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Abstract. The purpose of this paper is to give a complete classi…cation of
Zindler Carrousels with …ve chairs. This classi…cation theorem gives enough
evidence to show the non existence of …gures, di¤erent from the disk, that ‡oat
in equilibrium in every position for the corresponding perimetral densities.

1. Introduction and Carrousels

Zindler Carrousels are analytic dynamical systems. The initial motivation for
their study was the following. Auerbach [1] proved that Zindler curves bound
…gures, di¤erent from the disk, that ‡oat in equilibrium in every position for the
density 1/2 . In general, for …gures that ‡oat in equilibrium in every position some
remarkable facts follow, namely, that the ‡oating chords have constant length;
that the curve of their midpoints has the corresponding chords as tangents, and
that these chords divide the perimeter in a …xed ratio ® (the perimetral density).
Suppose that ® is rational. Then, for every point p in the boundary of one of this
…gures, we have an inscribed equilateral n-gon which moves, as a linkage with rigid
rods, as p moves along the boundary, in such a way that the midpoints of the sides
move parallel to them. So, this is the main motivation for the following de…nition.

A Carrousel (with n chairs) is a system which consists of n smooth (not neces-
sarily closed) curves f¯ 1(t); ¯2(t); :::; ¯n(t)g in R2 satisfying the following properties
for every t 2 R and for all i = 1; :::; n; where ¯i+n(t) = ¯i(t): 1) The length of the
interval with end points ¯i(t) and ¯i+1(t), j¯i+1(t) ¡ ¯i(t)j, is a non-zero constant

2) The curve of midpoints, mi(t) =
¯i(t)+¯i+1(t)

2
, of the segments from ¯i(t) to

¯i+1(t), has tangent vector, m0
i(t), parallel to ¯i+1(t) ¡ ¯i(t).

A carrousel with n chairs f¯1(t); :::; ¯n(t)g is a Zindler carrousel if all the curves
¯i(t) are reparametrizations of the same closed curve.

Observe as an example, that the circle yields a Zindler carrousel with n chairs,
because we can inscribe in it an equilateral n-gon such that, when rotating, its
vertices describe the original circle and the midpoints of its sides describe a smaller
concentric circle. Zindler curves studied in [8] are essentially Zindler carrousels with
two chairs, which, according to [5], are in one to one correspondence with curves of
constant width.

The purpose of this paper is to give a complete classi…cation of Zindler Car-
rousels with …ve chairs. This classi…cation theorem gives enough evidence to show
the non existence of …gures, di¤erent from the disk, that ‡oat in equilibrium in
every position for perimetral densities 1

5 and 2
5 . Although the main properties of

carrousels were studied in [4], for completeness we summarize them, in this section,
without proofs.
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De…nition 1.1. Let © be a …gure (region bounded by a simple closed curve). A chord
system fC (p)g for © is a continuous selection of an oriented chord C (p), starting
at p, for every point p in the boundary of ©.

There are three natural kinds of chord systems for a …gure ©:
1) The system fCa(p)g of chords which divide the area in a …xed ratio ½.
2) The system fCp(p)g of chords which divide the perimeter in a …xed ratio ®:
3) The system fCl(p)g of chords of constant length ¿ .

Note that for non-convex …gures the chord system fCa(p)g is not necessarily well
de…ned, for all ½.

Let © be a …gure of area A and let us suppose that the chord system which
divides the area of © in a …xed ratio ½, fCa(p)g, is well de…ned. Let G be the mass
center of © and g(p) the mass center of the regions of ©, bounded by Ca(p), of area
½A. Then, according to Archimedes Law, we have the following de…nition

De…nition 1.2. We say that the …gure © ‡oats in equilibrium in a given position
p, if the line through G and G(p) is orthogonal to C (p). A …gure © that ‡oats in

equilibrium in every position will be called an Auerbach …gure.

In 1938 Auerbach [1] proved the following theorem;

Theorem 1.1. A …gure © is an Auerbach …gure if and only if the system of chords
fCa(p)g is well de…ned and it is also of the type fCl(p)g of constant length.

For the prove he used the following facts which will be used later:
A) If a system of interior non-concurrent chords, fCi(p)g, is of any of the two types
i 2 fa; p; l; g, then it is also of the third type.
B) The area A(p), of the region of a …gure ©, left to the right by the chord C(p)
of a chord system fC (p)g, is constant if and only if every chord C(p) is tangent to
the curve described by the midpoints of C (p).

This motivates the following de…nition.

De…nition 1.3. If © is an Auerbach …gure for the density ½; we say that © has
perimetral density ® if the chord system which divides the area of © in the ratio ½;
fCa(p)g; is well de…ned and divides the perimeter of © in a …xed ratio ®:

In what follows, when studying Auerbach …gures, we will classify them according
with their perimetral density.

De…nition 1.4. Let ® 2 R; 0 < ® < 1. We say that a …gure © is an ®¡Zindler
curve, if the system of chords fCp(p)g, which divides the perimeter in a …xed ratio
®, is also a fCl(p)g system of …xed length ¿ .

Observe, that the classic Zindler curves [8] are 1
2
-Zindler.

The next two theorems relates ®-Zindler curves, Zindler Carrousels and Auerbach
…gures.

Theorem 1.2. f¯1; :::; ¯ng is a Zindler Carrousel with n chairs if and only if there
exists an ® = q=n (with q=n an irreducible fraction ), for some q 2 Z; 1 · q · n

2
,

such that each ¯i(t) is an ®¡Zindler curve.

Theorem 1.3. Let ° be a closed smooth curve such that the system of chords of
…xed perimeter ® is interior. Then ° is an ®¡Zindler curve if and only if the …gure
bounded by the curve ° is an Auerbach curve for some density ½.
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Note now that the existence of Zindler carrousels with interior chords give rise
to 2-dimensional bodies that ‡oat in equilibrium in every position.

Given a carrousel f¯1(t); :::; ¯n (t)g, by the …rst carrousel law [4], ¯0
i+1(t) is a

re‡ection of ¯0
i(t) along the line generated by ¯i+1(t)¡¯i(t). So we may assume that

all the curves ¯i(t) are parametrized by arc length and furthermore that j̄ i+1(t)¡
¯i(t)j = 2.

Let ®i(t) denote the angle between the vectors ¯0
i(t) and ¯i+1(t) ¡¯i(t), and let

µi(t) be the angle between the x-axis and the vector ¯i+1(t) ¡ ¯i(t), then by the
second carrousel law [4], µ 0

i(t) = sin (®i(t)).
Next theorem exhibits the di¤erential equations of carrousels, where xi (t) de-

notes the angle between the vectors ¯ i+1(t) ¡ ¯i(t) and ¯i¡1(t) ¡ ¯i(t).

Theorem 1.4. Let f¯1(t); :::; ¯n(t)g be a carrousel with n-chairs. Then, the inte-
rior angles xi(t), i = 1; :::; n, satisfy the following system of constrained di¤erential
equations

x0
i(t) = sin(®i¡1(t)) ¡ sin(®i(t));(1)

If n is odd then

®i(t) = xi+2(t) + xi+4(t) + ::: + xi+(n¡1)(t) ¡ (
k ¡ 1

2
)¼;(2)

where k is the integer number such that
Pn

i=1 xi(0) = k¼.

Conversely, if n is odd and we have functions xi(t), i = 1; :::; n, satisfying the system
of di¤erential equations (1); (2); and such that the initial conditions (x1(0); :::; xn (0))
are the interior angles of an equilateral n-gon with sides of length 2. Then, there
exists a carrousel of n chairs f¯1(t); :::; ¯n(t)g, with the property that xi(t) is the
angle between ¯i+1(t) ¡ ¯ i(t) and ¯i¡1(t) ¡ ¯ i(t).

The following two corollaries will be used in the next section.

Corollary 1.5. Let X(0) be an n-gon with interior angles (x1(0); :::; xn (0)) n odd.
Then there exist a unique carrousel f¯ 1(t); :::; ¯n(t)g up to orientation, with initial
condition X(0).

Corollary 1.6. Let f¯1(t); :::; ¯n (t)g be a carrousel with n-chairs, n odd. If there
exists t0 2 R such that xi(t0) = xi+1(0) (i = 1; : : : ; n), then the curves ¯1(t),...,¯n(t)
are congruent.

An interesting properties of carrousels is given by the following theorem

Theorem 1.7. Let f¯ 1(t); :::; ¯n(t)g be a carrousel with n-chairs, n odd. Let X(t)
be the n-gon with vertices f¯1(t); :::; ¯n (t)g. Then, the area A(t) of X(t) is constant
and the mass center H(t) of X(t) is a …xed point.

2. Carrousels with Five Chairs

For the study of the carrousel with 5 chairs, we shall consider the space, P5,
of all equilateral pentagons in the plane, one of whose sides is the distinguished
interval [(¡1; 0); (1; 0)], and all the other sides have length two.
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If X 2 P5 is a pentagon, we can write it as X = (z1; :::;z5), where zj = eixj is
a complex number and the …ve real numbers (x1; :::; x5) are the interior angles of
the equilateral pentagon X . Clearly, the xi ’s satisfy the following equation:

u(0) + u(¼ ¡ x2) + u(2¼ ¡ (x2 + x3)) + ::: + u(4¼ ¡ (x2 + x3 + x4 + x5)) = 0:

where u(µ) = (cos µ; sin µ):
We know [6] that P5 is an oriented surface of genus 4, embedded in S1 £ S1 £

S1 £ S1 £ S1 where S1 is the sphere of dimension 1. So, we can think of Euclidean
space R5 as the covering space of S1 £S1 £S1£S1 £S1 with its natural projection
P : R5 ! S1 £ S1 £ S1 £ S1 £ S1 which sends (x1; :::; x5) to the corresponding
(z1; :::; z5).

It is clear that ~P5 = P¡1(P 5) is also a surface, and (x1; :::; x5) is a member of
~P5 if it satis…es the following three equations:

a)
P5

i=1 xi = 3¼ + 2¼k; where k is an integer.
b) cos(x1) + cos(x2) ¡ cos(x2 + x3) ¡ cos(x1 + x5) = 1.
c) sin(x1) ¡ sin(x2) + sin(x2 + x3) ¡ sin(x1 + x5) = 0.

Now, consider the function

~f : ~P 5 ½ R5 ! R

which determines the area of a pentagon.

~f (x1; :::; x5) = sin(x1) + sin(x2) ¡ sin(x1 + x2) + sin(x4);

and at the same time let us call f the corresponding area function

f : P 5 ! R:

Lemma 2.1. The area function f : P5 ! R has 14 nondegenerate critical points: 2
maxima (which correspond to the area of the positively oriented regular convex pen-
tagon and the negatively oriented regular pentagram), 2 minima (which correspond
to the area of the negatively oriented regular convex pentagon and the positively
oriented regular pentagram) and 10 saddle points.

Proof. Let us take the following function

F = (f1; f2; f3; f4) : R5 ¡! R4;

where

f1(x1; : : : ; x5) := x1 + x2 + x3 + x4 + x5:

f2(x1; : : : ; x5) := cos(x1) + cos(x2) ¡ cos(x2 + x3) ¡ cos(x1 + x5):

f3(x1; : : : ; x5) := sin(x1) ¡ sin(x2) + sin(x2 + x3) ¡ sin(x1 + x5):

f4(x1; : : : ; x5) := sin(x1) + sin(x2) ¡ sin(x1 + x2) + sin(x4):

By calculating the determinants of all the 4 £ 4 sub matrices of the matrix dFp

and taking the restriction to ~P5 we obtain the following system of equations, whose
solution give us the set of critical points of the area function ~f : ~P 5 ! R.
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8
>>>><
>>>>:

sin(x3 + x5) ¡ sin(x2 + x4) = 0
sin(x4 + x1) ¡ sin(x3 + x5) = 0
sin(x5 + x2) ¡ sin(x4 + x1) = 0
sin(x1 + x3) ¡ sin(x5 + x2) = 0
sin(x2 + x4) ¡ sin(x1 + x3) = 0

9
>>>>=
>>>>;

(2.1)

Since P : ~P5 ! P5 is a covering space and the map ~f : ~P5 ! R is a lift of
f : P5 ! R, then the critical points of f can be obtained by projecting the critical
points of ~f .

So, we obtain that the pentagons with interior angles (x1; :::;x5) which solve the
system of equations (2.1) are precisely the two regular convex pentagons, oriented
and unoriented, X 1

5
and ~X 1

5
, respectively, with interior angles of the form 3¼

5
+2¼k,

k an integer; the regular pentagrams, X2
5

and ~X2
5

with interior angles of the form
¼
5
+2¼k , k an integer, and 10 pentagons which are like a triangle, with interior angles

of the form: xi = xi+1 = xi+2 = ¼=3 + 2¼k1, xi+3 = 2¼k2 and xi+4 = 2¼k3,
k1; k2;k3 integers and i = 1; :::; 5; (i + 5 = i).

So, we have that the function f : P5 ! R has 14 nondegenerate critical points,
2 local maxima, given by X1

5
and ~X 2

5
; 2 local minima given by X 2

5
and ~X 1

5
and

10 more critical points, that by the Euler characteristic, are saddle points and are
given by the 10 pentagons which look like a triangle.

Next, we shall study the Morse Theory of the area function f : P5 ! R. First
note that it has the following 6 critical values: f¡m; ¡b; ¡n; n;b; mg, where m is the
area of the oriented regular pentagon X 1

5
, n is the area of the regular oriented penta-

gram X 2
5

and b is the area of the pentagons which look like a triangle. The set, P5
o ,

of oriented pentagons without intersections on their sides is given by f¡1((b; m]),
which is a connected surface with only one critical point, a maxima, and hence
topologically homeomorphic to an open disc. Similarly, the set, P 5

u, of unoriented
pentagons without intersections on their sides is given by f¡1([¡m; ¡b)), which is
a connected surface with only one critical point, a minima, and hence topologically
homeomorphic to an open disc. f¡1((¡b;b)) is an open surface that consists of
three connected components: the set, R5, of all pentagons with exactly one inter-
section on their sides, the set, Q5

o, of oriented pentagrams (with 5 intersections)
and the set, Q5

u, of unoriented pentagrams. Since there are only two critical points
in f¡1((¡b; b)), then Q5

o and Q5
u are homeomorphic to open discs and R5 is home-

omorphic to an open cylinder. Finally, we summarize the situation of the …bers as
follows:
a) if x 2 (¡m; ¡b) [ (¡n; n)[ (b; m), then f¡1(x) consists of a simple closed curve,
b) if x 2 (¡b; ¡n) [ (n; b), then f¡1(x) consists of two simple closed curves,
c) if x 2 f¡m; ¡n; n; m; g, then f¡1(x) consists of a single point, and
d) if x 2 f¡b; bg, then f¡1(x), consists of a chain of 5 simple closed curves in which
two consecutive curves have one point in common. Each one of these closed curves
represents pentagons in which two consecutive sides coincide.

Note that for the area function ~f : ~P5 ! R, the kernel Ker(dFp) = Ker(d ~fp),
coincides with the system of constrained di¤erential equations given in Theorem
1.4, for n = 5. Hence, Ker(dfp ) is the set of tangent vectors to the curves f¡1(A).
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For a pentagon in (z1; :::; z5) 2 P5
o ; P 5

u; Q5
o; Q5

u; R5, respectively, we identify
(z1; :::; z5) with (x1; :::; x5) 2 ~P 5, where zj = eixj and

P5
i=1 xi = 3¼; 7¼; ¼, 9¼; 5¼,

respectively. Furthermore, f¡1(A) is parametrized by (x1(t) ,...,x5(t)), satisfying
the system of di¤erential equations (1),(2), with initial conditions (x1(0); :::; x5(0)) 2
P5

o ; P5
u; Q5

o; Q5
u; R5, respectively, which are the interior angles of an equilateral pen-

tagon with sides of length 2, area A and
P5

i=1 xi(0) = 3¼; 7¼; ¼; 9¼; 5¼, respec-
tively. Moreover, for every one of this curves, there exists a carrousel of n chairs
f¯1(t); :::; ¯n(t)g, with the property that xi(t) is the angle between ¯i+1(t) ¡ ¯ i(t)
and ¯ i¡1(t) ¡ ¯i(t). Consequently, carrousels are classi…ed, by real numbers in
[¡m;m].

Our next purpose is to study P 5
0 . First of all, observe that for every A 2 (b; m),

there exists tA in R such that, for every t, xi(t + tA) = xi+1(t), because f¡1(A)
consists of a simple closed curve and if (x1(0);x2(0); x3(0); x4(0); x5(0)) is in the
curve f¡1(A) then, (x2(0); x3(0); x4(0); x5(0); x1(0)) is also in f¡1(A). By Corollary
1.6, for the corresponding carrousel f¯1(t); :::; ¯n (t)g, we conclude that the curve
¯i(t + tA) is congruent to ¯i+1(t).

Lemma 2.2. Let A 2 (b; m) and suppose the curve f¡1(A) is parametrized by
(x1(t); :::; x5(t)), satisfying the system of constrained di¤erential equations (1); (2).
Let tA; ´A 2 R, be the minimum positive numbers such that for every t 2 R,

xi(t + tA) = xi+1(t) and xi(t + ´A) = xi(t):

Then,

5tA = 2´A:

Proof. Observe that in P 5
o = f¡1((b; m)), which by convention can be thought as

a subset of R5, the projection to the …rst two coordinates is one to one because
these equilateral pentagons are determined by two of their angles. Let gA ½ R2 be
the simple closed curve which is the projection of f¡1(A) in R2.

First of all we can see that gA is a simple closed curve symmetric with respect
to the line x = y, because if the pentagon (x1; x2; x3; x4;x5) is in f¡1(A) then,
the symmetric one, (x2; x1;x5; x4; x3), is also in f¡1(A). Therefore, gA intersects
the line x = y in exactly two points, lets say (d; d) and (a; a). Then there exists
a pentagon P1 of the form (a; a; b; c; b)) 2 f¡1(A). Let P2 = (a; b; c;b; a); P3 =
(b; c; b; a; a); P4 = (c; b;a;a; b) and P5 = (b; a; a; b; c). They are also in f¡1(A).
Hence, the projection of these …ve points, q1 = (a; a); q2 = (a; b); q3 = (b; c); q4 =
(c; b) and q5 = (b; a) belong to gA. Again, since the curve gA is a simple closed
symmetric curve and since for pentagons of the form (a; a; b; c;b) in these region we
have that if a · b then c · a and if b · a, then a · c, we have that there exist
only two possibilities for the cyclic order of the points fqig in the curve gA. Either
fq1; q2; q4; q3; q5g or fq1; q4; q2; q5; q3g. We shall now prove that the …rst cyclic order
is not possible.

Suppose the curve f¡1(A) is parametrized by P (t) = (x1(t); :::; x5(t)), where the
fxi(t)g5

1 satisfy the system of constrained di¤erential equations (1), (2). Suppose,
without loss of generality, that P (0) = P1 = (x1(0); :::; x5(0)). Hence P (itA) =
Pi+1 = (x1(itA); :::; x5(itA)), i = 0; 1; 2; 3; 4.

If the cyclic order of the points fqig in the curve gA is fq1; q2;q4; q3; q5g, then the
cyclic order of the points fPig in the curve f¡1(A) is fP (0);P (tA), P (3tA); P (2tA); P (4tA)g,
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which implies that there exists s0 2 R, tA < s0 < 2tA such that P (2tA + s0) =
P (4tA). Thus, P (s0) = P (2tA), which is impossible because tA is the minimum
positive number such that, for every t, xi(t + tA) = xi+1(t):

If the cyclic order of the points fPig in the curve f¡1(A) is fP (0); P (3tA),
P (tA); P (4tA); P (2tA)g, then there exists 0 < ²A < tA such that xi(t+²A) = xi+3(t)
for every t 2 R. Then, xi(t + 5²A) = xi(t + ´A) and xi(t + 10²A) = xi(t + 5tA) =
xi(t + 2´A). Consequently 5tA = 2´A and 2²A = tA .

From now on, let 0 < ²A < tA be the minimum real number such that xi(t+²A) =
xi+3(t), for every t 2 R. Note that 2²A = tA .

Remark. The corresponding result for A 2 (n; b) and f¡1(A) ½ Q5
o is that 5tA =

´A :

3. The Classification

In this section we shall classify Zindler carrousels for n = 5. So we need to study
…rst some parameters associated to carrousels, and the small pieces of curves that
describe them.

Let us do the case in which A 2 (b; m) and suppose the curve f¡1(A) is parame-
trized by (x1(t); :::;x5(t)), satisfying the system of constrained di¤erential equations
(1), (2) with initial conditions (x1(0); :::; x5(0)) 2 P5

o , which are the interior angles
of an equilateral pentagon with sides of length 2, area A and

P5
i=1 xi(0) = 3¼.

By theorem 1.4, there exists a carrousel f¯ 1(t); :::; ¯n(t)g, with the property that
xi(t) is the angle between ¯i+1(t) ¡ ¯i(t) and ¯i¡1(t) ¡ ¯i(t) and, by Lemma 2.2,
such that xi(t + ²A) = xi+3(t), for every t 2 R, where 2²A = tA : Consequently, the
curves ¯i(t+ ²A) and ¯i+3(t) are congruent. Furthermore, by Theorem 1.7, assume
that the mass center of the pentagons is the origin. Hence, there exists a rotation
R¾A

of an angle ¾A such that, for every t 2 R,

¯i(t + ²A) = R¾A¯i+3(t):

Let us call ¾A , the basic angle of this carrousel. That is, for every t 2 R,

¾A = µ3(t + ²A) ¡ µ1(t):

where µi(t) denotes the angle between the x-axes and the vector ¯ i+1(t) ¡ ¯i(t):

We shall classify Zindler carrousels in terms of their basic angles, which in turn,
depend on the area A of the carrousel. For that purpose the following de…nitions
are important.

The period, ´A , of the carrousel is the minimum real positive number such that
xi(t + ´A) = xi(t), for every t 2 R and i = 1; :::; 5. Note that the pentagons at
the time 0 and ´A are congruent. So we de…ne the rotational angle, ½A, of the
carrousel as the angle between them, that is:

½A = µi(´A) ¡ µi(0); i = 1; :::; 5:

Remember that µ 0
i(t) = ¡ sin(xi+2(t) + xi+4(t)), hence

½A = ¡
Z ´A

0

sin(x2(t) + x5(t))dt :
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The next Lemma relates the value of the basic angle ¾A and the rotational angle
½A of a carrousel.

Lemma 3.1. Let A 2 (b; m). Then,

5¾A ¡ 4¼ = ½A :

Proof. Using the fact that µ3(t) ¡ µ1(t) = 2¼ ¡ (x2(t) + x3(t)), and that for
i = 0; 1; 2; 3; 4,

¾A = µ3((i + 1)²A) ¡ µ1(i²A) = ¡
Z (i+1)²A

i²A

sin(x5(t) + x2(t))dt + (µ3(i²A) ¡ µ1(i²A));

we obtain, adding this …ve equalities, we obtain the result.

De…nition 3.1. Let us call the i¡track of the carrousel, the curve segment f¯i(s)j0 ·
s · ²Ag, i = 1; :::; 5.

Lemma 3.2. It is possible to reconstruct the curves ¯i(t), t 2 R, by pasting one
after the other, the …ve i¡tracks.

Proof. Let us take some t 2 R, then we can write t = m²A + ², where m 2 Z and
0 < ² < ²A. So ¯ i(t) = ¯i(m²A + ²) = Rm

¾A
¯k(²) where k ´ i + 3m mod(5).

Besides, we are interested in …nding the index of Zindler carrousels around the
mass center, because if the index of the curve has absolute value greater than
one, then the curve intersects itself and therefore it is not a …gure which ‡oats
in equilibrium with perimetral density 1

5 . For that purpose we need to know the
angular length of the i¡tracks.

De…nition 3.2. Let us suppose that the mass center of the pentagons is in the
origin. Then we de…ne the angular length of the i¡track as follows

Ci := the angle between ¯i(0) and ¯ i(²A);

and let us call

°i := the angle between ¯i(0) and ¯i+1(0):

The following theorem classi…es 1
5
-Zindler carrousels

Theorem 3.3. Any 1
5
-Zindler carrousel of index d has basic angle ¾A = r2¼

m
, with

m = 5s + 2, s a natural number, and 1 < r < m, satisfying for some K the integer
equation

5(3s + 1 + r) + 1 + mK = d;

and conversely, if a carrousel with area A 2 (b; m) has basic angle ¾A satisfying the
above integer equation, then it is a 1

5
-Zindler carrousel.
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Proof. Let us suppose we have a Zindler Carrousel. So, after a certain time, the
curve ¯i reaches and follows the curve ¯i+1. That is, ¯i(t + ¸) = ¯i+1(t), for every
t 2 R. So xi(t +¸) = xi+1(t), which implies that ¸ = m²A , where m = 5s+2, for s
a natural number. Let 0 < ² < ²A , so we have ¯i(m²A +²) = Rm

¾A
¯i+1(²) = ¯i+1(²).

Therefore, Rm
¾A

must be the identity and hence ¾A = r2¼
m

, for 1 < r < m.
Since R¾A sends the 4-track to the set f¯1(²A + t)j0 < t < ²Ag, then ¾A =

°4 + °5 + C1 + 2l¼ for some integer l. We already know that ¾A must be of the
form r2¼

m , with m = 5s + 2, therefore, C1 must be of the form

C1 = °1 + °2 + °3 + (
r

m
+ k1)2¼;

for some k1 2 Z.
Similarly

Ci = ° i + °i+1 + ° i+2 + (
r

m
+ ki)2¼:

Then, Ci + Ci+3 + ::: + Ci+3(m¡1) = °i + (3s + 1)2¼ + r2¼ + (ki + ki+3 + ::: +
ki+3(m¡1))2¼; where Ci + Ci+3 + ::: + Ci+3(m¡1) is the angular length of the curve
f¯i(t)j0 < t < m²Ag.

For a Zindler carrousel with index d we have that
5X

i=1

(Ci + Ci+3 + ::: + Ci+3(m¡1)) = 2¼d;

that is

5(3s + 1 + r) + mK = d ¡ 1;

where K =
P5

i=1 ki .

Therefore, the integer solutions of the preceding equation with 1 < r < m
give rise all the possible angles ¾A for 1

5
-Zindler carrousels with index d and, by

construction, if a carrousel with …ve chairs has basic angle determined by this
equation, then it is a 1

5
-Zindler carrousel. With this discussion we have …nished the

proof.

Corollary 3.4. Any 1
5
-Zindler carrousel of index 1 has basic angle of the form

4s+2
5s+2

¼; for s > 0; a natural number and conversely, if a carrousel with area A 2
(b; m) has basic angle ¾A = 4s+2

5s+2
¼; for s > 0 a natural number, then it is a 1

5
-

Zindler carrousel.

Proof. The natural solutions of the equation 5(3s+1+r)+mK = 0; with m = 5s+2
and 1 < r < m are precisely the natural numbers for which 2r

m
= 4s+2

5s+2
.

Figure 1 and 2 shows carrousels with basic angles 6¼
7

and 10¼
12

respectively, the
basic angles 4s+2

5s+2
¼ tends to 4¼

5
, when s tends to in…nity, which correspond to the

basic angle of the carrousel shown in Figure 4. Figure 3 corresponds to the carrousel
of area zero whose center of mass is at in…nity.

Theorem 3.5. A 1
5-Zindler carrousel with index 1 and interior chords must have

a period ´A < 2:4002:
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Proof. Let us suppose we have a 1
5
-Zindler carrousel parametrized by (x1(t); :::; x5(t)),

satisfying the system of constrained di¤erential equations (1), (2) with initial condi-
tions (x1(0); :::; x5(0)) 2 P5

o , which are the interior angles of an equilateral pentagon
of area A 2 (b; m), and

P5
i=1 xi(0) = 3¼. Let us assume that our carrousel has

basic angle ¾A = 4s+2
5s+2 ¼, with s a natural number greater than zero. Suppose that

all chords are interior. Then for 0 < t < (5s + 2)²A, we have that

0 < µ1(t) < µ2(0). Writing µ1(²A) in terms of ¾A = µ3(²A), we obtain:

µ3(²A) + x1(0) + x5(0) = µ1(²A);

2µ3(²A) + x1(0) + x5(0) + x4(0) + x3(0) = µ1(2²A);

3µ3(²A) + x1(0) + x5(0) + x4(0) + x3(0) + x2(0) + x1(0) = µ1(3²A);

and so on. Therefore, taking ¾A = 4s+2
5s+2

¼ = µ3(²A), we have that x1(0) + x5(0) >
6s+2
5s+2 ¼, x2(0) < 3s+2

5s+2 ¼ and x1(0) > 3s
5s+2 ¼. Since this follows for every initial

condition, we have the following inequalities:

xi(t) + xi+1(t) >
6s + 2

5s + 2
¼; and

3s

5s + 2
¼ < xi(t) <

3s + 2

5s + 2
¼;

which in turn give rise to the following inequality, for s ¸ 2

¡ sin(
6s

5s + 2
¼) < ¡(sin(xi(t) + xi+2(t))) < ¡ sin(

6s + 4

5s + 2
¼):

Using now Lemma 3.1, we obtain, for s ¸ 3, the following bound for ´A ,

2¼sec( s+2
5s+2 ¼)

(5s+2) < ´A <
2¼sec( s¡2

5s+2 ¼)

(5s+2) < 2:4002:

Finally, the carrousels with basic angle 6¼
7

and 10¼
12

are shown in the …gures 1
and 2, respectively. In both of them their chords are not interior.

The case 2
5

can be studied in a similar way. One proves that, for A 2 (n; b),
5¾A ¡ 6¼ = ½A. It is also possible to obtain a classi…cation of 2

5
-Zindler carrousels

of index d. In particular, we have the corresponding theorem.

Theorem 3.6. Any 2
5
-Zindler carrousel of index 1 has basic angle of the form

6s+4
5s+3

¼, for s a natural number.

Corollary 3.7. A 2
5
-Zindler carrousel with index 1 must have a period ´A < 2:5:

Proof. Is easy to see that for X = (x1; :::; x5) 2 Q5
o, we have sin(x3 + x5) ¸

sin(4 arcsin( 1
4 )) ¸ :847214, which implies that, for any A 2 (n; b), the rotational

angle of a carrousel is ½A ¸ :847´A. Therefore, a 2
5
-Zindler carrousel with basic

angle ¾A = 6s+4
5s+3

¼, must have a period ´A < 2:5.
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4. Some Consequences of the Theory

Using the fact that f¡1(m);where f : P5 ! R; is an isolated singular point of the
vector …eld and a nondegenerate center, that is, the linear part of the vector …eld
has eigenvalues §i!; ! > 0, we may prove, using the Classical Poincaré-Lyapunov
Center Theorem [2],[7], that the limit of the period function ´ : (b; m) ! R; when
A ! m; is 2¼=! which, after the corresponding calculations, gives ´(m) = 2¼=! »
2:4002.

Conjecture 4.1. The period function ´ : (b; m) ! R is an decreasing function. In
fact, ´(A) · ´(m); for every A 2 (b; m):

There is clear evidence of this fact given by the computer. The graph 1(a) shows
the values, obtained with a computer, for ´A and ¾A . Note that ¾A < 2:9132 and
´A > 2:4002, for every A 2 (b; m).

In [4] it was proved that there are no …gures that ‡oat in equilibrium in every
position with perimetral density 1

3
and 1

4
; although there are with perimetral density

1
2
: This time we show that there are no …gures that ‡oat in equilibrium in every

position with perimetral density 1
5 and 2

5 , di¤erent from the circle.
To see this, let us suppose that there exist a …gure that ‡oat in equilibrium in

every position with perimetral density 1
5
; which give rise to a 1

5
-Zindler carrousel.

If the index is 1, by Theorem 3.5, ´A < 2:4002; which is a contradiction. The
same ideas can be analogously applied to study 1

5
-Zindler carrousels of index ¡1 to

conclude that there are no …gures that ‡oat in equilibrium in every position with
perimetral density 1

5
:

Furthermore, by Corollary 3.7, a 2
5
-Zindler carrousel of index 1 must have a

period ´A < 2:5. It is possible to verify, using the previous discussion of the
Poincaré-Lyapunov Center Theorem and graph 1(b), that the period of any car-
rousel with area A 2 (n; b) is greater than 2.5. Therefore, there are no 2

5
-Zindler

carrousels of index 1 and an analogous discussion shows the same for index ¡1:
The authors acknowledge and thank A. Davidov for many important suggestions.
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