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Markov processes and OP The example

One dimensional Markov processes

Let (Ω,F ,P) a probability space, a (1-D) Markov process with state space
S ⊂ R is a collection of S-valued random variables {Xt : t ∈ T } indexed by a
parameter set T (time) such that

P(Xt+s ≤ y |Xs = x ,Xτ , 0 ≤ τ < s) = P(Xt+s ≤ y |Xs = x)

for all s, t > 0. This is what is called the Markov property.
The main goal is to find a description of the transition probabilities (discrete
case) or the transition density (continuous case)

Px,y (t) ≡ P(Xt = y |X0 = x), x , y ∈ S ⊂ Z

p(t; x , y) ≡ ∂

∂y
P(Xt ≤ y |X0 = x), x , y ∈ S ⊂ R

Define the transition operator

(Tt f )(x) = E[f (Xt)|X0 = x ], t ≥ 0, f ∈ B(S)

The family {Tt , t > 0} has the semigroup property Ts+t = TsTt and it is
completely determined by its infinitesimal operator A given by

(Af )(x) = lim
s↓0

(Ts f )(x)− f (x)

s
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Examples related to OP

There are 3 important cases related to OP:

1. Random walks: S = {0, 1, 2, . . .}, T = {0, 1, 2, . . .}.
Transitions are only allowed between adjacent states. Therefore the
infinitesimal operator can be written as a semi-infinite tridiagonal matrix
P which coincides with the one-step transition probabilities

Af (i) = Pf (i) = ai f (i + 1) + bi f (i) + ci f (i − 1), f ∈ B(S)

The n-step transition probability matrix is then given by P(n) = Pn.
Some examples related to OP are the gambler’s ruin, urn models, the
Ehrenfest model or the Laplace-Bernoulli model.

2. Birth and death processes: S = {0, 1, 2, . . .}, T = [0,∞).
Again, the transitions are only allowed between adjacent states, but now
time is continuous. The transition times are exponentially distributed.
The infinitesimal operator is now a semi-infinite tridiagonal matrix A

Af (i) = λi f (i + 1)− (λi + µi )f (i) + µi f (i − 1), f ∈ B(S)

The transition probability matrix P(t) satisfies the Kolmogorov equations
(backward and forward)
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Examples related to OP

P ′(t) = AP(t), P ′(t) = P(t)A, P(0) = I

Some examples of birth-and-death processes related to OP are the
M/M/k queue (k ≥ 1) or linear birth-and-death processes.

3. Diffusion processes: S = (a, b),−∞ ≤ a < b ≤ ∞, T = [0,∞).
Starting at X0 = x , the expected value of a small displacement Xt −X0 is
approximately tµ(x) (drift coefficient) while the second moment or
variance is approximately tσ2(x) (diffusion coefficient). The infinitesimal
operator is now a second-order differential operator

Ax f =
1

2
σ2(x)f ′′(x) + τ(x)f ′(x), f ∈ B(S) ∩ C 2(S)

The transition density p(t; x , y) satisfies the Kolmogorov equations
(backward and forward) with initial conditions

∂

∂t
p(t; x , y) = Axp(t; x , y),

∂

∂t
p(t; x , y) = A∗yp(t; x , y)

Important examples related to OP are the Orstein-Uhlenbeck process, the

Bessel process, Wright-Fisher models, etc.
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Spectral methods

Given a infinitesimal operator A, if we can find a spectral measure ω(x)
associated with A, and a set of orthogonal eigenfunctions f (i , x) such that

Af (i , x) = λ(i , x)f (i , x)

then it is possible to find spectral representations of the transition probabilities:

1. Random walks: f (i , x) = qi (x), λ(i , x) = x , i ∈ S, x ∈ [−1, 1].

P(Xn = j |X0 = i) = Pn
ij =

1

‖qi‖2

∫ 1

−1

xnqi (x)qj(x)dω(x)

2. Birth-and-death processes: f (i , x) = qi (x), λ(i , x) = −x , i ∈ S, x ∈ [0,∞].

P(Xt = j |X0 = i) = Pij(t) =
1

‖qi‖2

∫ ∞
0

e−xtqi (x)qj(x)dω(x)

3. Diffusion processes: f (i , x) = φi (x), λ(i , x) = αi , i ∈ {0, 1, 2, . . .}, x ∈ (a, b).

p(t; x , y) =
∞∑
n=0

eαntφn(x)φn(y)ω(y)

**The spectral measure can either be discrete (finite or infinite) or continuous.
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Bivariate Markov processes

Now consider a bivariate or 2-component Markov process of the form

{(Xt ,Yt) : t ∈ T }, Xt ∈ S ⊂ R, Yt ∈ {1, 2, . . . ,N}

The first component is the level and the second component is the phase.
Now the transition probabilities can be written in terms of an N × N
matrix-valued function P(t; x ,A) whose entry (i , j) gives

P ij(t; x ,A) = P(Xt ∈ A,Yt = j |X0 = x ,Y0 = i)

The transition operator is now matrix-valued and acts on all column
vector-valued functions

(T t f )(x) = E[f (Xt)|X0 = x ], t ≥ 0, f ∈ B(SN)

The infinitesimal operator A is also matrix-valued

(Af )(x) = lim
s↓0

(T s f )(x)− f (x)

s

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
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Processes related to MVOP

As in the scalar case, there are two situations where matrix-valued orthogonal
polynomials (MVOP) can play an important role:

1. Quasi-birth-and-death processes: S discrete. The infinitesimal operator is
now a block-tridiagonal matrix A

Af (i) = Anf (i + 1) + Bnf (i) + C nf (i − 1), f ∈ B(SN)

where each block An,Bn,C n is a N ×N matrix with the probabilistic properties
depending on the case (discrete or continuous time). The transition
probabilities and the Kolmogorov equations can be derived from A.

2. Switching diffusion processes: S continuous. The infinitesimal operator A is
now a second-order matrix-valued differential operator (Berman, 1994)

Ax =
1

2
A(x)∂2

x + B(x)∂1
x + Q(x)∂0

x

where A(x) and B(x) are diagonal matrices and Q(x) is the infinitesimal
operator of a finite continuous-time Markov chain. Again, the transition density
and the Kolmogorov equations can be derived from A.

The main tool to study spectral methods will be the theory of MVOP.
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Spectral methods

Given a matrix-valued infinitesimal operator A, if we can find a spectral weight
matrix W (x) associated with A, and a set of orthogonal matrix eigenfunctions
F (i , x) such that

AF (i , x) = Λ(i , x)F (i , x),

then it is possible to find spectral representations of the transition probabilities:

1. Quasi-birth-and-death processes:
F (i , x) = Φi (x),Λ(i , x) = xI , i ∈ {0, 1, 2, . . .}, x ∈ [−1, 1] (Grünbaum and
Dette-Reuther-Studden-Zygmunt, 2007).

Pn
ij =

(∫ 1

−1

xnΦi (x)dW (x)Φ∗j (x)

)(∫ 1

−1

Φj(x)dW (x)Φ∗j (x)

)−1

Same result if time is continuous (Dette-Reuther, 2010).
2. Switching diffusion processes:
F (i , x) = Φi (x),Λ(i , x) = Γi , i ∈ {0, 1, 2, . . .}, x ∈ (a, b) (MdI, 2012).

P(t; x , y) =
∞∑
n=0

Φn(x)eΓntΦ∗n(y)W (y)
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Matrix-valued spherical functions

Spherical functions associated with groups of the form G/K where (G ,K) is a
Gel’fand pair are very much related with OP (Helgason, Vilenkin, Klimyk).
They are eigenfunctions of the Casimir operator associated with the group.
The extension to the matrix-valued case was started by Tirao (1977) but it was
not until very recently where the connection with MVOP was discovered by
Grünbaum-Pacharoni-Tirao (2003):

1. Complex projective space: Pn(C) = SU(n + 1)/U(n).
Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with
stochastic processes by Grünbaum-MdI (2008), Grünbaum-Pacharoni-Tirao
(2012) and MdI (2012).

2. Complex hyperbolic plane: H2(C) = SU(2, 1)/U(2). Pacharoni-Román-Tirao
(2006). Dual to the complex projective plane P2(C) = SU(3)/U(2).

3. Real sphere: Sn = SO(n + 1)/O(n). Tirao-Zurrián (2013). Also connected
with the real projective space Pn(R) = SO(n + 1)/O(n).

In all cases (and others not mentioned) an explicit expression of the weight
matrix, the second-order differential operator, the three-term recurrence relation
and other structural formulas were derived for the matrix-valued spherical
functions. In most of the cases the relation with MVOP was also given.
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Grünbaum-Pacharoni-Tirao (2003):

1. Complex projective space: Pn(C) = SU(n + 1)/U(n).
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The pair (SU(2)× SU(2),diag SU(2))

Koornwinder (1985) studied spherical functions associated with pairs of the
form (K ×K ,K), where the subgroup is diagonally embedded and K = SU(2).
More recently Koelink-van Pruijssen-Román (2012) studied with a different
approach this example and give the relation with MVOP (related to S3).
For ` ∈ N and N = 2`+ 1 they produced a one-parameter family of N × N
MVOP where the weight matrix is

W (y) = [y(1− y)]ν−1/2 Ψ0(y)T (Ψ0(y))∗, Tij = δij

(
2`

i

)
(ν)i

(ν + 2`− i)i

where Ψ0(y) is certain matrix-valued function containing spherical functions.
The corresponding symmetric second-order differential operator is given by

D = y(1− y)∂2
y + (C + ν − y(2`+ 2ν + 1))∂y − (V − (ν − 1)(2`+ ν + 1))

where

C = −
∑2`−1

0
(2`−i+1)

2
Ei,i+1 +

∑2`
0

(2`+3)
2

Eii −
∑2`

1
i+1

2
Ei,i−1,V = −

∑2`
0 i(2`− i)Ei,i

where Eij = 1 if i = j and 0 elsewhere; and with eigenvalue

Λn = −n(n − 1)− n(2`+ 2ν + 1)− (V − (ν − 1)(2`+ ν + 1))
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Three important facts

1. The structure of the group induces the existence of a constant matrix Y
such that we can decompose by blocks the weight matrix W in the form

W̃ (y) = YW (y)Y ∗ =

(
W1(y) 0

0 W2(y)

)
where W1 is (`+ 1)× (`+ 1) and W2 is `× `. So we will study the
probabilistic aspects of these two independent processes (` = 1).

2. We look for certain family of MVOP such that the corresponding block
tridiagonal Jacobi matrix A has a “stochastic” interpretation, meaning that the
sum of each row of A is ≤ 0 and the off-diagonal entries of A are ≥ 0
(therefore the infinitesimal operator of a continuous-time Markov chain).

3. Also, in order to find a “stochastic” second-order differential operator, we
will perform a y -dependent transformation S(y) such that D = S−1(DS). Then

D = y(1− y)∂2
y + A(y)∂y + Q(y)

By “stochastic” we mean that A(y) is diagonal, the sum of each row of Q(y) is
≤ 0 and the off-diagonal entries of Q(y) are ≥ 0 (therefore the infinitesimal
operator of a continuous-time finite Markov chain).
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The first stochastic model 3× 3 (` = 1)

Let W1(y) (2× 2) and w2(y) (scalar) be the corresponding block weight
matrices and denote by Qn,1 and qn,2 the corresponding families of MVOP
satisfying Qn,1(0)e2 = e2, e2 = (1, 1)T and qn,2(0) = 1.

1. A birth-and-death process: The polynomials qn,2 satisfy the three-term
recurrence relation

−yqn,2(y) = anqn+1,2(y)− (an + cn)qn,2(y) + cnqn−1,2(y)

where the coefficients are given by

an =
2ν + n + 2

4(ν + n + 1)
, cn =

n

4(ν + n + 1)

Therefore the Jacobi matrix is

A2 =


− 1

2
1
2

0
1

4(ν+2)
− 1

2
2ν+3

4(ν+2)
0

0 1
2(ν+3)

− 1
2

ν+2
2(ν+3)

0

. . .
. . .

. . .

 , ν > −3/2

and it is the infinitesimal operator of a birth-and-death process.
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The potential coefficients (inverse of the norms of qn,2) are

π0 = 1, πn =
2(ν + n + 1)(2ν + 3)n−1

n!
, n ≥ 1

while the (normalized) weight is given by

w2(y) =
4ν+1Γ(ν + 2)√
πΓ(ν + 3/2)

[y(1− y)]ν+1/2 , y ∈ (0, 1), ν > −3/2

Therefore we have the Karlin-McGregor representation

P
(2)
ij (t) = P(Xt = j |X0 = i) = πj

∫ 1

0

e−ytqi,2(y)qj,2(y)w2(y)dy

=
2(ν + j + 1)(2ν + 3)j−14ν+1Γ(ν + 2)

j!
√
πΓ(ν + 3/2)

∫ 1

0

e−ytqi,2qj,2 [y(1− y)]ν+1/2 dy

Since we have the explicit expression of the weight w2(y) we can study the
recurrence of the process. For −3/2 < ν ≤ −1/2 the process is null recurrent
(since

∑
πn =∞), while if ν > −1/2 then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server
queue as the length of the queue increases.
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2. A quasi-birth-and-death process: The polynomials Qn,1(y) satisfy the
three-term recurrence relation

−yQn,1(y) = AnQn+1,1(y) + BnQn,1(y) + CnQn−1,1(y)

where the coefficients are given by

An =

 2ν+n+2
4(ν+n+2)

0

0
(n+ν)(2ν+n+2)

4(ν+n+1)2

 , Bn =

 − 1
2

ν
2(ν+n)(ν+n+2)

1+ν
2(ν+n+1)2 − 1

2

 , Cn =

 n
4(ν+n)

0

0
n(ν+n+2)

4(ν+n+1)2


Therefore the Jacobi matrix (pentadiagonal) is

A1 =



− 1
2

1
2(ν+2)

ν+1
2(ν+2)

0 0 0 0 0 · · ·
1

2(ν+1)
− 1

2
0 ν

2(ν+1)
0 0 0 0 · · ·

1
4(ν+1)

0 − 1
2

ν
2(ν+1)(ν+3)

2ν+3
4(ν+3)

0 0 0 · · ·

0 ν+3
4(ν+2)2

1+ν
2(ν+2)2 − 1

2
0

(1+ν)(2ν+3)

4(ν+2)2 0 0 · · ·

0 0 1
2(ν+2)

0 − 1
2

ν
2(ν+2)(ν+4)

ν+2
2(ν+4)

0 · · ·

0 0 0 ν+4
2(ν+3)2

1+ν
2(ν+3)2 − 1

2
0

(2+ν)2

2(ν+3)2 · · ·

. . .
. . .

. . .
. . .

. . .


and it is the infinitesimal operator of a quasi-birth-and-death process (ν ≥ 0).
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The (normalized) weight matrix is given by

W1(y) =
4ν+1/2Γ(ν + 1)
√
πΓ(ν + 1/2)

[y(1− y)]ν−1/2

1− 2(1+ν)
ν+1/2

y(1− y) ν+1
ν+2

(1− 2y)

ν+1
ν+2

(1− 2y) ν+1
ν+2

(
1− 2ν

ν+1/2
y(1− y)

) , ν ≥ 0

Each block entry (i , j) of P(1)(t) admits a Karlin-McGregor representation

P
(1)
ij (t) =

(∫ 1

0

e−ytQi,1(y)W1(y)Q∗j,1(y)dx

)
Πj

Π0 = I , Πn =
(
‖Qn,1‖2

W1

)−1

=
2(2ν + 3)n−1

n!

(
(ν+1)2

ν+n+1
0

0 ν(ν+2)(ν+n+1)
(ν+n)(ν+n+2)

)
We can also compute explicitly the invariant measure of the process

π =
(

(Π0e2)T ; (Π1e2)T ; (Π2e2)T ; · · ·
)
, eT

2 = (1, 1),

=

(
1, 1;

2(ν + 1)2

ν + 2
,

2ν(ν + 2)2

(ν + 1)(ν + 3)
;

(2ν + 3)(ν + 1)2

ν + 3
,

(2ν + 3)ν(ν + 3)

ν + 4
; · · ·

)
In a similar way studied in the scalar case, the process is null recurrent for

0 ≤ ν ≤ 1/2, while if ν > 1/2 then the process will be transient.
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Interpretation: We have a 2 phases quasi-birth-and-death process. If the process
moves along any of the phases, then the process can add (or remove) 2 elements to
the queue. On the contrary, if the process moves from one phase to another, then the
process add (or remove) 1 element to the queue. As the length of the queue increases,
it is very unlikely that a transition between phases occurs. Therefore this
quasi-birth-and-death process may be viewed as a rational variation of a couple of
one-server queues where the interaction between them is significant in the first states
of the queue.
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The second stochastic model 3× 3 (` = 1)

Let S(y) be the transformation matrix

S(y) =

1 0 0
0 1− 2y 0
0 0 1


Let W1(y) (2× 2) and w2(y) (scalar) be the corresponding block weight
matrices and denote by Qn,1 and qn,2 the corresponding families of
matrix-valued orthogonal functions (need not to be polynomials any more).

1. A diffusion process with killing: The functions qn,2 can be written as

qn,2(y) = −2i
√

y(1− y)C (ν+1)
n (y)

where C
(λ)
n is the family of monic Gegenbauer polynomials.

These are eigenfunctions of the second-order differential operator

D2 = y(1− y)∂2
y + (ν + 1/2)(1− 2y)∂y −

ν(1− 2y)2

2y(1− y)
, ν ≥ 0

with eigenvalue
λn,2 = −1− n(n + 2ν + 2)
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The weight function is

w2(y) =
4ν−1(1 + ν)2[y(1− y)]ν−1/2

ν + 1/2

Therefore the spectral representation of the transition density function is

p(t; x , y) =
∞∑
n=0

eλn,2tqn,2(x)qn,2(y)πnw2(y)

= e−t
√

x(1 − x)
4ν(1+ν)2[y(1−y)]ν

ν+1/2

∞∑
n=0

e−n(n+2ν+2)tC (ν+1)
n (x)C (ν+1)

n (y)πn

where

π−1
n = ‖qn,2‖2

w2
=

√
π(1 + ν)(2 + ν)n!Γ(ν + bn/2c+ 3/2)

4n+12n(ν + 1/2)Γ(n + ν + 2)(dn/2e+ ν + 2)bn/2c
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This process can be regarded as a Wright-Fisher model involving only equal
mutation effects with killing. The behavior of the boundary points can be
analyzed in terms of the parameter ν ≥ 0. Indeed, 0 and 1 are regular
boundaries if 0 ≤ ν < 1/2, while entrance boundaries if ν ≥ 1/2.
When the process is close to 0 or 1, then almost immediately the process is
killed. The closer the trajectory is to 1/2 the more time it will take to the
process to be killed.
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2. A switching diffusion process: The functions Qn,1 are eigenfunctions of the
matrix-valued second-order differential operator (ν ≥ 0)

D1 = y(1− y)∂2
y+

 (ν + 1/2)(1− 2y) 0

0 (ν + 3/2)(1− 2y)− 1

1− 2y

 ∂y

+
1

2y(1− y)

(
−ν(1− 2y)2 ν(1− 2y)2

1 + ν −(1 + ν)

)
with eigenvalue

Λn,1 =

(
−1− n(n + 2ν + 2) 0

0 −n(n + 2ν + 2)

)
, n ≥ 0

and weight matrix

W1(y) =
4ν−1(2 + ν)[y(1− y)]ν−1/2

ν + 1/2

(
1 + ν 0

0 ν(1− 2y)2

)
The matrix-valued transition density probability can be written as

P(t; x , y) =
∞∑
n=0

Qn,1(x)Πne
Λn,1tQ∗n,1(y)W1(y)

Π−1
n = ‖Qn,1‖2

W1
= π−1

n

1 0

0
ν(n + ν + 2)

(ν + 1)(n + ν)


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Probabilistic properties:

0 and 1 are regular boundaries if 0 ≤ ν < 1/2, while they are entrance
boundaries if ν ≥ 1/2. The important difference now is that in the
second phase the drift coefficient tends to ∞ if y = 1/2. It turns out that
if we approach 1/2 (on the left or on the right) then, it will always be an
entrance boundary.

If the process is near 0 or 1, then the diagonal coefficients of Q(y) are
very large, meaning that all phases are instantaneous. We also observe
that if the process is near 1/2 then the entry (1, 1) of Q(y) is very small,
meaning that phase 1 is absorbing.

The process tends to stay more time at phase 1 than in phase 2.

This process can also be regarded as a variant of the Wright-Fisher model

involving only mutation effects with two different phases. The behavior of the

boundaries 0 and 1 in both phases is exactly the same, but, while the process is

at phase 2, starting for instance at an interior point of [0, 1/2−), then there is

a force blocking the pass through the threshold located at 1/2 (same if the

interior point is located at (1/2+, 1]). If the process is at phase 1, it can move

along the whole state space [0, 1] without any restriction at the point 1/2.
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The vector-valued invariant distribution (if it exists) is given by

ψ(y) =
4νΓ(ν + 2)[y(1− y)]ν−1/2

√
π(2 + ν)Γ(ν + 3/2)

(
1 + ν , ν(1− 2y)2)
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