping p : E × E → E given by formula
p(u, v) = λu + µv is continuous. Therefore, there are neighborhoods Ox,Oy of x
and y, respectively, such that p(Ox×Oy) ⊂ U . As the intersections of Ox and Oy
with S are nonempty, choose x0 ∈ Ox∩S and y0 ∈ Oy∩S. Then z0 = λx0+µy0 ∈ U .
But z0 is known to belong to the closure of S. Hence S intersects U which implies
that z belongs to this closure too.

Finite Dimensional Theorem. Let B be a finite dimensional Banach space, and
let S be an acyclic and tomographically acyclic subset. Then the closure of S is
convex.

Proof. First, by virtue of the Lemma on Thick Intersections, one can conclude
that the intersection of S with any thick hyperplane is acyclic. By the Rotational
Lemma, one obtains, by induction on the codimension of the planes, that the in-
tersection of S with any thick plane of any dimension is acyclic. In particular, one
obtains that the intersection of S with any thick line is acyclic and hence connected.
Let x, y be two different points of S. Let us prove that the segment [x, y] is con-
tained in the closure of S. If not, there is an open ball U that intersects the segment
but does not intersect S. In this case, x and y lie in different components of the
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intersection of S with a thick line, which is a contradiction. Hence the segment
[x, y] belongs to the closure of S, for any x, y ∈ S. If x, y belong to the closure
of S, then there are two sequences {xi}, {yi} such that xi, yi ∈ S, for all i, and
limxi = x, lim yi = y. In this case, all segments [xi, yi] belongs to the closure of
S, but the closure of these segments contain [x, y]. Therefore, [x, y] belongs to the
closure of S too.

The same proof, applying instead of the Rotational Lemma the corresponding
functional version, allow us to prove the following generalization.

Finite Dimensional Functional Theorem. Let f : S → B be a mapping of
an acyclic space into a finite-dimensional Banach space. If the preimage of any
hyperplane under f is acyclic, then the closure of f(S) is convex.

Now we are ready to prove our main theorem.

Proof of the Closure Theorem. Let S be an acyclic and tomographically acyclic
subset of a locally convex linear space E. Let p : E → B be a linear mapping onto
finite dimensional Banach space B. In this case, the restriction of p to S satisfies
all the conditions of the Functional Rotational Lemma. Therefore, the closure of
the image of p is convex. To prove the convexity of the closure of S (in the weak
topology) by the Lemma on the Convexity of the Closure, it is enough to prove that
for every pair x, y ∈ S the segment [x, y] belongs to the closure of S. If not, there
is a point z ∈ [x, y] that does not belong to the weak closure of S. Hence there is
a linear mapping p : E → B into a finite dimensional Banach space for which p(z)
does not belong to the closure of p(S), but this contradicts our previous result.
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