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where f;,0l =1,...,k, are polynomials of degree at most [ independent of n.
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Uber Sturm-Liouvillesche Polynomsysteme.

Von

S. Bochner in Miinchen.

Wir betrachten irgendeine Differentialgleichung der Foim

(1) Po(2)y" +p(2)y +po(2)y + 1y =0.

Die Koeffizienten p,(2), p, (2), p, (z) sind irgendwelche reell- oder komplex-
wertige Funktionen der Variablen z; von denen wir in erster Linie nur
anzunehmen brauchen, daB sie in einem gemeinsamen Intervall J der
- z-Achse definiert sind; und 1 bedeutet einen Parameter, der aller komplexen
Werte falig ist.
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SOME HISTORY

Families of orthogonal polynomials (OPs) (p, ), satisfying

dl
D(p, = A\nPn(x), h D = S
(pn(z)) = Anpn(z), wWhere ; file) —
where f;,0l =1,...,k, are polynomials of degree at most [ independent of n.

o i = 2: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).
S. Bochner (1929): complete classification (see also E. Routh (1884))

e kL =4: H. L. Krall (1939). k£ must be even and there are 3 NEW examples:
X[—1,1] + M(0—1 + 1), e + Mdg and (1 — x)*x[0,1] + Mo

o £ > 6: A. M. Krall, L. Littlejohn, Koekoek’s, Zhedanov, Kwon, Lee, Griinbaum-
Haine (Darboux transformation), Iliev, etc.

Typically all examples are orthogonal with respect to a measure of the form
m—1
w(z) + Z aj,(iﬂ(%), a; € R
§=0

where w is a classical weight and x( is an endpoint of the sup(w).
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DISCRETE CASE

Families of discrete OPs (p,, ), satisfying difference equations
D(pn(2)) = Anpn(z), where D =) fi(z)S
[=s

where f;,l =1,...,k, are polynomials independent of n and §;(p) = p(z +1).
Here r,s € Z,r > s, and the order is defined by r — s > 0.

e r = —s = 1: Chebychev (1858).
Charlier, Meixner, Krawtchouk and Hahn (20th century).

O. E. Lancaster (1941): complete classification.

ORTHOGONAL POLYNOMIALS DEFINED BY DIFFERENCE
EQUATIONS.*}

By Or1s E. LANCASTER.

1. Introduction: Many analogous properties of differential and differ-
ence equations have been studied. Here these analogies are extended to include
some ideas relative to orthogonal solutions of difference equations.

Although some general theorems are given, the main study is confined to
polynomial solutions of difference equations of the form

(1) (@@ + bz 4 0)A%(2) + (do+ )ay(@) +Ay(a+ 1) =0

where & > 0 is the interval of difference, a, b, ¢, d, and f are constants and A
is a parameter which is determined so as to insure polynomial solutions.!
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Families of discrete OPs (p,, ), satisfying difference equations
D(pn(2)) = Anpn(z), where D =) fi(z)S
[=s

where f;,l =1,...,k, are polynomials independent of n and §;(p) = p(x +1).
Here r,s € Z,r > s, and the order is defined by r — s > 0.

e r = —s = 1: Chebychev (1858).
Charlier, Meixner, Krawtchouk and Hahn (20th century).
O. E. Lancaster (1941): complete classification.

e r = —s > 2: The trick of adding deltas at the endpoints of the support does not
work here (Bavinck-van Haeringen-Koekoek, 1994). However it works if one con-
siders g-difference equations (Grinbaum-Haine, 1996 and Vinet-Zhedanov, 2001).

It was not until very recently (Duran, 2012) where the first examples appeared (he also
proved that s = —r. Then the order must be even).
Typically now the measures are of the form

(@)= ]] (@ = Hw(@)

feFr

where w is a classical discrete weight and F' is a finite set of real numbers.
This is also called a Christoffel transform of w (related to the Geronimus transform).
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o '={1}: w'(z) = (x — Dwa(x) = =6y + Z x(a:‘aj 2)!533, a>0

Then, the corresponding OPs are eigenfunctions of a fourth-order difference operator

D=x(x—3)S_5 —2x(x —2)§_1 +x(x +2a — 1)y — 2xaS; + a*S,, a#1,2,...

o ['=1{1,2}: w"(2) = (2 — 1)(z — 2wa(z) = 260 + Z a:(a;aj 3)!533, a>0

Then, the corresponding OPs are eigenfunctions of a sixth-order difference operator

_ 4 _
D =2z (x ; )5_3 — 6x (:13 > 3)5_2 +3x(x—3)(x+a—2)5_4

—x(x — 2)(z + 6a — 1)So + 3az(z + a — 1)§; — 3a%xS5 + a’$5

The same can be done with Meixner, Krawtchouk and Hahn families.

Positivity: If F' = | J F; where F; contains consecutive nonnegative integers, then w? is

positive if and only if the cardinal of each F; is even for all 1.
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In all the examples gave by Duran in 2012, the sets F' contains consecutive positive integers.
A number of conjectures were proposed stating that this can always be done for any set F’
(not necessarily consecutive), which have been proved by Duran-MdI in 2014 and 2015.

e Let w, be the Charlier weight

x=0 "

and for a finite set F' of positive integers consider

wf = L@~ Hwe

feEF

Then the OPs (g,), with respect to w!” are eigenfunctions of a higher-order difference
operator of the form D =5, fi(2)$; with —s = r = rp, where

rF=Zf—<#;F))+1

feEF
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e Let w, . be the Meixner weight

o0

(Ua,c(iU) — F(C)(l . CL)C Z (C)xa

z!
x=0

I

0z, O0<a<l, ¢>0

and for two finite sets Fy, F5 of positive integers consider

we™ = [ @+c+ 1) ] (== flwa,e

fer; fEFs

Then the OPs (g, ), with respect to wl*¥2 are eigenfunctions of a higher-order differ-
ence operator with —s =r =rp, + rp, — 1, where rr is as before.

o Let w, ny be the Krawtchouk weight

N-1
1 N —1
a — xéwa 0
Wa,N (T) (1‘|‘G)N_1$Z:O( N )a a >
and for two finite sets F}, F5 of positive integers consider

ik =Tl @-f) [ V-1~ f - 2)wa,n

feF feFy

Then the OPs (g, ), with respect to wl*¥2 are eigenfunctions of a higher-order differ-
ence operator with —s =r =rp, +rp, — 1, where rr is as before.
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e Let wyp v be the Hahn weight

N
b+ N —
wap,n(z) = T(a+1)I(b+ 1N (a;x) ( ?\r s ”3)590, a,b>—1, ab<—N

=0

and for four finite sets F = (F1, Fa, F3, Fy) of positive integers consider

wivn =[] 0+N+1+f—2) [ (a+1+f+2) [T(N=f—2) [] (== flwasn

fEF: fEF> fEF3 fEFy

Then the OPs (qy), with respect to ng p. v are eigentunctions of a higher-order differ-
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e Let wyp v be the Hahn weight

N
b+ N —
wap,n(z) = T(a+1)I(b+ 1N (aix) ( ?v s x)am, a,b>—1, ab<—N

=0

and for four finite sets F = (F1, Fa, F3, Fy) of positive integers consider

wivn =[] 0+N+1+f—2) [ (a+1+f+2) [T(N=f—2) [] (== flwasn

feF, fEF, fEF; fEF,

Then the OPs (qy), with respect to ng p. v are eigentunctions of a higher-order differ-
ence operator with —s=r =rp, + rp, + rp, +rr, — 3, where rr is as before.

In order to study discrete Krall OPs (g, ), we will follow the following guideline:

1. Computation of the higher-order difference operator

This result will be valid for any family of polynomials (p,, )., (not necessarily orthogo-
nal) eigenfunctions of certain operator, i.e. D(p,) = 0,p,. It is based on the abstract
concept of D-operator and there will be Y7,...,Y,, arbitrary polynomials.

2. Orthogonality

Only for a convenient choice of the polynomials Yi,...,Y,,, the polynomials (q,)n
are also orthogonal with respect to a measure. The right choice for the polynomials
Yi,...,Y,, will be classical discrete polynomials of the same type but with different
parameters (Charlier, Meixner and Krawtchouk) or dual Hahn polynomials (Hahn).
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Let A be an algebra of difference operators acting in the linear space of polynomials P

A= {Zfl(a:)ﬁl:fl(a:) EP,Z—S,...,T,SST}
l=s

Assume we have a family of polynomials (p,, ), such that there exists D, € A with D, (p,) =
npn, i.e. with linear eigenvalue.

Given a sequence of numbers (&, ), let us consider the operator

n
D(pn) p Z(—l)j+1€n . oo Sn—jpn—j — gnpn_l — gng’n—lpn—Q ‘I’ ..
j=1

We say that D is a D-operator associated with A and (p,), if D € A.

e Charlier: ¢, =1=D = V.

1 1
1 — ¢ = D = ¢ A, 82:

n —

e Meixner: ¢
1l —a 1l —a

1 1
= D = V, 82:— - = Dy = — d A.
l1—a l1—a

e Krawtchouk: & =

where Af(x) = f(r+1) — f(x) and Vf(x) = f(z) — f(x — 1).



THEOREM (DURAN-MDI, 2014)



THEOREI\/I (DURAN-MDI, 2014)

Let §h HJ L gh =1,..., m and Yi,..., Y,, arbitrary polynomials such that

zO:I:z

Qn) = det (&,_jm—;Yi(n =), ,_, #0, n>0



THEOREM (DURAN-MDI, 2014)

Let 5273- = Hg;& el . h=1,...,mand Yy,...,Y,, arbitrary polynomials such that

Qn) = det (&,_jm—;Yi(n =), ,_, #0, n>0
Consider the sequence of polynomials (¢, ), defined by
pn(T) —Pn—1(x) o (=) pp—m(z)
n,m n—1,m—1

1 Yl(’l’l,) 1 Yl(n— 1) Yl(n—m)
Qn(x) = )

;r:,mym (n) ;Ln—l,m—lym(n _ 1) Co Ym(n — m)

REMARK: g,(x) is a linear combination of m + 1 consecutive p,, polynomials.
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Let 52,3' = Hj_l eh . h=1,...,mandYi,...,Y,, arbitrary polynomials such that
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Q(n) = det(njm]Y(n—j))Z.zl#O, n >0

Consider the sequence of polynomials (qnw‘by
pn(x) 'fpn—l(w) o ( 1) Pn— Tn( )

nmY1(n) |&; Yiln—-1) -+ Yi(n—m)

n—1,m—1

n(T) =

nm¥m(n) nim—_1Ym(n —1) - Ym(n —m)

n,m

REMARK: ¢,(z) is a linear combination of m + 1 consecutive p,, polynomials.
Define My, ..., M,,, the following polynomials in x

m
_ Z(_ h+]€xm Jdet( T4 —1rm— rY(QH'j o r))lellh;?“éﬂj
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Let 52,3' = Hj_l eh . h=1,...,mandYi,...,Y,, arbitrary polynomials such that

1=0 r—)

Q( ) det( n—7j,m— ]Y(n_j))zljzl#oa n 20

Consider the sequence of polynomials (qnw‘by
pn(x) _pn—l(w) o ( 1) Pn— m( )

7]i,mY1 () 'rlb—l,m—lyl (n—1) - Yi(n —m)
’:Lr);mym (n) ;Ln—l,m—lym(n _ 1) Co Ym(n — m)

REMARK: ¢,(z) is a linear combination of m + 1 consecutive p,, polynomials.
Define My, ..., M,,, the following polynomials in x

m
_ Z(_ hﬂgxm Jdet( T4 —1rm— TY(x+j o r))lellh;?“éﬂj
j:l

where I;, = {1,2,...,m}\ {h}. M} are linear combinations of adjoint determinants of Q(x).
If we assume that (z) and M}y (z) are polynomials in z, then there exists D, € A with
D,(qn) = P(n)q, and P(x) — P(x — 1) = Q(x), where

Dg = P(Dp) + Z Mp(Dp)DrYr(Dp)
h=1
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D-OPERATORS OF TYPE I

Assume we have a family of polynomials (p, ), such that there exists D, € A with D,(p,) =
0.,.pn. Given two sequences of numbers (&), and (o,), consider the following operator

1 - .
D(pn) = —50n+1Pn + D (Y on_jiien - En—ji1Pa—j, 20
j=1

We say that D is a D-operator of type II if D € A.

There are four difterent D-operators for the Hahn polynomials. Defining

— n = —(2 b—1),
°n n+a+b+N+1 7 (2n+a+ )
0 (n+b)(n—N+1)
g, = : on=—-2n+a+b—-1),
(m+a)n+a+b+ N +1) ( )
e =1, on=—2n+a+b—1),
b
Eiz—z_—::a, on=—2n+a+b—-1).
then we have
b+ 1 b+ 1
D1=“+2+ I+2V, DQ:“+2+ I+ (z— N)A,
b+ 1 b+ 1
D3:a+ T I+ (x+a+1)A, D4:a+ T I+(x—b—N-1)V

2
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Let ﬁh HJ * gh =1,...,m and Y7,...,Y,, arbitrary polynomials such that

sz'w

Qn) = det (&,_jm—;Yi(bn—j)),._, #0, n>0
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Let g;; HJ g k =1,...,m and Y7,...,Y,, arbitrary polynomials such that

1= :BZ’

Q(n) = det (&, JYl(en_‘,,-))Z.:1 40, n>0

Consider the sequence of polynomials (qy), defined by

Pn(T) —Pn—1() o (1) pp_m(T)
711,mY1 (en) 1 —1,m— 1Y1 (en—l) T Yi (en—m)
qn(2) = : : '
meYm(Hn) ;rv,n—l,m—lYm(gn—l) nr Y (en—m)

REMARK: ¢,(x) is a linear combination of m + 1 consecutive p,, polynomials.
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Let 55; HJ g k =1,...,m and Y7,...,Y,, arbitrary polynomials such that

1= xz?

Q(n) = det(n]m]

Consider the sequence of polynomials (qn)}%iby
pn(x) —DPn 1(3j c e (_1)mpn—m(x)

i,mYl(en) 1 —1,m— 1Y1(0n—1) Yl(en—m)

Yi(0n-5)), -y #0,| n>0

Gn(T) =

mmym(gn) 7?—1,m—1Ym(9n—1) T Y (en—m)

REMARK: ¢,(x) is a linear combination of m + 1 consecutive p,, polynomials.
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Let gg H;Z g e . h=1,...,mand Yy,...,Y,, arbitrary polynomials such that

Q(n) = det(n]m i Y1(0n— ))leéO n >0

Consider the sequence of polynomials (qn)}%iby
pn(x) _pn—l(aj c e (_1)mpn—m(x)

i,mYl (en) i—l,m—lYl (en—l) T Y (Hn—m)

Gn(T) =

,'meYm(Hn) 7?—1,m—1Ym(9n—1) T Y (en—m)

REMARK: ¢,(x) is a linear combination of m + 1 consecutive p,, polynomials.

For a rational function S(x), we define the function A\, by

Ao — A1 = S(2)Q(z)
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Assume the following

1. S(x)Q2(x) is a polynomial in x

~

2. There exist Mj, ..., M,,, polynomials in z such that Mp,(z) = o441 Mp(65), where My (z)
are defined by

:Z(_ h-i-ngm ]S( +])det( x+j—r,m— TY(0w+j_r))l€I[h;T€Hj

j=1

and I, = {1,2,...,m} \ {h}.

3. There exists a polynomial Ps such that Pg(0,) = 2\, + Z Yn (6



THEOREM (DURAN-MDI, 2015)

Assume the following
1. S(x)Q2(x) is a polynomial in x

~

2. There exist Mj, ..., M,,, polynomials in z such that Mp,(z) = o441 Mp(65), where My (z)
are defined by

:Z(_ h+]‘£xm ]S( +])det( x+j—r,m— TY(HCC‘H_T))lEI[h;TEHj

j=1

and I, = {1,2,...,m} \ {h}.

3. There exists a polynomial Ps such that Pg(0,) = 2\, + Z Yn (6

Then there exists an operator D, s € A such that D, s(qg,) = Angn,n > 0, where the
operator D, s is defined by

Dg.s —PS Z D,)DpY3(D,)
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ORTHOGONALITY

The polynomials (q,), constructed in this way are eigenfunctions of a higher-order differ-
ential /difference operator, but they are not orthogonal in general.

However, if (p,), is one of the classical families it turns out that they have the bispectral
property, meaning that they satistfy a higher-order recurrence relation of the form

This has been proved so far for the Charlier case (Duran, 2019), the Laguerre and Jacobi
cases (Duran-MdI, 2020,2022) and the Meixner case (Durdn-Rueda, 2021).

Only for a special choice of the polynomials Y7,...,Y,, we will have that (¢q,), are also
orthogonal with respect to a measure (or equivalently, they satisfy a TTRR).

Classical discrete family | D-operators Yi(x)

Charlier: ¢ (x) \% c;“(—z —1)

Meixner: m%°(x) A ;/a’2_c(— —1)

LV m?’2_c(—a; —1)

Krawtchouk: k%% (z) =V k;-”’_N(—:B —1)

SOA k0N (—z — 1)

Hahn: h%0N () atbtly 4 2V R4 V(g + a+b)
atbtly 4 (z — N)A R‘“’ PN (¢ 40+ b)
bl + (z 4+ a+ 1)A R_b’ ©2= Nz +a+0b)
atbtly 4 (x—b— N - 1)V R]_“’ 22N (x4 a+0b)
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Given a set G of m positive integers, G = {g1,..., gm} we then define the sequence of
polynomials (¢%),, by

Pn() —Pn—1(7) o (=1)™pp—m(z)
qG (CIZ) _ 57%5,ng1 <9n) 57}@—1,m—1Y91 (en—l) T Ygl (Hn—m>

gTT::Ingm (en) gr??—l,m—ly m (Hn—l) T ng (Hn—m)
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Given a set G of m positive integers, G = {g1,...,9m} we then define the sequence of
polynomials (¢%),, by

. pn() —Pn—1(T) o (1) pp—m(T)
G §n,mY91 <9n) 7}@—1,m—1Y91 (en—l) T Ygl (Hn—m>
Q’n (Qj) — : : . :
?’T::Ingm (en) rT—l,m—lYm(Hn—l) ng (Hn—m)

The set G will be identified with one of the sets F' associated with the corresponding
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Ju(F)={0,1,2,.... fsk+h—1}\{f -1, f€F}, h>1
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Given a set G of m positive integers, G = {g1,...,9m} we then define the sequence of
polynomials (¢%),, by

. pn() —Pn—1(T) o (1) pp—m(T)
G §n,mY91 <9n) 7}@—1,m—1Y91 (en—l) T Ygl (Hn—m>
Q’n (Qj) — : : . :
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RELATION WITH THE MEASURE

Given a set G of m positive integers, G = {g1,...,9m} we then define the sequence of
polynomials (¢%),, by

. pn() —Pn—1(T) o (1) pp—m(T)
G §n,mY91 <9n) 7}@—1,m—1Y91 (Hn—l) T Ygl (Hn—m>
Q’n (x) — : : . :
ﬂmegm (en) rT—l,m—lYm(Hn—l) ng (Hn—m)

The set G will be identified with one of the sets F' associated with the corresponding
Christoffel transformation of the discrete classical measure, in one of the following forms:

I(F):{17277fk}\{fk_,f7.f€F}7
Ju(F)={0,1,2,.... fsk+h—1}\{f -1, f€F}, h>1

where fr = max F' and k = #(F).
e Charlier: G = I(F)

e Meixner: Gl — Jh(Fl), G2 = I(F2)

wf}c’FQ — H (x+c+ f) H (x — flwa,c

feF fEFy



RELATION WITH THE MEASURE

Given a set G of m positive integers, G = {g1,...,9m} we then define the sequence of
polynomials (¢%),, by

. pn() —Pn—1(T) o (1) pp—m(T)
G §n,mY91 <9n) 7}@—1,m—1Y91 (en—l) T Ygl (Hn—m>
Q’n (Qj) — : : . :
?’T::Ingm (en) rT—l,m—lYm(Hn—l) ng (Hn—m)

The set G will be identified with one of the sets F' associated with the corresponding
Christoffel transformation of the discrete classical measure, in one of the following forms:

I(F):{17277fk}\{fk_,f7.f€F}7
Ju(F)={0,1,2,.... fsk+h—1}\{f -1, f€F}, h>1

where fr = max F' and k = #(F).
o Krawtchouk: G1 = I(F1),Go = Ji(F3)
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RELATION WITH THE MEASURE

Given a set G of m positive integers, G = {g1,...,9m} we then define the sequence of
polynomials (¢%),, by

. pn() —Pn—1(T) o (1) pp—m(T)
G §n,mY91 <9n) 7}@—1,m—1Y91 (Hn—l) T Ygl (Hn—m>
Q’n (x) — : : . :
ﬂmegm (en) rT—l,m—lYm(Hn—l) ng (Hn—m)

The set G will be identified with one of the sets F' associated with the corresponding
Christoffel transformation of the discrete classical measure, in one of the following forms:

I(F):{17277fk}\{fk_,f7.f€F}7
Ju(F)=10,1,2,..., fk +h=1}\{f -1, f€F}, h=>1
where fr = max F' and k = #(F).
o Krawtchouk: G1 = I(F1),Go = Ji(F3)
=1 @=H [[(N-1-f-2)wan

fer; feF>
e Hahn: Gy = Jp, (F1), G2 = Jn, (F2), Gs = Jn, (F3), Gy = I[(Fy), F = (F1, Fs, Fa, Fy)

wiyn = [ 0+ N+1+f-2) [[(a+1+f+2) [N -Ff-2) [] (@— Hwasn

feF fEFS fEFs fEF,
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A KRALL-CHARLIER EXAMPLE

Let a =1, F ={1,3}, G =I(F) = {1,3}. The polynomials defined by

g ()
Q(n)

= cn(2) + Br1cn_1(%) + Bn2cn_2(2)

for some choice of sequences (3, 1, Bn 2 are orthogonal with respect to
0f = (x4 3)(x 4+ Dwi(z +4)

Here wl” = a/* 13 (z — fr — 1), where fi = max F and k = #(F).

a —



A KRALL-CHARLIER EXAMPLE

Let a =1, F ={1,3}, G =I(F) = {1,3}. The polynomials defined by

g ()

Q(n) cn () + Br,1¢n_1(2) + Bn,2¢p_o(2)

for some choice of sequences (3, 1, Bn 2 are orthogonal with respect to
0f = (x4 3)(x 4+ Dwi(z +4)

Here wl” = a/* 13 (z — fr — 1), where fi = max F and k = #(F).

a

The difference operator (of order 8) satisfying D,(¢$) = P(n)q$ is given by
D, = P(D,) + Mi(D,)VYi1(Dg) + Ma(D,)VYa(D,)

where D, is the Charlier second-order difference operator (a = 1) and

1
Yi(z) = —x, Ya(x) = —6(333 + 32° + 5z + 2)
M (z) = 2* + 2z + 2, My(z) = —2
P(z) = —i(x?’ —2z° —x —2)

12



A KRALL-HAHN EXAMPLE

Let a =1/2,b=—-1/3,N =9, Fy ={1,3}, G4 = I(Fy) = {1,3}. The polynomials

G4 T B )
q6(fl)) — h7]:1,/2’_1/2’9(x)+5n,1h;/_2]’_ 1/2’9(56) —I—/Bn,Qh;/_Zé 1/279(56)

for some choice of sequences 3, 1, 8, 2 are orthogonal with respect to

If we change a -+ a+4, N —- N —4,x — x — 4 then we obtain wi‘z’N = (x—1)(x—3)wa b N-



A KRALL-HAHN EXAMPLE

Let a =1/2,b=—-1/3,N =9, Fy ={1,3}, G4 = I(Fy) = {1,3}. The polynomials

G4 T B )
q6(fl)) — h7]:1,/2’_1/2’9(x)+5n,1h;/_2]’_ 1/2’9(56) —I—/Bn,Qh;/_Zé 1/279(56)

for some choice of sequences 3, 1, 8, 2 are orthogonal with respect to
W, n = (+3)(+ Dwa—a,6,N+4(T +4)
If we change a -+ a+4, N —- N —4,x — x — 4 then we obtain wi‘z’N = (x—1)(x—3)wa b N-
The difference operator (of order 8) satisfying D,(g5*) = M\nqS* is given by
D, = %P(Da,b,NHMl(Da,b,N)mR;“"”"?‘N(Da,b,N)+M2(Da,b,N)D4R3‘“"”"2‘N(Da,b,N)

where D, n is the Hahn operator, Dy is the fourth D-operator for the Hahn family and

P(z) = 70785:1;(29;3 +192x% + 3925z + 34656)
. 4 84 12 - 4
Mi(z)=— —2° — —2 — — Ms(x) = —
o) == 945" ~ 7% T 1 2(2) = 77

Ap = 70785n(n +1)(2n° 4+ 6n° 4 198n* + 386n° + 4117n? + 39251 + 34656)
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