Properties of matrix orthogonal polynomials via their Riemann-Hilbert characterization

Manuel Domínguez de la Iglesia

Departamento de Análisis Matemático, Universidad de Sevilla

Angers, April 17, 2012

\footnote{joint work with F. A. Grünbaum and A. Martínez-Finkelshtein}
Outline

1. What is a Riemann-Hilbert problem?
2. The Riemann-Hilbert problem for orthogonal polynomials
3. The Riemann-Hilbert problem for matrix orthogonal polynomials
Outline

1. What is a Riemann-Hilbert problem?

2. The Riemann-Hilbert problem for orthogonal polynomials

3. The Riemann-Hilbert problem for matrix orthogonal polynomials
Riemann-Hilbert problem

Let $\Sigma \subset \mathbb{C}$ be an oriented contour and $\Sigma^0 = \Sigma \setminus \{\text{points of self-intersection of } \Sigma\}$. Suppose that there exists a matrix-valued smooth map $G : \Sigma^0 \to GL(m, \mathbb{C})$. The Riemann-Hilbert problem (RHP) determined by a pair (Σ, G) consists of finding an $m \times m$ matrix-valued function $Y(z)$ s.t.

1. $Y(z)$ is analytic in $\mathbb{C} \setminus \Sigma$
2. $Y_+(z) = Y_-(z)G(z)$ when $z \in \Sigma$

 $Y_\pm(z) = \lim_{z' \to z, \pm \text{side}} Y(z)$
3. $Y(z) \to I_m$ as $z \to \infty$
What is a RH problem?

The RH problem for OP

The RH problem for MOP

Riemann-Hilbert problem

Let $\Sigma \subset \mathbb{C}$ be an oriented contour and $\Sigma^0 = \Sigma \setminus \{\text{points of self-intersection of } \Sigma\}$. Suppose that there exists a matrix-valued smooth map $G : \Sigma^0 \to GL(m, \mathbb{C})$. The Riemann-Hilbert problem (RHP) determined by a pair (Σ, G) consists of finding an $m \times m$ matrix-valued function $Y(z)$ s.t.

1. $Y(z)$ is analytic in $\mathbb{C} \setminus \Sigma$

2. $Y_+(z) = Y_-(z)G(z)$ when $z \in \Sigma$
 \[Y_\pm(z) = \lim_{z' \to z, \pm \text{side}} Y(z) \]

3. $Y(z) \to I_m$ as $z \to \infty$
Let $\Sigma \subset \mathbb{C}$ be an oriented contour and $\Sigma^0 = \Sigma \setminus \{\text{points of self-intersection of } \Sigma\}$. Suppose that there exists a matrix-valued smooth map $G : \Sigma^0 \to GL(m, \mathbb{C})$. The Riemann-Hilbert problem (RHP) determined by a pair (Σ, G) consists of finding an $m \times m$ matrix-valued function $Y(z)$ s.t.

1. $Y(z)$ is analytic in $\mathbb{C} \setminus \Sigma$

2. $Y_+(z) = Y_-(z)G(z)$ when $z \in \Sigma$

3. $Y_\pm(z) = \lim_{z' \to z, \pm \text{side}} Y(z)$

4. $Y(z) \to I_m$ as $z \to \infty$
Let $\Sigma \subset \mathbb{C}$ be an oriented contour and $\Sigma^0 = \Sigma \setminus \{\text{points of self-intersection of } \Sigma\}$. Suppose that there exists a matrix-valued smooth map $G : \Sigma^0 \to GL(m, \mathbb{C})$. The Riemann-Hilbert problem (RHP) determined by a pair (Σ, G) consists of finding an $m \times m$ matrix-valued function $Y(z)$ s.t.

1. $Y(z)$ is analytic in $\mathbb{C} \setminus \Sigma$
2. $Y_+(z) = Y_-(z)G(z)$ when $z \in \Sigma$
3. $Y_\pm(z) = \lim_{z' \to z, \pm \text{side}} Y(z)$
4. $Y(z) \to I_m$ as $z \to \infty$
Scalar and additive RHP \((m = 1)\)

Let \(\omega : \mathbb{R} \to \mathbb{R}\) be a \(L^1(\mathbb{R})\) and Hölder continuous function. The Riemann-Hilbert problem determined by \((\mathbb{R}, \omega)\) consists of finding a function \(f : \mathbb{C} \to \mathbb{C}\) such that

1. \(f(z)\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)
2. \(f_+(x) = f_-(x) + \omega(x)\) when \(x \in \mathbb{R}\)
3. \(f(z) = \mathcal{O}(1/z)\) as \(z \to \infty\)

The unique solution of this RHP is the Stieltjes or Cauchy transform of \(\omega\)

\[
f(z) = C(\omega)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\omega(t)}{t - z} dt\]
Scalar and additive RHP ($m = 1$)

Let $\omega : \mathbb{R} \to \mathbb{R}$ be a $L^1(\mathbb{R})$ and Hölder continuous function. The Riemann-Hilbert problem determined by (\mathbb{R}, ω) consists of finding a function $f : \mathbb{C} \to \mathbb{C}$ such that

1. $f(z)$ is analytic in $\mathbb{C} \setminus \mathbb{R}$
2. $f_+(x) = f_-(x) + \omega(x)$ when $x \in \mathbb{R}$
3. $f(z) = O(1/z)$ as $z \to \infty$

The unique solution of this RHP is the Stieltjes or Cauchy transform of ω

$$f(z) = C(\omega)(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\omega(t)}{t-z} dt$$
Scalar and additive RHP \((m = 1)\)

Let \(\omega : \mathbb{R} \to \mathbb{R}\) be a \(L^1(\mathbb{R})\) and Hölder continuous function. The Riemann-Hilbert problem determined by \((\mathbb{R}, \omega)\) consists of finding a function \(f : \mathbb{C} \to \mathbb{C}\) such that:

1. \(f(z)\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)
2. \(f_+(x) = f_-(x) + \omega(x)\) when \(x \in \mathbb{R}\)
3. \(f(z) = O(1/z)\) as \(z \to \infty\)

The unique solution of this RHP is the Stieltjes or Cauchy transform of \(\omega\)

\[
f(z) = C(\omega)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\omega(t)}{t - z} dt
\]
Scalar and additive RHP \((m = 1)\)

Let \(\omega : \mathbb{R} \to \mathbb{R}\) be a \(L^1(\mathbb{R})\) and Hölder continuous function. The Riemann-Hilbert problem determined by \((\mathbb{R}, \omega)\) consists of finding a function \(f : \mathbb{C} \to \mathbb{C}\) such that

1. \(f(z)\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)
2. \(f_+(x) = f_-(x) + \omega(x)\) when \(x \in \mathbb{R}\)
3. \(f(z) = O(1/z)\) as \(z \to \infty\)

The unique solution of this RHP is the Stieltjes or Cauchy transform of \(\omega\)

\[
f(z) = C(\omega)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\omega(t)}{t - z} dt
\]

Manuel Domínguez de la Iglesia

Properties of MOP via their RH characterization
Scalar and additive RHP \((m = 1)\)

Let \(\omega : \mathbb{R} \rightarrow \mathbb{R}\) be a \(L^1(\mathbb{R})\) and Hölder continuous function. The Riemann-Hilbert problem determined by \((\mathbb{R}, \omega)\) consists of finding a function \(f : \mathbb{C} \rightarrow \mathbb{C}\) such that

1. \(f(z)\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)
2. \(f_+(x) = f_-(x) + \omega(x)\) when \(x \in \mathbb{R}\)
3. \(f(z) = O(1/z)\) as \(z \rightarrow \infty\)

\[\Sigma = \mathbb{R}\]

The unique solution of this RHP is the Stieltjes or Cauchy transform of \(\omega\)

\[f(z) = C(\omega)(z) \overset{\text{def}}{=} \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\omega(t)}{t - z} dt\]
Applications

- **Integrable models.** Inverse scattering of some nonlinear differential and difference equations like the nonlinear Schrödinger equation, the Korteweg-de Vries equation or the Toda equations.

- **Orthogonal polynomials and random matrices.** The distribution of eigenvalues of random matrices in several ensembles is reduced to computations involving orthogonal polynomials.

- **Combinatorial probability.** On the distribution of the length of the longest increasing subsequence of a random permutation.

<table>
<thead>
<tr>
<th>Advantages for orthogonal polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Algebraic properties: three term recurrence relation, ladder operators, second order differential equation</td>
</tr>
<tr>
<td>2. Uniform asymptotics: steepest descent analysis for RHP (Deift-Zhou, 1993)</td>
</tr>
</tbody>
</table>
Applications

- **Integrable models.** Inverse scattering of some nonlinear differential and difference equations like the nonlinear Schrödinger equation, the Korteweg-de Vries equation or the Toda equations.

- **Orthogonal polynomials and random matrices.** The distribution of eigenvalues of random matrices in several ensembles is reduced to computations involving orthogonal polynomials.

- **Combinatorial probability.** On the distribution of the length of the longest increasing subsequence of a random permutation.

Advantages for orthogonal polynomials

- Algebraic properties: three term recurrence relation, ladder operators, second order differential equation

- Uniform asymptotics: steepest descent analysis for RHP (Deift-Zhou, 1993)
Applications

- **Integrable models.** Inverse scattering of some nonlinear differential and difference equations like the nonlinear Schrödinger equation, the Korteweg-de Vries equation or the Toda equations.

- **Orthogonal polynomials and random matrices.** The distribution of eigenvalues of random matrices in several ensembles is reduced to computations involving orthogonal polynomials.

- **Combinatorial probability.** On the distribution of the length of the longest increasing subsequence of a random permutation.

Advantages for orthogonal polynomials

- **Algebraic properties:** three term recurrence relation, ladder operators, second order differential equation

- **Uniform asymptotics:** steepest descent analysis for RHP (Deift-Zhou, 1993)
Applications

- **Integrable models.** Inverse scattering of some nonlinear differential and difference equations like the nonlinear Schrödinger equation, the Korteweg-de Vries equation or the Toda equations.

- **Orthogonal polynomials and random matrices.** The distribution of eigenvalues of random matrices in several ensembles is reduced to computations involving orthogonal polynomials.

- **Combinatorial probability.** On the distribution of the length of the longest increasing subsequence of a random permutation.

Advantages for orthogonal polynomials

1. **Algebraic properties:** three term recurrence relation, ladder operators, second order differential equation

2. **Uniform asymptotics:** steepest descent analysis for RHP (Deift-Zhou, 1993).
What is a RH problem?
The RH problem for OP
The RH problem for MOP

Applications

- **Integrable models.** Inverse scattering of some nonlinear differential and difference equations like the nonlinear Schrödinger equation, the Korteweg-de Vries equation or the Toda equations.

- **Orthogonal polynomials and random matrices.** The distribution of eigenvalues of random matrices in several ensembles is reduced to computations involving orthogonal polynomials.

- **Combinatorial probability.** On the distribution of the length of the longest increasing subsequence of a random permutation.

Advantages for orthogonal polynomials

1. **Algebraic properties:** three term recurrence relation, ladder operators, second order differential equation

2. **Uniform asymptotics:** *steepest descent analysis for RHP* (Deift-Zhou, 1993).
Outline

1. What is a Riemann-Hilbert problem?
2. The Riemann-Hilbert problem for orthogonal polynomials
3. The Riemann-Hilbert problem for matrix orthogonal polynomials
Orthogonal polynomials

Let $d\mu$ be a positive Borel measure supported on \mathbb{R}. We will assume $d\mu(x) = \omega(x)dx$, $\omega \geq 0$ and $x^i\omega, x^j\omega' \in L^1(\mathbb{R})$.

We can then construct a family of orthonormal polynomials $(p_n)_n$ s.t.

$$(p_n, p_m)_{\omega} = \int_{\mathbb{R}} p_n(x)p_m(x)\omega(x)dx = \delta_{n,m}, \quad n, m \geq 0$$

$$p_n(x) = \kappa_n(x^n + a_{n,n-1}x^{n-1} + \cdots) = \kappa_n\hat{p}_n(x)$$

The monic polynomials $\hat{p}_n(x)$ satisfy a three-term recurrence relation

$$x\hat{p}_n(x) = \hat{p}_{n+1}(x) + \alpha_n\hat{p}_n(x) + \beta_n\hat{p}_{n-1}(x)$$
Orthogonal polynomials

Let \(d\mu \) be a positive Borel measure supported on \(\mathbb{R} \).
We will assume \(d\mu(x) = \omega(x)dx, \omega \geq 0 \) and \(x^i \omega, x^j \omega' \in L^1(\mathbb{R}) \).
We can then construct a family of orthonormal polynomials \((p_n)_n\) s.t.

\[
(p_n, p_m)_{\omega} = \int_{\mathbb{R}} p_n(x)p_m(x)\omega(x)dx = \delta_{n,m}, \quad n, m \geq 0
\]

\[
p_n(x) = \kappa_n(x^n + a_{n,n-1}x^{n-1} + \cdots) = \kappa_n \hat{p}_n(x)
\]

The monic polynomials \(\hat{p}_n(x) \) satisfy a three-term recurrence relation

\[
x\hat{p}_n(x) = \hat{p}_{n+1}(x) + \alpha_n \hat{p}_n(x) + \beta_n \hat{p}_{n-1}(x)
\]
Orthogonal polynomials

Let $d\mu$ be a positive Borel measure supported on \mathbb{R}. We will assume $d\mu(x) = \omega(x)dx$, $\omega \geq 0$ and $x^i\omega, x^j\omega' \in L^1(\mathbb{R})$. We can then construct a family of orthonormal polynomials $(p_n)_n$ s.t.

$$
(p_n, p_m)_\omega = \int_{\mathbb{R}} p_n(x)p_m(x)\omega(x)dx = \delta_{n,m}, \quad n, m \geq 0
$$

$$
p_n(x) = \kappa_n(x^n + a_{n,n-1}x^{n-1} + \cdots) = \kappa_n\hat{p}_n(x)
$$

The monic polynomials $\hat{p}_n(x)$ satisfy a three-term recurrence relation

$$
x\hat{p}_n(x) = \hat{p}_{n+1}(x) + \alpha_n\hat{p}_n(x) + \beta_n\hat{p}_{n-1}(x)
$$
Solution of the RHP for orthogonal polynomials \((m = 2)\)

We try to find a \(2 \times 2\) matrix-valued function \(Y^n : \mathbb{C} \to \mathbb{C}^{2 \times 2}\) such that

1. \(Y^n\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)
2. \(Y^n_+(x) = Y^n_-(x) \begin{pmatrix} 1 & \omega(x) \\ 0 & 1 \end{pmatrix}\) when \(x \in \mathbb{R}\)
3. \(Y^n(z) = (I_2 + O(1/z)) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}\) as \(z \to \infty\)

For \(n \geq 1\) the unique solution of the RHP above is given by

\[
Y^n(z) = \begin{pmatrix} \hat{p}_n(z) & C(\hat{p}_n\omega)(z) \\ -2\pi i \gamma_{n-1} \hat{p}_{n-1}(z) & -2\pi i \gamma_{n-1} C(\hat{p}_{n-1}\omega)(z) \end{pmatrix}
\]

where \(C(f)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} \, dt\) and \(\gamma_n = \kappa_n^2\) (Fokas-Its-Kitaev, 1990).

The existence and unicity is a consequence of the Morera’s theorem, Liouville’s theorem, the additive RHP and \(\det Y^n(z) = 1\).
Solution of the RHP for orthogonal polynomials ($m = 2$)

We try to find a 2×2 matrix-valued function $Y^n : \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that

1. Y^n is analytic in $\mathbb{C} \setminus \mathbb{R}$
2. $Y^n_+(x) = Y^n_-(x) \begin{pmatrix} 1 & \omega(x) \\ 0 & 1 \end{pmatrix}$ when $x \in \mathbb{R}$
3. $Y^n(z) = (I_2 + O(1/z)) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RHP above is given by

$$Y^n(z) = \begin{pmatrix} \hat{p}_n(z) & C(\hat{p}_n\omega)(z) \\ -2\pi i \gamma_{n-1} \hat{p}_{n-1}(z) & -2\pi i \gamma_{n-1} C(\hat{p}_{n-1}\omega)(z) \end{pmatrix}$$

where $C(f)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} dt$ and $\gamma_n = \kappa_n^2$ (Fokas-Its-Kitaev, 1990).

The existence and unicity is a consequence of the Morera’s theorem, Liouville’s theorem, the additive RHP and $\det Y^n(z) = 1$.
Solution of the RHP for orthogonal polynomials \((m = 2)\)

We try to find a \(2 \times 2\) matrix-valued function \(Y^n : \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}\) such that

1. \(Y^n\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)
2. \(Y^n_+(x) = Y^n_-(x) \begin{pmatrix} 1 & \omega(x) \\ 0 & 1 \end{pmatrix}\) when \(x \in \mathbb{R}\)
3. \(Y^n(z) = (I_2 + \mathcal{O}(1/z)) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}\) as \(z \to \infty\)

For \(n \geq 1\) the unique solution of the RHP above is given by

\[
Y^n(z) = \begin{pmatrix} \hat{p}_n(z) & C(\hat{p}_n\omega)(z) \\ -2\pi i \gamma_n \hat{p}_{n-1}(z) & -2\pi i \gamma_{n-1} C(\hat{p}_{n-1}\omega)(z) \end{pmatrix}
\]

where \(C(f)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} dt\) and \(\gamma_n = \kappa_n^2\) (Fokas-Its-Kitaev, 1990).

The existence and unicity is a consequence of the Morera’s theorem, Liouville’s theorem, the additive RHP and \(\det Y^n(z) = 1\).
Solution of the RHP for orthogonal polynomials \((m = 2)\)

We try to find a \(2 \times 2\) matrix-valued function \(Y^n : \mathbb{C} \to \mathbb{C}^{2 \times 2}\) such that

1. \(Y^n\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)
2. \(Y^n_+(x) = Y^n_-(x) \begin{pmatrix} 1 & \omega(x) \\ 0 & 1 \end{pmatrix}\) when \(x \in \mathbb{R}\)
3. \(Y^n(z) = (I_2 + O(1/z)) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}\) as \(z \to \infty\)

For \(n \geq 1\) the unique solution of the RHP above is given by

\[
Y^n(z) = \begin{pmatrix} \hat{p}_n(z) & C(\hat{p}_n \omega)(z) \\ -2\pi i \gamma_{n-1} \hat{p}_{n-1}(z) & -2\pi i \gamma_{n-1} C(\hat{p}_{n-1} \omega)(z) \end{pmatrix}
\]

where \(C(f)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} \, dt\) and \(\gamma_n = \kappa_n^2\) (Fokas-Its-Kitaev, 1990).

The existence and unicity is a consequence of the Morera’s theorem, Liouville’s theorem, the additive RHP and \(\det Y^n(z) = 1\).
Solution of the RHP for orthogonal polynomials ($m = 2$)

We try to find a 2×2 matrix-valued function $\mathbf{Y}^n : \mathbb{C} \rightarrow \mathbb{C}^{2\times2}$ such that

1. \mathbf{Y}^n is analytic in $\mathbb{C} \setminus \mathbb{R}$
2. $\mathbf{Y}^n_+(x) = \mathbf{Y}^n_-(x) \begin{pmatrix} 1 & \omega(x) \\ 0 & 1 \end{pmatrix}$ when $x \in \mathbb{R}$
3. $\mathbf{Y}^n(z) = (\mathbf{I}_2 + O(1/z)) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RHP above is given by

$$
\mathbf{Y}^n(z) = \begin{pmatrix} \hat{p}_n(z) & C(\hat{p}_n\omega)(z) \\ -2\pi i \gamma_{n-1}\hat{p}_{n-1}(z) & -2\pi i \gamma_{n-1}C(\hat{p}_{n-1}\omega)(z) \end{pmatrix}
$$

where $C(f)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} \, dt$ and $\gamma_n = \kappa_n^2$ (Fokas-Its-Kitaev, 1990). The existence and unicity is a consequence of the Morera’s theorem, Liouville’s theorem, the additive RHP and $\det \mathbf{Y}^n(z) = 1$.

The Lax pair

The solution of the RHP for orthogonal polynomials satisfy the Lax pair

\[
Y^{n+1}(z) = \left(\begin{array}{cc}
 z - \alpha_n & \frac{1}{2\pi i} \gamma_n^{-1} \\
 -2\pi i \gamma_n & 0
\end{array} \right) Y^n(z)
\]

\[
\frac{d}{dz} Y^n(z) = \left(\begin{array}{cc}
 -\mathcal{B}_n(z) & -\frac{1}{2\pi i} \gamma_n^{-1} \mathcal{A}_n(z) \\
 2\pi i \mathcal{A}_{n-1}(z) \gamma_{n-1} & \mathcal{B}_n(z)
\end{array} \right) Y^n(z)
\]

where

\[
\mathcal{A}_n(z) = -\gamma_n \int_{\mathbb{R}} \frac{\hat{p}_n(t)\omega'(t)}{t-z} dt, \quad \mathcal{B}_n(z) = -\gamma_{n-1} \int_{\mathbb{R}} \frac{\hat{p}_n(t)\hat{p}_{n-1}(t)\omega'(t)}{t-z} dt
\]
The Lax pair

The solution of the RHP for orthogonal polynomials satisfy the Lax pair

\[
\mathbf{Y}^{n+1}(z) = \begin{pmatrix}
 z - \alpha_n & 1 \gamma_n^{-1} \\
 -2\pi i \gamma_n & 0
\end{pmatrix}
\mathbf{Y}^n(z) \quad E_n(z)
\]

\[
\frac{d}{dz} \mathbf{Y}^n(z) = \begin{pmatrix}
 -\mathcal{B}_n(z) & -\frac{1}{2\pi i} \gamma_n^{-1} \mathcal{A}_n(z) \\
 2\pi i \mathcal{A}_{n-1}(z) \gamma_{n-1} & -\mathcal{B}_n(z)
\end{pmatrix}
\mathbf{Y}^n(z) \quad F_n(z)
\]

where

\[
\mathcal{A}_n(z) = -\gamma_n \int_{\mathbb{R}} \frac{\hat{p}_n^2(t) \omega'(t)}{t - z} dt, \quad \mathcal{B}_n(z) = -\gamma_{n-1} \int_{\mathbb{R}} \frac{\hat{p}_n(t) \hat{p}_{n-1}(t) \omega'(t)}{t - z} dt
\]
Compatibility conditions

Cross-differentiating the Lax pair yield

\[E'_n(z) + E_n(z)F_n(z) = F_{n+1}(z)E_n(z) \]

also known as string equations. In our situation, the compatibility conditions entry-wise are

\[1 + (z - \alpha_n)(\mathcal{B}_{n+1}(z) - \mathcal{B}_n(z)) = \beta_{n+1}\mathcal{A}_{n+1}(z) - \beta_n\mathcal{A}_{n-1}(z) \]
\[\mathcal{B}_{n+1}(z) + \mathcal{B}_n(z) = (z - \alpha_n)\mathcal{A}_n(z) \]

Problem. Typically, the coefficients \(\mathcal{A}_n(z) \) and \(\mathcal{B}_n(z) \) are difficult to obtain. We can avoid that by transforming the RHP in another RHP with constant jump.
Compatibility conditions

Cross-differentiating the Lax pair yield

\[E'_n(z) + E_n(z)F_n(z) = F_{n+1}(z)E_n(z) \]

also known as string equations. In our situation, the compatibility conditions entry-wise are

\[1 + (z - \alpha_n)(\mathcal{B}_{n+1}(z) - \mathcal{B}_n(z)) = \beta_{n+1}A_{n+1}(z) - \beta_nA_{n-1}(z) \]
\[\mathcal{B}_{n+1}(z) + \mathcal{B}_n(z) = (z - \alpha_n)A_n(z) \]

Problem. Typically, the coefficients \(A_n(z) \) and \(\mathcal{B}_n(z) \) are difficult to obtain. We can avoid that by transforming the RHP in another RHP with constant jump.
Consider the transformation

$$X^n(z) = Y^n(z) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix}$$

We observe that X^n is invertible and that

$$X^n_+(x) = Y^n_+(x) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} = Y^n_-(x) \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix}$$

$$= Y^n_-(x) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \begin{pmatrix} \omega^{-1/2} & 0 \\ 0 & \omega^{1/2} \end{pmatrix} \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix}$$

$$= X^n_-(x) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

That means that X^n has a constant jump

$$\Rightarrow E_n(z) \text{ and } F_n(z) \text{ are completely determined by their behavior at } z \to \infty.$$
Transformation of the RHP

Consider the transformation

\[X^n(z) = Y^n(z) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \]

We observe that \(X^n \) is invertible and that

\[
X^n_+(\chi) = Y^n_+(\chi) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} = Y^n_-(\chi) \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \\
= Y^n_-(\chi) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \begin{pmatrix} 0 & \omega^{1/2} \\ \omega^{-1/2} & 0 \end{pmatrix} \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \\
= X^n_-(\chi) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

That means that \(X^n \) has a constant jump

\[\Rightarrow E_n(z) \text{ and } F_n(z) \text{ are completely determined by their behavior at } z \to \infty. \]
Transformation of the RHP

Consider the transformation

\[X^n(z) = Y^n(z) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \]

We observe that \(X^n \) is invertible and that

\[
X^n_+(x) = Y^n_+(x) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} = Y^n_-(x) \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \\
= Y^n_-(x) \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \begin{pmatrix} \omega^{-1/2} & 0 \\ 0 & \omega^{1/2} \end{pmatrix} \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega^{1/2} & 0 \\ 0 & \omega^{-1/2} \end{pmatrix} \\
= X^n_-(x) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

That means that \(X^n \) has a constant jump

\[\Rightarrow E_n(z) \text{ and } F_n(z) \text{ are completely determined by their behavior at } z \to \infty. \]
Example: Hermite polynomials

The solution $\mathbf{Y}^n(z)$ of the RHP

1. \mathbf{Y}^n is analytic in $\mathbb{C} \setminus \mathbb{R}$

2. $\mathbf{Y}_+(x) = \mathbf{Y}_-(x) \begin{pmatrix} 1 & e^{-x^2} \\ 0 & 1 \end{pmatrix}$ when $x \in \mathbb{R}$

3. $\mathbf{Y}^n(z) = (\mathbf{I}_2 + O(1/z)) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}$ as $z \to \infty$

is given by

$$\mathbf{Y}^n(z) = \begin{pmatrix} \hat{H}_n(z) & C(\hat{H}_n e^{-t^2})(z) \\ -2\pi i \gamma_n \hat{H}_{n-1}(z) & -2\pi i \gamma_n C(\hat{H}_{n-1} e^{-t^2})(z) \end{pmatrix}$$

where $(\hat{H}_n)_n$ is the family of monic Hermite polynomials.
The Lax pair and compatibility conditions

\[\mathbf{X}^n(z) = \mathbf{Y}^n(z) \begin{pmatrix} e^{-z^2/2} & 0 \\ 0 & e^{z^2/2} \end{pmatrix} \]

satisfies the following Lax pair

\[\mathbf{X}^{n+1}(z) = \begin{pmatrix} z - \alpha_n \\ -2\pi i \gamma_n \end{pmatrix} \begin{pmatrix} \mathbf{X}^n(z) \\ 0 \end{pmatrix}, \quad \frac{d}{dz} \mathbf{X}^n(z) = \begin{pmatrix} -z \\ 4\pi i \gamma_{n-1} \end{pmatrix} \begin{pmatrix} -\frac{1}{i} \gamma_n^{-1} \\ z \end{pmatrix} \mathbf{X}^n(z) \]

The difference equation gives (using \(\beta_n = \gamma_n / \gamma_{n+1} \)) the TTRR

\[x \hat{H}_n(x) = \hat{H}_{n+1}(x) + \alpha_n \hat{H}_n(x) + \beta_n \hat{H}_{n-1}(x), \]

while the differential equation gives the ladder operators

\[\hat{H}'_n(x) = 2\beta_n \hat{H}_{n-1}(x), \quad \hat{H}'_n(x) - 2z \hat{H}_n(x) = -2\hat{H}_{n+1}(x). \]

The compatibility conditions are

\[\alpha_n = 0, \quad \beta_{n+1} - \beta_n = \frac{1}{2} \Rightarrow \beta_n = \frac{n}{2} \]
The Lax pair and compatibility conditions

\[X^n(z) = Y^n(z) \begin{pmatrix} e^{-z^2/2} & 0 \\ 0 & e^{z^2/2} \end{pmatrix} \] satisfies the following Lax pair

\[X^{n+1}(z) = \begin{pmatrix} z - \alpha_n & \frac{1}{2\pi i} \gamma_n^{-1} \\ -2\pi i \gamma_n & 0 \end{pmatrix} X^n(z), \quad \frac{d}{dz} X^n(z) = \begin{pmatrix} -z & -\frac{1}{\pi i} \gamma_n^{-1} \\ 4\pi i \gamma_{n-1} & z \end{pmatrix} X^n(z) \]

The difference equation gives (using \(\beta_n = \gamma_n/\gamma_{n+1} \)) the TTRR

\[x \hat{H}_n(x) = \hat{H}_{n+1}(x) + \alpha_n \hat{H}_n(x) + \beta_n \hat{H}_{n-1}(x), \]

while the differential equation gives the ladder operators

\[\hat{H}'_n(x) = 2\beta_n \hat{H}_{n-1}(x), \quad \hat{H}'_n(x) - 2z \hat{H}_n(x) = -2 \hat{H}_{n+1}(x). \]

The compatibility conditions are

\[\alpha_n = 0, \quad \beta_{n+1} - \beta_n = \frac{1}{2} \Rightarrow \beta_n = \frac{n}{2} \]
The Lax pair and compatibility conditions

\[X^n(z) = Y^n(z) \begin{pmatrix} e^{-z^2/2} & 0 \\ 0 & e^{z^2/2} \end{pmatrix} \]
satisfies the following Lax pair

\[X^{n+1}(z) = \begin{pmatrix} z - \frac{1}{2} - 2\pi i n \gamma n^{-1} \\ -2\pi i n \gamma n^{-1} \end{pmatrix} X^n(z), \quad \frac{d}{dz} X^n(z) = \begin{pmatrix} -z & -\frac{1}{n+1} \gamma n^{-1} \\ 4\pi i n \gamma n^{-1} & \frac{1}{z} \end{pmatrix} X^n(z) \]

The difference equation gives (using \(\beta_n = \gamma n / \gamma n+1 \)) the TTRR

\[x \hat{H}_n(x) = \hat{H}_n(x+1) + \alpha_n \hat{H}_n(x) + \beta_n \hat{H}_n(x-1), \]

while the differential equation gives the ladder operators

\[\hat{H}'_n(x) = 2\beta_n \hat{H}_{n-1}(x), \quad \hat{H}'_n(x) - 2z \hat{H}_n(x) = -2 \hat{H}_{n+1}(x). \]

The compatibility conditions are

\[\alpha_n = 0, \quad \beta_{n+1} - \beta_n = \frac{1}{2} \Rightarrow \beta_n = \frac{n}{2} \]
Outline

1. What is a Riemann-Hilbert problem?

2. The Riemann-Hilbert problem for orthogonal polynomials

3. The Riemann-Hilbert problem for matrix orthogonal polynomials
What is a RH problem?
The RH problem for OP
The RH problem for MOP

Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949.

A \(N \times N \) matrix polynomial on the real line is

\[
P(x) = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_0, \quad x \in \mathbb{R} \quad A_i \in \mathbb{C}^{N \times N}
\]

Let \(W \) be a \(N \times N \) a matrix of measures or weight matrix. We will assume \(dW(x) = W(x)dx \) and \(W \) smooth and positive definite on \(\mathbb{R} \).

We can construct a family of MOP with respect to the inner product

\[
(P, Q)_W = \int_{\mathbb{R}} P(x) W(x) Q^*(x) dx \in \mathbb{C}^{N \times N}
\]

such that

\[
(P_n, P_m)_W = \int_{\mathbb{R}} P_n(x) W(x) P_m^*(x) dx = \delta_{n,m} I_N, \quad n, m \geq 0
\]

\[
P_n(x) = \kappa_n (x^n + a_{n,n-1} x^{n-1} + \cdots) = \kappa_n \hat{P}_n(x)
\]
Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949.

A $N \times N$ matrix polynomial on the real line is

$$P(x) = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_0, \quad x \in \mathbb{R} \quad A_i \in \mathbb{C}^{N \times N}$$

Let W be a $N \times N$ a matrix of measures or weight matrix. We will assume $dW(x) = W(x) dx$ and W smooth and positive definite on \mathbb{R}. We can construct a family of MOP with respect to the inner product

$$(P, Q)_W = \int_{\mathbb{R}} P(x) W(x) Q^*(x) dx \in \mathbb{C}^{N \times N}$$

such that

$$(P_n, P_m)_W = \int_{\mathbb{R}} P_n(x) W(x) P_m^*(x) dx = \delta_{n,m} I_N, \quad n, m \geq 0$$

$$P_n(x) = \kappa_n (x^n + a_{n,n-1} x^{n-1} + \cdots) = \kappa_n \hat{P}_n(x)$$
Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949. A $N \times N$ matrix polynomial on the real line is

$$P(x) = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_0, \quad x \in \mathbb{R} \quad A_i \in \mathbb{C}^{N \times N}$$

Let W be a $N \times N$ a matrix of measures or weight matrix. We will assume $dW(x) = W(x)dx$ and W smooth and positive definite on \mathbb{R}. We can construct a family of MOP with respect to the inner product

$$(P, Q)_W = \int_{\mathbb{R}} P(x)W(x)Q^*(x)dx \in \mathbb{C}^{N \times N}$$

such that

$$(P_n, P_m)_W = \int_{\mathbb{R}} P_n(x)W(x)P_m^*(x)dx = \delta_{n,m}I_N, \quad n, m \geq 0$$

$$P_n(x) = \kappa_n(x^n + a_{n,n-1}x^{n-1} + \cdots) = \kappa_n \hat{P}_n(x)$$
Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949.

A \(N \times N \) matrix polynomial on the real line is

\[
P(x) = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_0, \quad x \in \mathbb{R} \quad A_i \in \mathbb{C}^{N \times N}
\]

Let \(W \) be a \(N \times N \) a matrix of measures or weight matrix.

We will assume \(dW(x) = W(x)\,dx \) and \(W \) smooth and positive definite on \(\mathbb{R} \).

We can construct a family of MOP with respect to the inner product

\[
(P, Q)_W = \int_{\mathbb{R}} P(x)W(x)Q^*(x)\,dx \in \mathbb{C}^{N \times N}
\]

such that

\[
(P_n, P_m)_W = \int_{\mathbb{R}} P_n(x)W(x)P_m^*(x)\,dx = \delta_{n,m}I_N, \quad n, m \geq 0
\]

\[
P_n(x) = \kappa_n(x^n + a_{n-1}x^{n-1} + \cdots) = \kappa_n \hat{P}_n(x)
\]
Solution of the RHP for MOP \((m = 2N)\)

\(Y^n : \mathbb{C} \to \mathbb{C}^{2N \times 2N}\) such that

1. \(Y^n\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)

2. \(Y_+(x) = Y_-(x) \begin{pmatrix} I_N & W(x) \\ 0 & I_N \end{pmatrix}\) when \(x \in \mathbb{R}\)

3. \(Y^n(z) = (I_{2N} + O(1/z)) \begin{pmatrix} z^n I_N & 0 \\ 0 & z^{-n} I_N \end{pmatrix}\) as \(z \to \infty\)

For \(n \geq 1\) the unique solution of the RH problem above is given by

\[
Y^n(z) = \begin{pmatrix} \hat{P}_n(z) & C(\hat{P}_nW)(z) \\ -2\pi i \gamma_{n-1} \hat{P}_{n-1}(z) & -2\pi i \gamma_{n-1} C(\hat{P}_{n-1}W)(z) \end{pmatrix}
\]

where \(C(F)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{F(t)}{t-z} dt\) and \(\gamma_n = \kappa_n^* \kappa_n\).
Solution of the RHP for MOP \((m = 2N)\)

\[Y^n : \mathbb{C} \to \mathbb{C}^{2N \times 2N} \text{ such that} \]

1. \(Y^n\) is analytic in \(\mathbb{C} \setminus \mathbb{R}\)

2. \(Y^+_n(x) = Y^-_n(x) \begin{pmatrix} I_N & W(x) \\ 0 & I_N \end{pmatrix}\) when \(x \in \mathbb{R}\)

3. \(Y^n(z) = (I_{2N} + O(1/z)) \begin{pmatrix} z^nI_N & 0 \\ 0 & z^{-n}I_N \end{pmatrix}\) as \(z \to \infty\)

For \(n \geq 1\) the unique solution of the RH problem above is given by

\[
Y^n(z) = \begin{pmatrix} \hat{P}_n(z) & C(\hat{P}_nW)(z) \\ -2\pi i\gamma_{n-1}\hat{P}_{n-1}(z) & -2\pi i\gamma_{n-1}C(\hat{P}_{n-1}W)(z) \end{pmatrix}
\]

where \(C(F)(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{F(t)}{t-z} dt\) and \(\gamma_n = \kappa_n^*\kappa_n\).
The Lax pair

The solution of the RHP for orthogonal polynomials satisfy the Lax pair

$$
Y^{n+1}(z) = \left(\begin{array}{cc}
 z - \alpha_n & \frac{1}{2\pi i} \gamma_n^{-1} \\
 -2\pi i \gamma_n & 0
\end{array} \right) \underbrace{Y^n(z)}_{E_n(z)},
$$

$$
\frac{d}{dz} Y^n(z) = \left(\begin{array}{cc}
 -\mathcal{B}_n(z) & -\frac{1}{2\pi i} \gamma_n^{-1} \mathcal{A}_n(z) \\
 2\pi i \mathcal{A}_{n-1}(z) \gamma_{n-1} & -\mathcal{B}^*_n(z)
\end{array} \right) \underbrace{Y^n(z)}_{F_n(z)},
$$

where

$$
\mathcal{A}_n(z) = -\gamma_n \int_{\mathbb{R}} \frac{\hat{P}_n(t) W'(t) \hat{P}^*_n(t)}{t - z} dt, \quad \mathcal{B}_n(z) = -\left(\int_{\mathbb{R}} \frac{\hat{P}_n(t) W'(t) \hat{P}^*_{n-1}(t)}{t - z} dt \right) \gamma_{n-1}
$$
Compatibility conditions

Cross-differentiating the Lax pair yield

\[E'_n(z) + E_n(z)F_n(z) = F_{n+1}(z)E_n(z) \]

also known as string equations. In our situation, the compatibility conditions entry-wise are

\[
\begin{align*}
I_N + \mathcal{B}_{n+1}(z)(zI_N - \alpha_n) - (zI_N - \alpha_n)\mathcal{B}_n(z) &= \mathcal{A}_{n+1}^*(z)\beta_{n+1} - \beta_n\mathcal{A}_{n-1}^*(z) \\
\mathcal{B}_{n+1}(z) + \gamma_{n}^{-1}\mathcal{B}_n^*(z)\gamma_n &= (zI_N - \alpha_n)\mathcal{A}_n^*(z)
\end{align*}
\]

Problem. Again, the coefficients \(\mathcal{A}_n(z)\) and \(\mathcal{B}_n(z)\) are difficult to obtain. We need to transform the RHP in another RHP with constant jump.
Compatibility conditions

Cross-differentiating the Lax pair yield

\[E'_n(z) + E_n(z)F_n(z) = F_{n+1}(z)E_n(z) \]

also known as string equations. In our situation, the compatibility conditions entry-wise are

\[I_N + \mathcal{B}_{n+1}(z)(zI_N - \alpha_n) - (zI_N - \alpha_n)\mathcal{B}_n(z) = \mathcal{A}^*_{n+1}(z)\beta_{n+1} - \beta_n\mathcal{A}^*_{n-1}(z) \]

\[\mathcal{B}_{n+1}(z) + \gamma_n^{-1}\mathcal{B}_n(z)\gamma_n = (zI_N - \alpha_n)\mathcal{A}_n^*(z) \]

Problem. Again, the coefficients \(\mathcal{A}_n(z) \) and \(\mathcal{B}_n(z) \) are difficult to obtain. We need to transform the RHP in another RHP with constant jump.
Transformation of the RHP

Goal: obtain an invertible transformation \(Y^n \to X^n \) such that \(X^n \) has a constant jump across \(\mathbb{R} \). Consider \(X^n(z) = Y^n(z)V(z) \) where

\[
V(z) = \begin{pmatrix} T(z) & 0 \\ 0 & T^{-*}(z) \end{pmatrix}
\]

where \(T \) is an invertible \(N \times N \) smooth matrix function.

This motivates to consider a factorization of the weight in the form

\[
W(x) = T(x)T^*(x), \quad x \in \mathbb{R}.
\]

This factorization is not unique since

\[
T(x) = \hat{T}(x)S(x), \quad x \in \mathbb{R},
\]

where \(\hat{T}(x) \) is an upper triangular matrix and \(S(x) \) is an arbitrary smooth and unitary matrix.
Transformation of the RHP

Goal: obtain an invertible transformation $Y^n \rightarrow X^n$ such that X^n has a constant jump across \mathbb{R}. Consider $X^n(z) = Y^n(z)V(z)$ where

$$V(z) = \begin{pmatrix} T(z) & 0 \\ 0 & T^{-*}(z) \end{pmatrix}$$

where T is an invertible $N \times N$ smooth matrix function. This motivates to consider a factorization of the weight in the form

$$W(x) = T(x)T^*(x), \quad x \in \mathbb{R}.$$

This factorization is not unique since

$$T(x) = \hat{T}(x)S(x), \quad x \in \mathbb{R},$$

where $\hat{T}(x)$ is an upper triangular matrix and $S(x)$ is an arbitrary smooth and unitary matrix.
Transformation of the RHP

Goal: obtain an invertible transformation $Y^n \rightarrow X^n$ such that X^n has a constant jump across \mathbb{R}. Consider $X^n(z) = Y^n(z)V(z)$ where

$$V(z) = \begin{pmatrix} T(z) & 0 \\ 0 & T^{-*}(z) \end{pmatrix}$$

where T is an invertible $N \times N$ smooth matrix function. This motivates to consider a factorization of the weight in the form

$$W(x) = T(x)T^*(x), \quad x \in \mathbb{R}.$$

This factorization is not unique since

$$T(x) = \hat{T}(x)S(x), \quad x \in \mathbb{R},$$

where $\hat{T}(x)$ is an upper triangular matrix and $S(x)$ is an arbitrary smooth and unitary matrix.
Transformation of the RHP II

We additionally assume

\[T'(z) = G(z)T(z), \]

where \(G \) is a matrix polynomial of degree \(m \) (most of our examples).

Then

\[
\frac{d}{dz}X^n(z) = F_n(z; G)X^n(z),
\]

\[
F_n(z; G) = \begin{pmatrix}
 -B_n(z; G) & -\frac{1}{2\pi i} \gamma_n^{-1} A_n(z; G) \\
 2\pi i A_{n-1}(z; G) \gamma_{n-1} & B^*_n(z; G)
\end{pmatrix}
\]

where \(A_n \) and \(B_n \) are matrix polynomials of degree \(m - 1 \) and \(m \) respectively.
Transformation of the RHP II

We additionally assume

\[T'(z) = G(z)T(z), \]

where \(G \) is a matrix polynomial of degree \(m \) (most of our examples).

Then

\[
\frac{d}{dz} X^n(z) = F_n(z; G)X^n(z),
\]

\[
F_n(z; G) = \begin{pmatrix}
-B_n(z; G) & -\frac{1}{2\pi i} \gamma_n^{-1} A_n(z; G) \\
2\pi i A_{n-1}(z; G)\gamma_{n-1} & B^*_n(z; G)
\end{pmatrix}
\]

where \(A_n \) and \(B_n \) are matrix polynomials of degree \(m - 1 \) and \(m \) respectively.
Transformation of the RHP III

If there exists a non-trivial matrix-valued function S, non-singular on \mathbb{C}, smooth and unitary on \mathbb{R}, s.t.

$$H(z) = T(z)S'(z)S^*(z)T^{-1}(z)$$

is also a polynomial, then $\tilde{T} = TS$ satisfies

$$W(x) = \tilde{T}(x)\tilde{T}^*(x), \quad x \in \mathbb{R}, \quad \tilde{T}'(z) = \tilde{G}(z)\tilde{T}(z), \quad z \in \mathbb{C},$$

with $\tilde{G}(z) = G(z) + H(z)$ and the matrix X^n satisfies

$$\frac{d}{dz}X^n(z) = (F_n(z; G) + F_n(z; H))X^n(z) - X^n(z) \begin{pmatrix} \chi(z) & 0 \\ 0 & -\chi^*(z) \end{pmatrix}$$

with $\chi(z) = S'(z)S^*(z)$.

Consequences: We have a class of ladder operators.
Transformation of the RHP III

If there exists a non-trivial matrix-valued function S, non-singular on \mathbb{C}, smooth and unitary on \mathbb{R}, s.t.

$$H(z) = T(z)S'(z)S^*(z)T^{-1}(z)$$

is also a polynomial, then $\tilde{T} = TS$ satisfies

$$W(x) = \tilde{T}(x)\tilde{T}^*(x), \quad x \in \mathbb{R}, \quad \tilde{T}'(z) = \tilde{G}(z)\tilde{T}(z), \quad z \in \mathbb{C},$$

with $\tilde{G}(z) = G(z) + H(z)$ and the matrix X^n satisfies

$$\frac{d}{dz}X^n(z) = (F_n(z; G) + F_n(z; H))X^n(z) - X^n(z)\begin{pmatrix} \chi(z) & 0 \\ 0 & -\chi^*(z) \end{pmatrix}$$

with $\chi(z) = S'(z)S^*(z)$.

Consequences: We have a class of ladder operators.
Example: Hermite type MOP

Let us consider $T(x) = e^{-x^2/2}e^{Ax}$ and

$W(x) = e^{-x^2}e^{Ax}e^{A^*x}$, \(A \in \mathbb{C}^{N\times N}, \ x \in \mathbb{R} \).

Lax pair

$$
X^{n+1}(z) = \begin{pmatrix} zI_N - \alpha_n & 1/(2\pi^2)\gamma_n^{-1} \\ -2\pi i\gamma_n & 0 \end{pmatrix} X^n(z)
$$

$$
\frac{d}{dz} X^n(z) = \begin{pmatrix} -zI_N + A & -1/(\pi^2)\gamma_n^{-1} \\ 4\pi i\gamma_n^{-1} & zI_N - A^* \end{pmatrix} X^n(z)
$$

Compatibility conditions

$$
\alpha_n = (A + \gamma_n^{-1}A^*\gamma_n)/2, \quad 2(\beta_{n+1} - \beta_n) = A\alpha_n - \alpha_n A + I_N
$$
Example: Hermite type MOP

Let us consider $T(x) = e^{-x^2/2}e^{Ax}$ and

$$W(x) = e^{-x^2}e^{Ax}e^{A^*x}, \quad A \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}.$$

Lax pair

$$X^{n+1}(z) = \begin{pmatrix} zI_N - \alpha_n & \frac{1}{2\pi i} \gamma_n^{-1} \\ -2\pi i \gamma_n & 0 \end{pmatrix} X^n(z)$$

$$\frac{d}{dz} X^n(z) = \begin{pmatrix} -zI_N + A & -\frac{1}{\pi i} \gamma_n^{-1} \\ 4\pi i \gamma_{n-1} & zI_N - A^* \end{pmatrix} X^n(z)$$

Compatibility conditions

$$\alpha_n = (A + \gamma_n^{-1}A^*\gamma_n)/2, \quad 2(\beta_{n+1} - \beta_n) = A\alpha_n - \alpha_n A + I_N$$
What is a RH problem?
The RH problem for OP
The RH problem for MOP

Example: Hermite type MOP

Let us consider \(T(x) = e^{-x^2/2}e^{Ax} \) and

\[
W(x) = e^{-x^2}e^{Ax}e^{A^*x}, \quad A \in \mathbb{C}^{N\times N}, \quad x \in \mathbb{R}.
\]

Lax pair

\[
X^{n+1}(z) = \begin{pmatrix}
zI_N - \alpha_n & \frac{1}{2\pi i} \gamma_n^{-1} \\
-2\pi i \gamma_n & 0
\end{pmatrix} X^n(z)
\]

\[
\frac{d}{dz} X^n(z) = \begin{pmatrix}
-zI_N + A & -\frac{1}{\pi i} \gamma_n^{-1} \\
4\pi i \gamma_{n-1} & zI_N - A^*
\end{pmatrix} X^n(z)
\]

Compatibility conditions

\[
\alpha_n = (A + \gamma_n^{-1} A^* \gamma_n)/2, \quad 2(\beta_{n+1} - \beta_n) = A\alpha_n - \alpha_n A + I_N
\]
What is a RH problem?

The RH problem for OP

The RH problem for MOP

Ladder operators

\[\hat{P}_n'(x) + \hat{P}_n(x)A - A\hat{P}_n(x) = 2\beta_n\hat{P}_{n-1}(x), \]
\[-\hat{P}_n'(x) + 2x\hat{P}_n(x) + A\hat{P}_n(x) - \hat{P}_n(x)A - 2\alpha_n\hat{P}_n(x) = 2\hat{P}_{n+1}(x). \]

Combining them we get a second order differential equation

Second order differential equation

\[\hat{P}''(x) + 2\hat{P}_n(x)(A - xI_N) + \hat{P}_n(x)(A^2 - 2xA) \]
\[= (-2xA + A^2 - 4\beta_n)\hat{P}_n(x) + 2(A - \alpha_n)(\hat{P}_n'(x) + \hat{P}_n(x)A - A\hat{P}_n(x)). \]
Ladder operators

\[\hat{P}_n'(x) + \hat{P}_n(x)A - A\hat{P}_n(x) = 2\beta_n\hat{P}_{n-1}(x), \]
\[-\hat{P}_n'(x) + 2x\hat{P}_n(x) + A\hat{P}_n(x) - \hat{P}_n(x)A - 2\alpha_n\hat{P}_n(x) = 2\hat{P}_{n+1}(x). \]

Combining them we get a second order differential equation

Second order differential equation

\[\hat{P}''_n(x) + 2\hat{P}_n'(x)(A - xI_N) + \hat{P}_n(x)(A^2 - 2xA) \]
\[= (-2xA + A^2 - 4\beta_n)\hat{P}_n(x) + 2(A - \alpha_n)(\hat{P}_n'(x) + \hat{P}_n(x)A - A\hat{P}_n(x)). \]
In order to use the freedom in the matrix case by a unitary matrix function S we have to impose additional constraints on the weight W.

The matrix H can be written as

$$H(x) = e^{Ax} \chi e^{-Ax} = \chi + \text{ad}_A(\chi)x + \text{ad}_A^2(\chi)\frac{x^2}{2} + \cdots,$$

where $\chi(x) = S'(x)S^*(x)$ is skew-Hermitian on \mathbb{R}.

This matrix equation was considered already by Durán-Grünbaum (2004), when χ is a constant matrix.

- If $\deg H = 0$ then $\chi = i\alpha I_N$, $\alpha \in \mathbb{R}$ ⇒ No new ladder operators.
- If $\deg H = 1$ then
 - $A = L = \sum_{i=1}^{N-1} \nu_i E_i$ and $x = \nu_1 I_N + \cdots + \nu_{N-1} E_{N-1}$
 - $\Rightarrow \text{ad}_A(\chi) = -A$ and $S(x) = e^{\alpha I}$
 - $A = L (I_N + L)^{-1}$ and $x = \nu_1 I_N$
 - $\Rightarrow \text{ad}_A(\chi) = -A + A^2$ and $S(x) = e^{\alpha I}$
In order to use the freedom in the matrix case by a unitary matrix function S we have to impose additional constraints on the weight W. The matrix H can be written as

$$H(x) = e^{Ax} \chi e^{-Ax} = \chi + \text{ad}_A(\chi)x + \text{ad}^2_A(\chi)\frac{x^2}{2} + \cdots,$$

where $\chi(x) = S'(x)S^*(x)$ is skew-Hermitian on \mathbb{R}.

This matrix equation was considered already by Durán-Grünbaum (2004), when χ is a constant matrix.

- If deg $H = 0$ then $\chi = i a I_N$, $a \in \mathbb{R}$ ⇒ No new ladder operators.
- If deg $H = 1$ then
 - $A = L = \sum_{n=1}^N \nu_n E_n$ and $\chi = \frac{1}{2} \sum_{i=1}^N (N-i)E_i$
 $\implies \text{ad}_A(\chi) = -A$ and $S(x) = e^{iA}x$
 - $A = L(I_N + iL)^{-1}$ and $\chi = J$
 $\implies \text{ad}_A(\chi) = -A + A^2$ and $S(x) = e^{iJ}x$
In order to use the freedom in the matrix case by a unitary matrix function S we have to impose additional constraints on the weight W. The matrix H can be written as

$$H(x) = e^{Ax} \chi e^{-Ax} = \chi + \text{ad}_A(\chi)x + \text{ad}_A^2(\chi)\frac{x^2}{2} + \cdots,$$

where $\chi(x) = S'(x)S^*(x)$ is skew-Hermitian on \mathbb{R}. This matrix equation was considered already by Durán-Grünbaum (2004), when χ is a constant matrix.

- If $\deg H = 0$ then $\chi = iaI_N, a \in \mathbb{R}$ \Rightarrow No new ladder operators.
- If $\deg H = 1$ then

 - $A = L = \sum_{i=1}^{N} \nu_i E_{i,i+1}$, and $\chi = iJ = i \sum_{i=1}^{N} (N-i)E_{i,i}$
 - $\Rightarrow \text{ad}_A(\chi) = -A$ and $S(x) = e^{iJx}$

 - $A = L(I_N + L)^{-1}$, and $\chi = iJ$
 - $\Rightarrow \text{ad}_A(\chi) = -A + A^2$ and $S(x) = e^{iJx}$
In order to use the freedom in the matrix case by a unitary matrix function \(S \) we have to impose additional constraints on the weight \(W \).

The matrix \(H \) can be written as

\[
H(x) = e^{A x} \chi e^{-A x} = \chi + \text{ad}_A(\chi)x + \text{ad}_A^2(\chi)\frac{x^2}{2} + \cdots ,
\]

where \(\chi(x) = S'(x)S^*(x) \) is skew-Hermitian on \(\mathbb{R} \).

This matrix equation was considered already by Durán-Grünbaum (2004), when \(\chi \) is a constant matrix.

- If \(\deg H = 0 \) then \(\chi = i a I_N, a \in \mathbb{R} \Rightarrow \) No new ladder operators.
- If \(\deg H = 1 \) then
 - \(A = L = \sum_{i=1}^{N} \nu_i E_{i,i+1}, \) and \(\chi = iJ = i \sum_{i=1}^{N} (N-i) E_{i,i} \)
 \(\Rightarrow \text{ad}_A(\chi) = -A \) and \(S(x) = e^{iJx} \)
 - \(A = L(I_N + L)^{-1}, \) and \(\chi = iJ \)
 \(\Rightarrow \text{ad}_A(\chi) = -A + A^2 \) and \(S(x) = e^{iJx} \)
In order to use the freedom in the matrix case by a unitary matrix function S we have to impose additional constraints on the weight W. The matrix H can be written as

$$H(x) = e^{Ax} \chi e^{-Ax} = \chi + \text{ad}_A(\chi) x + \text{ad}_A^2(\chi) \frac{x^2}{2} + \cdots,$$

where $\chi(x) = S'(x)S^*(x)$ is skew-Hermitian on \mathbb{R}.

This matrix equation was considered already by Durán-Grünbaum (2004), when χ is a constant matrix.

- If $\deg H = 0$ then $\chi = i a I_N, a \in \mathbb{R} \Rightarrow$ No new ladder operators.
- If $\deg H = 1$ then

1. $A = L = \sum_{i=1}^{N} \nu_i E_{i,i+1}$, and $\chi = i J = i \sum_{i=1}^{N} (N - i) E_{i,i}$
 \[\Rightarrow \text{ad}_A(\chi) = -A \text{ and } S(x) = e^{iJx} \]

2. $A = L(I_N + L)^{-1}$, and $\chi = i J$
 \[\Rightarrow \text{ad}_A(\chi) = -A + A^2 \text{ and } S(x) = e^{iJx} \]
In order to use the freedom in the matrix case by a unitary matrix function \(S \) we have to impose additional constraints on the weight \(W \). The matrix \(H \) can be written as

\[
H(x) = e^{Ax} \chi e^{-Ax} = \chi + \text{ad}_A(\chi)x + \text{ad}_A^2(\chi)\frac{x^2}{2} + \cdots ,
\]

where \(\chi(x) = S'(x)S^*(x) \) is skew-Hermitian on \(\mathbb{R} \). This matrix equation was considered already by Durán-Grünbaum (2004), when \(\chi \) is a constant matrix.

- If \(\text{deg } H = 0 \) then \(\chi = iaI_N, a \in \mathbb{R} \Rightarrow \) No new ladder operators.
- If \(\text{deg } H = 1 \) then

1. \(A = L = \sum_{i=1}^{N} \nu_i E_{i,i+1}, \text{ and } \chi = iJ = i \sum_{i=1}^{N} (N - i) E_{i,i} \)

 \(\Rightarrow \text{ad}_A(\chi) = -A \) and \(S(x) = e^{iJx} \)

2. \(A = L(I_N + L)^{-1}, \text{ and } \chi = iJ \)

 \(\Rightarrow \text{ad}_A(\chi) = -A + A^2 \) and \(S(x) = e^{iJx} \)
In order to use the freedom in the matrix case by a unitary matrix function S we have to impose additional constraints on the weight W.

The matrix H can be written as

$$H(x) = e^{Ax} \chi e^{-Ax} = \chi + \text{ad}_A(\chi)x + \text{ad}_A^2(\chi)\frac{x^2}{2} + \cdots,$$

where $\chi(x) = S'(x)S^*(x)$ is skew-Hermitian on \mathbb{R}.

This matrix equation was considered already by Durán-Grünbaum (2004), when χ is a constant matrix.

- If $\deg H = 0$ then $\chi = iaI_N$, $a \in \mathbb{R} \Rightarrow$ No new ladder operators.
- If $\deg H = 1$ then

 1. $A = L = \sum_{i=1}^{N} \nu_i E_{i,i+1}$, and $\chi = iJ = i \sum_{i=1}^{N} (N - i)E_{i,i}$

 \[\Rightarrow \text{ad}_A(\chi) = -A \text{ and } S(x) = e^{iJx} \]

 2. $A = L(I_N + L)^{-1}$, and $\chi = iJ$

 \[\Rightarrow \text{ad}_A(\chi) = -A + A^2 \text{ and } S(x) = e^{iJx} \]
First case $A = L$

New compatibility conditions

\[J\alpha_n - \alpha_n J + \alpha_n = L + \frac{1}{2}(L^2\alpha_n - \alpha_nL^2), \quad J - \gamma_n^{-1}J\gamma_n = L\alpha_n + \alpha_nL - 2\alpha_n^2 \]

New ladder operators (0-th order)

\[\hat{P}_n(x)J - J\hat{P}_n(x) - x(\hat{P}_n(x)L - L\hat{P}_n(x)) + 2\beta_n\hat{P}_n(x) - n\hat{P}_n(x) = 2(L - \alpha_n)\beta_n\hat{P}_{n-1}(x) \]
\[\hat{P}_n(x)(J - xL) - \gamma_n^{-1}(J - xL^*)\gamma_n\hat{P}_n(x) + 2\beta_{n+1}\hat{P}_n(x) - (n+1)\hat{P}_n(x) = 2(\alpha_n - L)\hat{P}_{n+1}(x) \]

First-order differential equation

\[(L - \alpha_n)\hat{P}_n'(x) + (L - \alpha_n + xI_N)(\hat{P}_n(x)L - L\hat{P}_n(x)) - 2\beta_n\hat{P}_n(x) = \hat{P}_n(x)J - J\hat{P}_n(x) - n\hat{P}_n(x) \]
What is a RH problem?
The RH problem for OP
The RH problem for MOP

First case \(A = L \)

New compatibility conditions

\[
J \alpha_n - \alpha_n J + \alpha_n = L + \frac{1}{2} (L^2 \alpha_n - \alpha_n L^2), \quad J - \gamma_n^{-1} J \gamma_n = L \alpha_n + \alpha_n L - 2 \alpha_n^2
\]

New ladder operators (0-th order)

\[
\hat{P}_n(x)J - J\hat{P}_n(x) - x(\hat{P}_n(x)L - L\hat{P}_n(x)) + 2\beta_n \hat{P}_n(x) - n\hat{P}_n(x) = 2(L - \alpha_n)\beta_n \hat{P}_{n-1}(x)
\]

\[
\hat{P}_n(x)(J - x L) - \gamma_n^{-1}(J - x L^*) \gamma_n \hat{P}_n(x) + 2\beta_{n+1} \hat{P}_n(x) - (n + 1)\hat{P}_n(x) = 2(\alpha_n - L)\hat{P}_{n+1}(x)
\]

First-order differential equation

\[
(L - \alpha_n)\hat{P}_n'(x) + (L - \alpha_n + x I_N)(\hat{P}_n(x)L - L\hat{P}_n(x)) - 2\beta_n \hat{P}_n(x) = \hat{P}_n(x)J - J\hat{P}_n(x) - n\hat{P}_n(x)
\]
First case $A = L$

New compatibility conditions

\[J\alpha_n - \alpha_n J + \alpha_n = L + \frac{1}{2}(L^2 \alpha_n - \alpha_n L^2), \quad J - \gamma_n^{-1} J \gamma_n = L\alpha_n + \alpha_n L - 2\alpha_n^2 \]

New ladder operators (0-th order)

\[\hat{P}_n(x)J - J\hat{P}_n(x) - x(\hat{P}_n(x)L - L\hat{P}_n(x)) + 2\beta_n \hat{P}_n(x) - n\hat{P}_n(x) = 2(L - \alpha_n)\beta_n \hat{P}_{n-1}(x) \]

\[\hat{P}_n(x)(J - xL) - \gamma_n^{-1}(J - xL^*) \gamma_n \hat{P}_n(x) + 2\beta_{n+1} \hat{P}_n(x) - (n + 1)\hat{P}_n(x) = 2(\alpha_n - L)\hat{P}_{n+1}(x) \]

First-order differential equation

\[(L - \alpha_n)\hat{P}_n'(x) + (L - \alpha_n + x I_N)(\hat{P}_n(x)L - L\hat{P}_n(x)) - 2\beta_n \hat{P}_n(x) = \hat{P}_n(x)J - J\hat{P}_n(x) - n\hat{P}_n(x) \]
What is a RH problem?
The RH problem for OP
The RH problem for MOP

Sturm-Liouville type differential equation

Finally, something remarkable happens. Combining the second and the first order differential equation will give surprisingly

\[\hat{P}_n''(x) + 2\hat{P}_n'(x)(L - xI_N) + \hat{P}_n(x)(L^2 - 2J) = (-2nI_N + L^2 - 2J)\hat{P}_n(x) \]

This is a second-order differential equation of Sturm-Liouville type satisfied by the MOP, already given by Durán-Grünbaum (2004)

Conclusions

1. The ladder operators method gives more insight about the differential properties of MOP and new phenomena
2. This method works for every weight matrix \(W \). The corresponding MOP satisfy differential equations, but not necessarily of Sturm-Liouville type
What is a RH problem?
The RH problem for OP
The RH problem for MOP

Sturm-Liouville type differential equation

Finally, something remarkable happens. Combining the second and the first order differential equation will give surprisingly

\[
\hat{P}_n''(x) + 2\hat{P}_n'(x)(L - xI_N) + \hat{P}_n(x)(L^2 - 2J) = (-2nI_N + L^2 - 2J)\hat{P}_n(x)
\]

This is a second-order differential equation of Sturm-Liouville type satisfied by the MOP, already given by Durán-Grünbaum (2004)

Conclusions

1. The ladder operators method gives more insight about the differential properties of MOP and new phenomena
2. This method works for every weight matrix \(W \). The corresponding MOP satisfy differential equations, but not necessarily of Sturm-Liouville type
Sturm-Liouville type differential equation

Finally, something remarkable happens. Combining the second and the first order differential equation will give surprisingly

$$\hat{P}_n''(x) + 2\hat{P}_n'(x)(L - xI_N) + \hat{P}_n(x)(L^2 - 2J) = (-2nI_N + L^2 - 2J)\hat{P}_n(x)$$

This is a second-order differential equation of Sturm-Liouville type satisfied by the MOP, already given by Durán-Grünbaum (2004)

Conclusions

1. The ladder operators method gives more insight about the differential properties of MOP and new phenomena
2. This method works for every weight matrix W. The corresponding MOP satisfy differential equations, but not necessarily of Sturm-Liouville type