Discrete Krall Polynomials*

Manuel Domínguez de la Iglesia

 Instituto de Matemáticas, UNAMBaylor Analysis Fest Waco, TX, May 24, 2022

*Joint work with Antonio J. Durán

OUTLINE

\author{

1. Krall-polynomials
}
2. D-operators and orthogonality
3. Some explicit examples

Krall polynomials

SOME HISTORY

SOME HISTORY

Families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfying

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=1}^{k} f_{l}(x) \frac{d^{l}}{d x^{l}}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials of degree at most l independent of n.

SOME HISTORY

Families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfying

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=1}^{k} f_{l}(x) \frac{d^{l}}{d x^{l}}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials of degree at most l independent of n.

- $k=2$: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).

SOME HISTORY

Families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfying

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=1}^{k} f_{l}(x) \frac{d^{l}}{d x^{l}}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials of degree at most l independent of n.

- $k=2$: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).
S. Bochner (1929): complete classification (see also E. Routh (1884))

Sarmen Prdens

Uber Sturm-Liouvillesche Polynomsysteme.

Von

S. Bochner in München.

Wir betrachten irgendeine Differentialgleichung der Form

$$
\begin{equation*}
p_{0}(x) y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y+\lambda y=0 \tag{1}
\end{equation*}
$$

Die Koeffizienten $p_{0}(x), p_{1}(x), p_{2}(x)$ sind irgendwelche reell- oder komplexwertige Funktionen der Variablen x; von denen wir in erster Linie nur anzunehmen brauchen, daß sie in einem gemeinsamen Intervall J der x-Achse definiert sind; und λ bedeutet einen Parameter, der aller komplexen Werte fähig ist.

SOME HISTORY

Families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfying

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=1}^{k} f_{l}(x) \frac{d^{l}}{d x^{l}}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials of degree at most l independent of n.

- $k=2$: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).
S. Bochner (1929): complete classification (see also E. Routh (1884))
- $k=4:$ H. L. Krall (1939). k must be even and there are 3 NEW examples:

$$
\chi_{[-1,1]}+M\left(\delta_{-1}+\delta_{1}\right), e^{-x}+M \delta_{0} \text { and }(1-x)^{\alpha} \chi_{[0,1]}+M \delta_{0}
$$

SOME HISTORY

Families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfying

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=1}^{k} f_{l}(x) \frac{d^{l}}{d x^{l}}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials of degree at most l independent of n.

- $k=2$: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).
S. Bochner (1929): complete classification (see also E. Routh (1884))
- $k=4$: H. L. Krall (1939). k must be even and there are 3 NEW examples:

$$
\chi_{[-1,1]}+M\left(\delta_{-1}+\delta_{1}\right), e^{-x}+M \delta_{0} \text { and }(1-x)^{\alpha} \chi_{[0,1]}+M \delta_{0}
$$

- $k \geq 6$: A. M. Krall, L. Littlejohn, Koekoek's, Zhedanov, Kwon, Lee, GrünbaumHaine (Darboux transformation), Iliev, etc.
Typically all examples are orthogonal with respect to a measure of the form

$$
\omega(x)+\sum_{j=0}^{m-1} a_{j}, \delta_{x_{0}}^{(j)}, \quad a_{j} \in \mathbb{R}
$$

where ω is a classical weight and x_{0} is an endpoint of the $\sup (\omega)$.

DISCRETE CASE

DISCRETE CASE

Families of discrete OPs $\left(p_{n}\right)_{n}$ satisfying difference equations

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials independent of n and $\mathfrak{s}_{l}(p)=p(x+l)$. Here $r, s \in \mathbb{Z}, r \geq s$, and the order is defined by $r-s \geq 0$.

DISCRETE CASE

Families of discrete OPs $\left(p_{n}\right)_{n}$ satisfying difference equations

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials independent of n and $\mathfrak{s}_{l}(p)=p(x+l)$. Here $r, s \in \mathbb{Z}, r \geq s$, and the order is defined by $r-s \geq 0$.

- $r=-s=1$: Chebychev (1858).

Charlier, Meixner, Krawtchouk and Hahn (20th century).

DISCRETE CASE

Families of discrete OPs $\left(p_{n}\right)_{n}$ satisfying difference equations

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials independent of n and $\mathfrak{s}_{l}(p)=p(x+l)$. Here $r, s \in \mathbb{Z}, r \geq s$, and the order is defined by $r-s \geq 0$.

- $r=-s=1$: Chebychev (1858).

Charlier, Meixner, Krawtchouk and Hahn (20th century).
O. E. Lancaster (1941): complete classification.

ORTHOGONAL POLYNOMIALS DEFINED BY DIFFERENCE EQUATIONS.* \dagger

By Otis E. Lancaster.

1. Introduction: Many analogous proparties of differential and difference equations have been studied. Here these analogies are extended to include some ideas relative to orthogonal solutions of difference equations.

Although some general theorems are given, the main study is confined to polynomial solutions of difference equations of the form

$$
\begin{equation*}
\left(a x^{2}+b x+c\right) \underset{h}{\Delta^{2}} y(x)+(d x+f) \underset{h}{\Delta y}(x)+\lambda y(x+h)=0 \tag{1}
\end{equation*}
$$

where $h>0$ is the interval of difference, a, b, c, d, and f are constants and λ is a parameter which is determined so as to insure polynomial solutions. ${ }^{1}$

DISCRETE CASE

Families of discrete OPs $\left(p_{n}\right)_{n}$ satisfying difference equations

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials independent of n and $\mathfrak{s}_{l}(p)=p(x+l)$. Here $r, s \in \mathbb{Z}, r \geq s$, and the order is defined by $r-s \geq 0$.

- $r=-s=1$: Chebychev (1858).

Charlier, Meixner, Krawtchouk and Hahn (20th century).
O. E. Lancaster (1941): complete classification.

- $r=-s \geq 2$: The trick of adding deltas at the endpoints of the support does not work here (Bavinck-van Haeringen-Koekoek, 1994). However it works if one considers q-difference equations (Grünbaum-Haine, 1996 and Vinet-Zhedanov, 2001).

DISCRETE CASE

Families of discrete OPs $\left(p_{n}\right)_{n}$ satisfying difference equations

$$
D\left(p_{n}(x)\right)=\lambda_{n} p_{n}(x), \quad \text { where } \quad D=\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}
$$

where $f_{l}, l=1, \ldots, k$, are polynomials independent of n and $\mathfrak{s}_{l}(p)=p(x+l)$. Here $r, s \in \mathbb{Z}, r \geq s$, and the order is defined by $r-s \geq 0$.

- $r=-s=1$: Chebychev (1858).

Charlier, Meixner, Krawtchouk and Hahn (20th century).
O. E. Lancaster (1941): complete classification.

- $r=-s \geq 2$: The trick of adding deltas at the endpoints of the support does not work here (Bavinck-van Haeringen-Koekoek, 1994). However it works if one considers q-difference equations (Grünbaum-Haine, 1996 and Vinet-Zhedanov, 2001).
It was not until very recently (Durán, 2012) where the first examples appeared (he also proved that $s=-r$. Then the order must be even).
Typically now the measures are of the form

$$
\omega^{F}(x)=\prod_{f \in F}(x-f) \omega(x)
$$

where ω is a classical discrete weight and F is a finite set of real numbers.
This is also called a Christoffel transform of ω (related to the Geronimus transform).

FIRST EXAMPLES: DURÁN (2012)

FIRST EXAMPLES: DURÁN (2012)

Let $\omega_{a}(x)=\sum_{x \in \mathbb{N}} \frac{a^{x}}{x!}, a>0$ be the Charlier weight (Poisson distribution).

FIRST EXAMPLES: DURÁN (2012)

Let $\omega_{a}(x)=\sum_{x \in \mathbb{N}} \frac{a^{x}}{x!}, a>0$ be the Charlier weight (Poisson distribution).

- $F=\{1\}: \omega^{F}(x)=(x-1) \omega_{a}(x)=-\delta_{0}+\sum_{x=2}^{\infty} \frac{a^{x}}{x(x-2)!} \delta_{x}, \quad a>0$

FIRST EXAMPLES: DURÁN (2012)

Let $\omega_{a}(x)=\sum_{x \in \mathbb{N}} \frac{a^{x}}{x!}, a>0$ be the Charlier weight (Poisson distribution).

- $F=\{1\}: \omega^{F}(x)=(x-1) \omega_{a}(x)=-\delta_{0}+\sum_{x=2}^{\infty} \frac{a^{x}}{x(x-2)!} \delta_{x}, \quad a>0$

Then, the corresponding OPs are eigenfunctions of a fourth-order difference operator

$$
D=x(x-3) \mathfrak{s}_{-2}-2 x(x-2) \mathfrak{s}_{-1}+x(x+2 a-1) \mathfrak{s}_{0}-2 x a \mathfrak{s}_{1}+a^{2} \mathfrak{s}_{2}, \quad a \neq 1,2, \ldots
$$

FIRST EXAMPLES: DURÁN (2012)

Let $\omega_{a}(x)=\sum_{x \in \mathbb{N}} \frac{a^{x}}{x!}, a>0$ be the Charlier weight (Poisson distribution).

- $F=\{1\}: \omega^{F}(x)=(x-1) \omega_{a}(x)=-\delta_{0}+\sum_{x=2}^{\infty} \frac{a^{x}}{x(x-2)!} \delta_{x}, \quad a>0$

Then, the corresponding OPs are eigenfunctions of a fourth-order difference operator

$$
D=x(x-3) \mathfrak{S}_{-2}-2 x(x-2) \mathfrak{s}_{-1}+x(x+2 a-1) \mathfrak{s}_{0}-2 x a \mathfrak{s}_{1}+a^{2} \mathfrak{s}_{2}, \quad a \neq 1,2, \ldots
$$

- $F=\{1,2\}: \omega^{F}(x)=(x-1)(x-2) \omega_{a}(x)=2 \delta_{0}+\sum_{x=3}^{\infty} \frac{a^{x}}{x(x-3)!} \delta_{x}, \quad a>0$

FIRST EXAMPLES: DURÁN (2012)

Let $\omega_{a}(x)=\sum_{x \in \mathbb{N}} \frac{a^{x}}{x!}, a>0$ be the Charlier weight (Poisson distribution).

- $F=\{1\}: \omega^{F}(x)=(x-1) \omega_{a}(x)=-\delta_{0}+\sum_{x=2}^{\infty} \frac{a^{x}}{x(x-2)!} \delta_{x}, \quad a>0$

Then, the corresponding OPs are eigenfunctions of a fourth-order difference operator

$$
D=x(x-3) \mathfrak{S}_{-2}-2 x(x-2) \mathfrak{s}_{-1}+x(x+2 a-1) \mathfrak{s}_{0}-2 x a \mathfrak{s}_{1}+a^{2} \mathfrak{s}_{2}, \quad a \neq 1,2, \ldots
$$

- $F=\{1,2\}: \omega^{F}(x)=(x-1)(x-2) \omega_{a}(x)=2 \delta_{0}+\sum_{x=3}^{\infty} \frac{a^{x}}{x(x-3)!} \delta_{x}, \quad a>0$

Then, the corresponding OPs are eigenfunctions of a sixth-order difference operator

$$
\begin{aligned}
D= & 2 x\binom{x-4}{2} \mathfrak{S}_{-3}-6 x\binom{x-3}{2} \mathfrak{S}_{-2}+3 x(x-3)(x+a-2) \mathfrak{s}_{-1} \\
& -x(x-2)(x+6 a-1) \mathfrak{s}_{0}+3 a x(x+a-1) \mathfrak{s}_{1}-3 a^{2} x \mathfrak{s}_{2}+a^{3} \mathfrak{S}_{3}
\end{aligned}
$$

FIRST EXAMPLES: DURÁN (2012)

Let $\omega_{a}(x)=\sum_{x \in \mathbb{N}} \frac{a^{x}}{x!}, a>0$ be the Charlier weight (Poisson distribution).

- $F=\{1\}: \omega^{F}(x)=(x-1) \omega_{a}(x)=-\delta_{0}+\sum_{x=2}^{\infty} \frac{a^{x}}{x(x-2)!} \delta_{x}, \quad a>0$

Then, the corresponding OPs are eigenfunctions of a fourth-order difference operator

$$
D=x(x-3) \mathfrak{S}_{-2}-2 x(x-2) \mathfrak{s}_{-1}+x(x+2 a-1) \mathfrak{s}_{0}-2 x a \mathfrak{s}_{1}+a^{2} \mathfrak{s}_{2}, \quad a \neq 1,2, \ldots
$$

- $F=\{1,2\}: \omega^{F}(x)=(x-1)(x-2) \omega_{a}(x)=2 \delta_{0}+\sum_{x=3}^{\infty} \frac{a^{x}}{x(x-3)!} \delta_{x}, \quad a>0$

Then, the corresponding OPs are eigenfunctions of a sixth-order difference operator

$$
\begin{aligned}
D= & 2 x\binom{x-4}{2} \mathfrak{S}_{-3}-6 x\binom{x-3}{2} \mathfrak{S}_{-2}+3 x(x-3)(x+a-2) \mathfrak{S}_{-1} \\
& -x(x-2)(x+6 a-1) \mathfrak{s}_{0}+3 a x(x+a-1) \mathfrak{S}_{1}-3 a^{2} x \mathfrak{S}_{2}+a^{3} \mathfrak{S}_{3}
\end{aligned}
$$

The same can be done with Meixner, Krawtchouk and Hahn families.

FIRST EXAMPLES: DURÁN (2012)

Let $\omega_{a}(x)=\sum_{x \in \mathbb{N}} \frac{a^{x}}{x!}, a>0$ be the Charlier weight (Poisson distribution).

- $F=\{1\}: \omega^{F}(x)=(x-1) \omega_{a}(x)=-\delta_{0}+\sum_{x=2}^{\infty} \frac{a^{x}}{x(x-2)!} \delta_{x}, \quad a>0$

Then, the corresponding OPs are eigenfunctions of a fourth-order difference operator

$$
\begin{aligned}
& D=x(x-3) \mathfrak{s}_{-2}-2 x(x-2) \mathfrak{s}_{-1}+x(x+2 a-1) \mathfrak{s}_{0}-2 x a \mathfrak{s}_{1}+a^{2} \mathfrak{s}_{2}, \quad a \neq 1,2, \ldots \\
& \text { - } F=\{1,2\}: \omega^{F}(x)=(x-1)(x-2) \omega_{a}(x)=2 \delta_{0}+\sum_{x=3}^{\infty} \frac{a^{x}}{x(x-3)!} \delta_{x}, \quad a>0
\end{aligned}
$$

Then, the corresponding OPs are eigenfunctions of a sixth-order difference operator

$$
\begin{aligned}
D= & 2 x\binom{x-4}{2} \mathfrak{S}_{-3}-6 x\binom{x-3}{2} \mathfrak{S}_{-2}+3 x(x-3)(x+a-2) \mathfrak{S}_{-1} \\
& -x(x-2)(x+6 a-1) \mathfrak{s}_{0}+3 a x(x+a-1) \mathfrak{S}_{1}-3 a^{2} x \mathfrak{S}_{2}+a^{3} \mathfrak{S}_{3}
\end{aligned}
$$

The same can be done with Meixner, Krawtchouk and Hahn families.
Positivity: If $F=\bigcup F_{i}$ where F_{i} contains consecutive nonnegative integers, then ω^{F} is positive if and only if the cardinal of each F_{i} is even for all i.

MAIN RESULTS

MAIN RESULTS

In all the examples gave by Durán in 2012, the sets F contains consecutive positive integers. A number of conjectures were proposed stating that this can always be done for any set F (not necessarily consecutive), which have been proved by Durán-MdI in 2014 and 2015.

MAIN RESULTS

In all the examples gave by Durán in 2012, the sets F contains consecutive positive integers. A number of conjectures were proposed stating that this can always be done for any set F (not necessarily consecutive), which have been proved by Durán-MdI in 2014 and 2015.

- Let ω_{a} be the Charlier weight

$$
\omega_{a}(x)=\sum_{x=0}^{\infty} \frac{a^{x}}{x!} \delta_{x}, \quad a>0
$$

and for a finite set F of positive integers consider

$$
\omega_{a}^{F}=\prod_{f \in F}(x-f) \omega_{a}
$$

Then the OPs $\left(q_{n}\right)_{n}$ with respect to ω_{a}^{F} are eigenfunctions of a higher-order difference operator of the form $D=\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}$ with $-s=r=r_{F}$, where

$$
r_{F}=\sum_{f \in F} f-\binom{\#(F)}{2}+1
$$

MAIN RESULTS

MAIN RESULTS

- Let $\omega_{a, c}$ be the Meixner weight

$$
\omega_{a, c}(x)=\Gamma(c)(1-a)^{c} \sum_{x=0}^{\infty} \frac{(c)_{x} a^{x}}{x!} \delta_{x}, \quad 0<a<1, \quad c>0
$$

and for two finite sets F_{1}, F_{2} of positive integers consider

$$
\omega_{a, c}^{F_{1}, F_{2}}=\prod_{f \in F_{1}}(x+c+f) \prod_{f \in F_{2}}(x-f) \omega_{a, c}
$$

Then the OPs $\left(q_{n}\right)_{n}$ with respect to $\omega_{a}^{F_{1}, F_{2}}$ are eigenfunctions of a higher-order difference operator with $-s=r=r_{F_{1}}+r_{F_{2}}-1$, where r_{F} is as before.

MAIN RESULTS

- Let $\omega_{a, c}$ be the Meixner weight

$$
\omega_{a, c}(x)=\Gamma(c)(1-a)^{c} \sum_{x=0}^{\infty} \frac{(c)_{x} a^{x}}{x!} \delta_{x}, \quad 0<a<1, \quad c>0
$$

and for two finite sets F_{1}, F_{2} of positive integers consider

$$
\omega_{a, c}^{F_{1}, F_{2}}=\prod_{f \in F_{1}}(x+c+f) \prod_{f \in F_{2}}(x-f) \omega_{a, c}
$$

Then the OPs $\left(q_{n}\right)_{n}$ with respect to $\omega_{a}^{F_{1}, F_{2}}$ are eigenfunctions of a higher-order difference operator with $-s=r=r_{F_{1}}+r_{F_{2}}-1$, where r_{F} is as before.

- Let $\omega_{a, N}$ be the Krawtchouk weight

$$
\omega_{a, N}(x)=\frac{1}{(1+a)^{N-1}} \sum_{x=0}^{N-1}\binom{N-1}{x} a^{x} \delta_{x}, \quad a>0
$$

and for two finite sets F_{1}, F_{2} of positive integers consider

$$
\omega_{a, N}^{F_{1}, F_{2}}=\prod_{f \in F_{1}}(x-f) \prod_{f \in F_{2}}(N-1-f-x) \omega_{a, N}
$$

Then the OPs $\left(q_{n}\right)_{n}$ with respect to $\omega_{a}^{F_{1}, F_{2}}$ are eigenfunctions of a higher-order difference operator with $-s=r=r_{F_{1}}+r_{F_{2}}-1$, where r_{F} is as before.

MAIN RESULTS

MAIN RESULTS

- Let $\omega_{a, b, N}$ be the Hahn weight

$$
\omega_{a, b, N}(x)=\Gamma(a+1) \Gamma(b+1) N!\sum_{x=0}^{N}\binom{a+x}{x}\binom{b+N-x}{N-x} \delta_{x}, \quad a, b>-1, \quad a, b<-N
$$

and for four finite sets $\mathcal{F}=\left(F_{1}, F_{2}, F_{2}, F_{4}\right)$ of positive integers consider

$$
\omega_{a, b, N}^{\mathcal{F}}=\prod_{f \in F_{1}}(b+N+1+f-x) \prod_{f \in F_{2}}(a+1+f+x) \prod_{f \in F_{3}}(N-f-x) \prod_{f \in F_{4}}(x-f) \omega_{a, b, N}
$$

Then the OPs $\left(q_{n}\right)_{n}$ with respect to $\omega_{a, b, N}^{\mathcal{F}}$ are eigenfunctions of a higher-order difference operator with $-s=r=r_{F_{1}}+r_{F_{2}}+r_{F_{3}}+r_{F_{4}}-3$, where r_{F} is as before.

MAIN RESULTS

- Let $\omega_{a, b, N}$ be the Hahn weight

$$
\omega_{a, b, N}(x)=\Gamma(a+1) \Gamma(b+1) N!\sum_{x=0}^{N}\binom{a+x}{x}\binom{b+N-x}{N-x} \delta_{x}, \quad a, b>-1, \quad a, b<-N
$$

and for four finite sets $\mathcal{F}=\left(F_{1}, F_{2}, F_{2}, F_{4}\right)$ of positive integers consider

$$
\omega_{a, b, N}^{\mathcal{F}}=\prod_{f \in F_{1}}(b+N+1+f-x) \prod_{f \in F_{2}}(a+1+f+x) \prod_{f \in F_{3}}(N-f-x) \prod_{f \in F_{4}}(x-f) \omega_{a, b, N}
$$

Then the OPs $\left(q_{n}\right)_{n}$ with respect to $\omega_{a, b, N}^{\mathcal{F}}$ are eigenfunctions of a higher-order difference operator with $-s=r=r_{F_{1}}+r_{F_{2}}+r_{F_{3}}+r_{F_{4}}-3$, where r_{F} is as before.
In order to study discrete Krall OPs $\left(q_{n}\right)_{n}$ we will follow the following guideline:

1. Computation of the higher-order difference operator

This result will be valid for any family of polynomials $\left(p_{n}\right)_{n}$ (not necessarily orthogonal) eigenfunctions of certain operator, i.e. $D\left(p_{n}\right)=\theta_{n} p_{n}$. It is based on the abstract concept of \mathcal{D}-operator and there will be Y_{1}, \ldots, Y_{m} arbitrary polynomials.
2. Orthogonality

Only for a convenient choice of the polynomials Y_{1}, \ldots, Y_{m}, the polynomials $\left(q_{n}\right)_{n}$ are also orthogonal with respect to a measure. The right choice for the polynomials Y_{1}, \ldots, Y_{m} will be classical discrete polynomials of the same type but with different parameters (Charlier, Meixner and Krawtchouk) or dual Hahn polynomials (Hahn).

D-operators and orthogonality

D-OPERATORS OF TYPE I

D-OPERATORS OF TYPE I

Let \mathcal{A} be an algebra of difference operators acting in the linear space of polynomials \mathbb{P}

$$
\mathcal{A}=\left\{\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}: f_{l}(x) \in \mathbb{P}, l=s, \ldots, r, s \leq r\right\}
$$

Assume we have a family of polynomials $\left(p_{n}\right)_{n}$ such that there exists $D_{p} \in \mathcal{A}$ with $D_{p}\left(p_{n}\right)=$ $n p_{n}$, i.e. with linear eigenvalue.

D-OPERATORS OF TYPE I

Let \mathcal{A} be an algebra of difference operators acting in the linear space of polynomials \mathbb{P}

$$
\mathcal{A}=\left\{\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}: f_{l}(x) \in \mathbb{P}, l=s, \ldots, r, s \leq r\right\}
$$

Assume we have a family of polynomials $\left(p_{n}\right)_{n}$ such that there exists $D_{p} \in \mathcal{A}$ with $D_{p}\left(p_{n}\right)=$ $n p_{n}$, i.e. with linear eigenvalue.

Given a sequence of numbers $\left(\varepsilon_{n}\right)_{n}$, let us consider the operator

$$
\mathcal{D}\left(p_{n}\right)=\sum_{j=1}^{n}(-1)^{j+1} \varepsilon_{n} \cdots \varepsilon_{n-j} p_{n-j}=\varepsilon_{n} p_{n-1}-\varepsilon_{n} \varepsilon_{n-1} p_{n-2}+\cdots
$$

We say that \mathcal{D} is a \mathcal{D}-operator associated with \mathcal{A} and $\left(p_{n}\right)_{n}$ if $\mathcal{D} \in \mathcal{A}$.

D-OPERATORS OF TYPE I

Let \mathcal{A} be an algebra of difference operators acting in the linear space of polynomials \mathbb{P}

$$
\mathcal{A}=\left\{\sum_{l=s}^{r} f_{l}(x) \mathfrak{s}_{l}: f_{l}(x) \in \mathbb{P}, l=s, \ldots, r, s \leq r\right\}
$$

Assume we have a family of polynomials $\left(p_{n}\right)_{n}$ such that there exists $D_{p} \in \mathcal{A}$ with $D_{p}\left(p_{n}\right)=$ $n p_{n}$, i.e. with linear eigenvalue.

Given a sequence of numbers $\left(\varepsilon_{n}\right)_{n}$, let us consider the operator

$$
\mathcal{D}\left(p_{n}\right)=\sum_{j=1}^{n}(-1)^{j+1} \varepsilon_{n} \cdots \varepsilon_{n-j} p_{n-j}=\varepsilon_{n} p_{n-1}-\varepsilon_{n} \varepsilon_{n-1} p_{n-2}+\cdots
$$

We say that \mathcal{D} is a \mathcal{D}-operator associated with \mathcal{A} and $\left(p_{n}\right)_{n}$ if $\mathcal{D} \in \mathcal{A}$.

- Charlier: $\varepsilon_{n}=1 \Rightarrow \mathcal{D}=\nabla$.
- Meixner: $\varepsilon_{n}^{1}=\frac{a}{1-a} \Rightarrow \mathcal{D}_{1}=\frac{a}{1-a} \Delta, \quad \varepsilon_{n}^{2}=\frac{1}{1-a} \Rightarrow \mathcal{D}_{2}=\frac{1}{1-a} \nabla$.
- Krawtchouk: $\varepsilon_{n}^{1}=\frac{1}{1-a} \Rightarrow \mathcal{D}_{1}=\frac{1}{1-a} \nabla, \quad \varepsilon_{n}^{2}=-\frac{a}{1-a} \Rightarrow \mathcal{D}_{2}=-\frac{a}{1-a} \Delta$.
where $\Delta f(x)=f(x+1)-f(x)$ and $\nabla f(x)=f(x)-f(x-1)$.

THEOREM (DURÁN-MDI, 2014)

THEOREM (DURÁN-MDI, 2014)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}(n-j)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

THEOREM (DURÁN-MDI, 2014)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}(n-j)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

Consider the sequence of polynomials $\left(q_{n}\right)_{n}$ defined by

$$
q_{n}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{1}(n) & \xi_{n-1, m-1}^{1} Y_{1}(n-1) & \cdots & Y_{1}(n-m) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{m}(n) & \xi_{n-1, m-1}^{m} Y_{m}(n-1) & \cdots & Y_{m}(n-m)
\end{array}\right|
$$

REMARK: $q_{n}(x)$ is a linear combination of $m+1$ consecutive p_{n} polynomials.

THEOREM (DURÁN-MDI, 2014)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}(n-j)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

Consider the sequence of polynomials $\left(q_{n}\right)_{n}$ defined by

$$
q_{n}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{1}(n) & \xi_{n-1, m-1}^{1} Y_{1}(n-1) & \cdots & Y_{1}(n-m) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{m}(n) & \xi_{n-1, m-1}^{m} Y_{m}(n-1) & \cdots & Y_{m}(n-m)
\end{array}\right|
$$

REMARK: $q_{n}(x)$ is a linear combination of $m+1$ consecutive p_{n} polynomials.

THEOREM (DURÁN-MDI, 2014)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}(n-j)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

Consider the sequence of polynomials $\left(q_{n}\right)_{n}$ defined by

$$
q_{n}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) _ & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{1}(n) & \xi_{n-1, m-1}^{1} Y_{1}(n-1) & \cdots & Y_{1}(n-m) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{m}(n) & \xi_{n-1, m-1}^{m} Y_{m}(n-1) & \cdots & Y_{m}(n-m)
\end{array}\right|
$$

REMARK: $q_{n}(x)$ is a linear combination of $m+1$ consecutive p_{n} polynomials. Define M_{1}, \ldots, M_{m}, the following polynomials in x

$$
M_{h}(x)=\sum_{j=1}^{m}(-1)^{h+j} \xi_{x, m-j}^{h} \operatorname{det}\left(\xi_{x+j-r, m-r}^{l} Y_{l}(x+j-r)\right)_{l \in \mathbb{I}_{h} ; r \in \mathbb{I}_{j}}
$$

where $\mathbb{I}_{h}=\{1,2, \ldots, m\} \backslash\{h\} . M_{h}$ are linear combinations of adjoint determinants of $\Omega(x)$.

THEOREM (DURÁN-MDI, 2014)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}(n-j)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

Consider the sequence of polynomials $\left(q_{n}\right)_{n}$ defined by

$$
q_{n}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{1}(n) & \xi_{n-1, m-1}^{1} Y_{1}(n-1) & \cdots & Y_{1}(n-m) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{m}(n) & \xi_{n-1, m-1}^{m} Y_{m}(n-1) & \cdots & Y_{m}(n-m)
\end{array}\right|
$$

REMARK: $q_{n}(x)$ is a linear combination of $m+1$ consecutive p_{n} polynomials.
Define M_{1}, \ldots, M_{m}, the following polynomials in x

$$
M_{h}(x)=\sum_{j=1}^{m}(-1)^{h+j} \xi_{x, m-j}^{h} \operatorname{det}\left(\xi_{x+j-r, m-r}^{l} Y_{l}(x+j-r)\right)_{l \in \mathbb{I}_{h} ; r \in \mathbb{I}_{j}}
$$

where $\mathbb{I}_{h}=\{1,2, \ldots, m\} \backslash\{h\} . M_{h}$ are linear combinations of adjoint determinants of $\Omega(x)$. If we assume that $\Omega(x)$ and $M_{h}(x)$ are polynomials in x, then there exists $D_{q} \in \mathcal{A}$ with $D_{q}\left(q_{n}\right)=P(n) q_{n}$ and $P(x)-P(x-1)=\Omega(x)$, where

$$
D_{q}=P\left(D_{p}\right)+\sum_{h=1}^{m} M_{h}\left(D_{p}\right) \mathcal{D}_{h} Y_{h}\left(D_{p}\right)
$$

D-OPERATORS OF TYPE II

D-OPERATORS OF TYPE II

Assume we have a family of polynomials $\left(p_{n}\right)_{n}$ such that there exists $D_{p} \in \mathcal{A}$ with $D_{p}\left(p_{n}\right)=$ $\theta_{n} p_{n}$. Given two sequences of numbers $\left(\varepsilon_{n}\right)_{n}$ and $\left(\sigma_{n}\right)_{n}$ consider the following operator

$$
\mathcal{D}\left(p_{n}\right)=-\frac{1}{2} \sigma_{n+1} p_{n}+\sum_{j=1}^{n}(-1)^{j+1} \sigma_{n-j+1} \varepsilon_{n} \cdots \varepsilon_{n-j+1} p_{n-j}, \quad n \geq 0
$$

We say that \mathcal{D} is a \mathcal{D}-operator of type II if $\mathcal{D} \in \mathcal{A}$.

D-OPERATORS OF TYPE II

Assume we have a family of polynomials $\left(p_{n}\right)_{n}$ such that there exists $D_{p} \in \mathcal{A}$ with $D_{p}\left(p_{n}\right)=$ $\theta_{n} p_{n}$. Given two sequences of numbers $\left(\varepsilon_{n}\right)_{n}$ and $\left(\sigma_{n}\right)_{n}$ consider the following operator

$$
\mathcal{D}\left(p_{n}\right)=-\frac{1}{2} \sigma_{n+1} p_{n}+\sum_{j=1}^{n}(-1)^{j+1} \sigma_{n-j+1} \varepsilon_{n} \cdots \varepsilon_{n-j+1} p_{n-j}, \quad n \geq 0
$$

We say that \mathcal{D} is a \mathcal{D}-operator of type II if $\mathcal{D} \in \mathcal{A}$.
There are four different \mathcal{D}-operators for the Hahn polynomials. Defining

$$
\begin{array}{ll}
\varepsilon_{n}^{1}=-\frac{n-N+1}{n+a+b+N+1}, & \sigma_{n}=-(2 n+a+b-1), \\
\varepsilon_{n}^{2}=\frac{(n+b)(n-N+1)}{(n+a)(n+a+b+N+1)}, & \sigma_{n}=-(2 n+a+b-1), \\
\varepsilon_{n}^{3}=1, & \sigma_{n}=-(2 n+a+b-1), \\
\varepsilon_{n}^{4}=-\frac{n+b}{n+a}, & \sigma_{n}=-(2 n+a+b-1) .
\end{array}
$$

then we have

$$
\begin{array}{ll}
\mathcal{D}_{1}=\frac{a+b+1}{2} I+x \nabla, & \mathcal{D}_{2}=\frac{a+b+1}{2} I+(x-N) \Delta, \\
\mathcal{D}_{3}=\frac{a+b+1}{2} I+(x+a+1) \Delta, & \mathcal{D}_{4}=\frac{a+b+1}{2} I+(x-b-N-1) \nabla
\end{array}
$$

THEOREM (DURÁN-MDI, 2015)

THEOREM (DURÁN-MDI, 2015)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}\left(\theta_{n-j}\right)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

THEOREM (DURÁN-MDI, 2015)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}\left(\theta_{n-j}\right)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

Consider the sequence of polynomials $\left(q_{n}\right)_{n}$ defined by

$$
q_{n}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{1}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{1}\left(\theta_{n-1}\right) & \cdots & Y_{1}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{m}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{m}\left(\theta_{n-1}\right) & \cdots & Y_{m}\left(\theta_{n-m}\right)
\end{array}\right|
$$

REMARK: $q_{n}(x)$ is a linear combination of $m+1$ consecutive p_{n} polynomials.

THEOREM (DURÁN-MDI, 2015)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}\left(\theta_{n-j}\right)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

Consider the sequence of polynomials $\left(q_{n}\right)_{n}$ defined by

$$
q_{n}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{1}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{1}\left(\theta_{n-1}\right) & \cdots & Y_{1}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{m}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{m}\left(\theta_{n-1}\right) & \cdots & Y_{m}\left(\theta_{n-m}\right)
\end{array}\right|
$$

REMARK: $q_{n}(x)$ is a linear combination of $m+1$ consecutive p_{n} polynomials.

THEOREM (DURÁN-MDI, 2015)

Let $\xi_{x, j}^{h}=\prod_{i=0}^{j-1} \varepsilon_{x-i}^{h}, h=1, \ldots, m$ and Y_{1}, \ldots, Y_{m} arbitrary polynomials such that

$$
\Omega(n)=\operatorname{det}\left(\xi_{n-j, m-j}^{l} Y_{l}\left(\theta_{n-j}\right)\right)_{l, j=1}^{m} \neq 0, \quad n \geq 0
$$

Consider the sequence of polynomials $\left(q_{n}\right)_{n}$ defined by

$$
q_{n}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{1}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{1}\left(\theta_{n-1}\right) & \cdots & Y_{1}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{m}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{m}\left(\theta_{n-1}\right) & \cdots & Y_{m}\left(\theta_{n-m}\right)
\end{array}\right|
$$

REMARK: $q_{n}(x)$ is a linear combination of $m+1$ consecutive p_{n} polynomials.
For a rational function $S(x)$, we define the function λ_{x} by

$$
\lambda_{x}-\lambda_{x-1}=S(x) \Omega(x)
$$

THEOREM (DURÁN-MDI, 2015)

THEOREM (DURÁN-MDI, 2015)

Assume the following

1. $S(x) \Omega(x)$ is a polynomial in x
2. There exist $\tilde{M}_{1}, \ldots, \tilde{M}_{m}$, polynomials in x such that $M_{h}(x)=\sigma_{x+1} \tilde{M}_{h}\left(\theta_{x}\right)$, where $M_{h}(x)$ are defined by

$$
M_{h}(x)=\sum_{j=1}^{m}(-1)^{h+j} \xi_{x, m-j}^{h} S(x+j) \operatorname{det}\left(\xi_{x+j-r, m-r}^{l} Y_{l}\left(\theta_{x+j-r}\right)\right)_{l \in \mathbb{I}_{h} ; r \in \mathbb{I}_{j}}
$$

$$
\text { and } \mathbb{I}_{h}=\{1,2, \ldots, m\} \backslash\{h\} .
$$

3. There exists a polynomial P_{S} such that $P_{S}\left(\theta_{x}\right)=2 \lambda_{x}+\sum_{h=1}^{m} Y_{h}\left(\theta_{x}\right) M_{h}(x)$

THEOREM (DURÁN-MDI, 2015)

Assume the following

1. $S(x) \Omega(x)$ is a polynomial in x
2. There exist $\tilde{M}_{1}, \ldots, \tilde{M}_{m}$, polynomials in x such that $M_{h}(x)=\sigma_{x+1} \tilde{M}_{h}\left(\theta_{x}\right)$, where $M_{h}(x)$ are defined by

$$
M_{h}(x)=\sum_{j=1}^{m}(-1)^{h+j} \xi_{x, m-j}^{h} S(x+j) \operatorname{det}\left(\xi_{x+j-r, m-r}^{l} Y_{l}\left(\theta_{x+j-r}\right)\right)_{l \in \mathbb{I}_{h} ; r \in \mathbb{I}_{j}}
$$

$$
\text { and } \mathbb{I}_{h}=\{1,2, \ldots, m\} \backslash\{h\} .
$$

3. There exists a polynomial P_{S} such that $P_{S}\left(\theta_{x}\right)=2 \lambda_{x}+\sum_{h=1}^{m} Y_{h}\left(\theta_{x}\right) M_{h}(x)$

Then there exists an operator $D_{q, S} \in \mathcal{A}$ such that $D_{q, S}\left(q_{n}\right)=\lambda_{n} q_{n}, n \geq 0$, where the operator $D_{q, S}$ is defined by

$$
D_{q, S}=\frac{1}{2} P_{S}\left(D_{p}\right)+\sum_{h=1}^{m} \tilde{M}_{h}\left(D_{p}\right) \mathcal{D}_{h} Y_{h}\left(D_{p}\right)
$$

ORTHOGONALITY

ORTHOGONALITY

The polynomials $\left(q_{n}\right)_{n}$ constructed in this way are eigenfunctions of a higher-order differential/difference operator, but they are not orthogonal in general.

ORTHOGONALITY

The polynomials $\left(q_{n}\right)_{n}$ constructed in this way are eigenfunctions of a higher-order differential/difference operator, but they are not orthogonal in general.
However, if $\left(p_{n}\right)_{n}$ is one of the classical families it turns out that they have the bispectral property, meaning that they satisfy a higher-order recurrence relation of the form

$$
Q(x) q_{n}(x)=\sum_{i=-s}^{s} \gamma_{n, i} q_{n+i}(x), \quad s \in \mathbb{N}, \quad \operatorname{deg} Q(x)=s
$$

This has been proved so far for the Charlier case (Durán, 2019), the Laguerre and Jacobi cases (Durán-MdI, 2020,2022) and the Meixner case (Durán-Rueda, 2021).

ORTHOGONALITY

The polynomials $\left(q_{n}\right)_{n}$ constructed in this way are eigenfunctions of a higher-order differential/difference operator, but they are not orthogonal in general.
However, if $\left(p_{n}\right)_{n}$ is one of the classical families it turns out that they have the bispectral property, meaning that they satisfy a higher-order recurrence relation of the form

$$
Q(x) q_{n}(x)=\sum_{i=-s}^{s} \gamma_{n, i} q_{n+i}(x), \quad s \in \mathbb{N}, \quad \operatorname{deg} Q(x)=s
$$

This has been proved so far for the Charlier case (Durán, 2019), the Laguerre and Jacobi cases (Durán-MdI, 2020,2022) and the Meixner case (Durán-Rueda, 2021).
Only for a special choice of the polynomials Y_{1}, \ldots, Y_{m} we will have that $\left(q_{n}\right)_{n}$ are also orthogonal with respect to a measure (or equivalently, they satisfy a TTRR).

ORTHOGONALITY

The polynomials $\left(q_{n}\right)_{n}$ constructed in this way are eigenfunctions of a higher-order differential/difference operator, but they are not orthogonal in general.
However, if $\left(p_{n}\right)_{n}$ is one of the classical families it turns out that they have the bispectral property, meaning that they satisfy a higher-order recurrence relation of the form

$$
Q(x) q_{n}(x)=\sum_{i=-s}^{s} \gamma_{n, i} q_{n+i}(x), \quad s \in \mathbb{N}, \quad \operatorname{deg} Q(x)=s
$$

This has been proved so far for the Charlier case (Durán, 2019), the Laguerre and Jacobi cases (Durán-MdI, 2020,2022) and the Meixner case (Durán-Rueda, 2021).
Only for a special choice of the polynomials Y_{1}, \ldots, Y_{m} we will have that $\left(q_{n}\right)_{n}$ are also orthogonal with respect to a measure (or equivalently, they satisfy a TTRR).

Classical discrete family	\mathcal{D}-operators	$Y_{j}(x)$
Charlier: $c_{n}^{a}(x)$	∇	$c_{j}^{-a}(-x-1)$
Meixner: $m_{n}^{a, c}(x)$	$\frac{a}{1-a} \Delta$	$m_{j}^{1 / a, 2-c}(-x-1)$
	$\frac{1}{1-a} \nabla$	$m_{j}^{a, 2-c}(-x-1)$
	$\frac{1}{1+a} \nabla$	$k_{j}^{a,-N}(-x-1)$
Krawtchouk: $k_{n}^{a, N}(x)$	$\frac{-a}{1+a} \Delta$	$k_{j}^{1 / a,-N}(-x-1)$
	$\frac{a+b+1}{2} I+x \nabla$	$R_{j}^{-b,-a, a+b+N}(x+a+b)$
Hahn: $h_{n}^{a, b, N}(x)$	$\frac{a+b+1}{2} I+(x-N) \Delta$	$R_{j}^{-a,-b, a+b+N}(x+a+b)$
	$\frac{a+b+1}{2} I+(x+a+1) \Delta$	$R_{j}^{-b,-a,-2-N}(x+a+b)$
	$\frac{a+b+1}{2} I+(x-b-N-1) \nabla$	$R_{j}^{-a,-b,-2-N}(x+a+b)$

RELATION WITH THE MEASURE

RELATION WITH THE MEASURE

Given a set G of m positive integers, $G=\left\{g_{1}, \ldots, g_{m}\right\}$ we then define the sequence of polynomials $\left(q_{n}^{G}\right)_{n}$ by

$$
q_{n}^{G}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{g_{1}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{g_{1}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{1}}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{g_{m}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{g_{m}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{m}}\left(\theta_{n-m}\right)
\end{array}\right|
$$

RELATION WITH THE MEASURE

Given a set G of m positive integers, $G=\left\{g_{1}, \ldots, g_{m}\right\}$ we then define the sequence of polynomials $\left(q_{n}^{G}\right)_{n}$ by

$$
q_{n}^{G}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{g_{1}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{g_{1}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{1}}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{g_{m}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{g_{m}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{m}}\left(\theta_{n-m}\right)
\end{array}\right|
$$

The set G will be identified with one of the sets F associated with the corresponding Christoffel transformation of the discrete classical measure, in one of the following forms:

$$
\begin{aligned}
I(F) & =\left\{1,2, \ldots, f_{k}\right\} \backslash\left\{f_{k}-f, f \in F\right\}, \\
J_{h}(F) & =\left\{0,1,2, \ldots, f_{k}+h-1\right\} \backslash\{f-1, f \in F\}, \quad h \geq 1
\end{aligned}
$$

where $f_{k}=\max F$ and $k=\#(F)$.

RELATION WITH THE MEASURE

Given a set G of m positive integers, $G=\left\{g_{1}, \ldots, g_{m}\right\}$ we then define the sequence of polynomials $\left(q_{n}^{G}\right)_{n}$ by

$$
q_{n}^{G}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{g_{1}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{g_{1}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{1}}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{g_{m}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{g_{m}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{m}}\left(\theta_{n-m}\right)
\end{array}\right|
$$

The set G will be identified with one of the sets F associated with the corresponding Christoffel transformation of the discrete classical measure, in one of the following forms:

$$
\begin{aligned}
I(F) & =\left\{1,2, \ldots, f_{k}\right\} \backslash\left\{f_{k}-f, f \in F\right\}, \\
J_{h}(F) & =\left\{0,1,2, \ldots, f_{k}+h-1\right\} \backslash\{f-1, f \in F\}, \quad h \geq 1
\end{aligned}
$$

where $f_{k}=\max F$ and $k=\#(F)$.

- Charlier: $G=I(F)$

$$
\omega_{a}^{F}=\prod_{f \in F}(x-f) \omega_{a}
$$

RELATION WITH THE MEASURE

Given a set G of m positive integers, $G=\left\{g_{1}, \ldots, g_{m}\right\}$ we then define the sequence of polynomials $\left(q_{n}^{G}\right)_{n}$ by

$$
q_{n}^{G}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{g_{1}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{g_{1}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{1}}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{g_{m}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{g_{m}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{m}}\left(\theta_{n-m}\right)
\end{array}\right|
$$

The set G will be identified with one of the sets F associated with the corresponding Christoffel transformation of the discrete classical measure, in one of the following forms:

$$
\begin{aligned}
I(F) & =\left\{1,2, \ldots, f_{k}\right\} \backslash\left\{f_{k}-f, f \in F\right\}, \\
J_{h}(F) & =\left\{0,1,2, \ldots, f_{k}+h-1\right\} \backslash\{f-1, f \in F\}, \quad h \geq 1
\end{aligned}
$$

where $f_{k}=\max F$ and $k=\#(F)$.

- Charlier: $G=I(F)$

$$
\omega_{a}^{F}=\prod_{f \in F}(x-f) \omega_{a}
$$

- Meixner: $G_{1}=J_{h}\left(F_{1}\right), G_{2}=I\left(F_{2}\right)$

$$
\omega_{a, c}^{F_{1}, F_{2}}=\prod_{f \in F_{1}}(x+c+f) \prod_{f \in F_{2}}(x-f) \omega_{a, c}
$$

RELATION WITH THE MEASURE

Given a set G of m positive integers, $G=\left\{g_{1}, \ldots, g_{m}\right\}$ we then define the sequence of polynomials $\left(q_{n}^{G}\right)_{n}$ by

$$
q_{n}^{G}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{g_{1}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{g_{1}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{1}}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{g_{m}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{g_{m}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{m}}\left(\theta_{n-m}\right)
\end{array}\right|
$$

The set G will be identified with one of the sets F associated with the corresponding Christoffel transformation of the discrete classical measure, in one of the following forms:

$$
\begin{aligned}
I(F) & =\left\{1,2, \ldots, f_{k}\right\} \backslash\left\{f_{k}-f, f \in F\right\}, \\
J_{h}(F) & =\left\{0,1,2, \ldots, f_{k}+h-1\right\} \backslash\{f-1, f \in F\}, \quad h \geq 1
\end{aligned}
$$

where $f_{k}=\max F$ and $k=\#(F)$.

- Krawtchouk: $G_{1}=I\left(F_{1}\right), G_{2}=J_{h}\left(F_{2}\right)$

$$
\omega_{a, N}^{F_{1}, F_{2}}=\prod_{f \in F_{1}}(x-f) \prod_{f \in F_{2}}(N-1-f-x) \omega_{a, N}
$$

RELATION WITH THE MEASURE

Given a set G of m positive integers, $G=\left\{g_{1}, \ldots, g_{m}\right\}$ we then define the sequence of polynomials $\left(q_{n}^{G}\right)_{n}$ by

$$
q_{n}^{G}(x)=\left|\begin{array}{cccc}
p_{n}(x) & -p_{n-1}(x) & \cdots & (-1)^{m} p_{n-m}(x) \\
\xi_{n, m}^{1} Y_{g_{1}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{1} Y_{g_{1}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{1}}\left(\theta_{n-m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{n, m}^{m} Y_{g_{m}}\left(\theta_{n}\right) & \xi_{n-1, m-1}^{m} Y_{g_{m}}\left(\theta_{n-1}\right) & \cdots & Y_{g_{m}}\left(\theta_{n-m}\right)
\end{array}\right|
$$

The set G will be identified with one of the sets F associated with the corresponding Christoffel transformation of the discrete classical measure, in one of the following forms:

$$
\begin{aligned}
I(F) & =\left\{1,2, \ldots, f_{k}\right\} \backslash\left\{f_{k}-f, f \in F\right\}, \\
J_{h}(F) & =\left\{0,1,2, \ldots, f_{k}+h-1\right\} \backslash\{f-1, f \in F\}, \quad h \geq 1
\end{aligned}
$$

where $f_{k}=\max F$ and $k=\#(F)$.

- Krawtchouk: $G_{1}=I\left(F_{1}\right), G_{2}=J_{h}\left(F_{2}\right)$

$$
\omega_{a, N}^{F_{1}, F_{2}}=\prod_{f \in F_{1}}(x-f) \prod_{f \in F_{2}}(N-1-f-x) \omega_{a, N}
$$

- Hahn: $G_{1}=J_{h_{1}}\left(F_{1}\right), G_{2}=J_{h_{2}}\left(F_{2}\right), G_{3}=J_{h_{3}}\left(F_{3}\right), G_{4}=I\left(F_{4}\right), \mathcal{F}=\left(F_{1}, F_{2}, F_{2}, F_{4}\right)$

$$
\omega_{a, b, N}^{\mathcal{F}}=\prod_{f \in F_{1}}(b+N+1+f-x) \prod_{f \in F_{2}}(a+1+f+x) \prod_{f \in F_{3}}(N-f-x) \prod_{f \in F_{4}}(x-f) \omega_{a, b, N}
$$

Some explicit examples

A KRALL-CHARLIER EXAMPLE

A KRALL-CHARLIER EXAMPLE

Let $a=1, F=\{1,3\}, G=I(F)=\{1,3\}$. The polynomials defined by

$$
\frac{q_{n}^{G}(x)}{\Omega(n)}=c_{n}^{1}(x)+\beta_{n, 1} c_{n-1}^{1}(x)+\beta_{n, 2} c_{n-2}^{1}(x)
$$

for some choice of sequences $\beta_{n, 1}, \beta_{n, 2}$ are orthogonal with respect to

$$
\tilde{\omega}_{1}^{F}=(x+3)(x+1) \omega_{1}(x+4)
$$

Here $\omega_{a}^{F}=a^{f_{k}+1} \tilde{\omega}_{a}^{F}\left(x-f_{k}-1\right)$, where $f_{k}=\max F$ and $k=\#(F)$.

A KRALL-CHARLIER EXAMPLE

Let $a=1, F=\{1,3\}, G=I(F)=\{1,3\}$. The polynomials defined by

$$
\frac{q_{n}^{G}(x)}{\Omega(n)}=c_{n}^{1}(x)+\beta_{n, 1} c_{n-1}^{1}(x)+\beta_{n, 2} c_{n-2}^{1}(x)
$$

for some choice of sequences $\beta_{n, 1}, \beta_{n, 2}$ are orthogonal with respect to

$$
\tilde{\omega}_{1}^{F}=(x+3)(x+1) \omega_{1}(x+4)
$$

Here $\omega_{a}^{F}=a^{f_{k}+1} \tilde{\omega}_{a}^{F}\left(x-f_{k}-1\right)$, where $f_{k}=\max F$ and $k=\#(F)$.
The difference operator (of order 8) satisfying $D_{q}\left(q_{n}^{G}\right)=P(n) q_{n}^{G}$ is given by

$$
D_{q}=P\left(D_{a}\right)+M_{1}\left(D_{a}\right) \nabla Y_{1}\left(D_{a}\right)+M_{2}\left(D_{a}\right) \nabla Y_{2}\left(D_{a}\right)
$$

where D_{a} is the Charlier second-order difference operator ($a=1$) and

$$
\begin{array}{rlrl}
Y_{1}(x) & =-x, & Y_{2}(x) & =-\frac{1}{6}\left(x^{3}+3 x^{2}+5 x+2\right) \\
M_{1}(x) & =x^{2}+2 x+2, & M_{2}(x)=-2 \\
P(x) & =-\frac{x}{12}\left(x^{3}-2 x^{2}-x-2\right) &
\end{array}
$$

A KRALL-HAHN EXAMPLE

Let $a=1 / 2, b=-1 / 3, N=9, F_{4}=\{1,3\}, G_{4}=I\left(F_{4}\right)=\{1,3\}$. The polynomials

$$
\frac{q_{n}^{G_{4}}(x)}{\Omega(n)}=h_{n}^{1 / 2,-1 / 2,9}(x)+\beta_{n, 1} h_{n-1}^{1 / 2,-1 / 2,9}(x)+\beta_{n, 2} h_{n-2}^{1 / 2,-1 / 2,9}(x)
$$

for some choice of sequences $\beta_{n, 1}, \beta_{n, 2}$ are orthogonal with respect to

$$
\tilde{\omega}_{a, b, N}^{F_{4}}=(x+3)(x+1) \omega_{a-4, b, N+4}(x+4)
$$

If we change $a \rightarrow a+4, N \rightarrow N-4, x \rightarrow x-4$ then we obtain $\omega_{a, b, N}^{F_{4}}=(x-1)(x-3) \omega_{a, b, N}$.

A KRALL-HAHN EXAMPLE

Let $a=1 / 2, b=-1 / 3, N=9, F_{4}=\{1,3\}, G_{4}=I\left(F_{4}\right)=\{1,3\}$. The polynomials

$$
\frac{q_{n}^{G_{4}}(x)}{\Omega(n)}=h_{n}^{1 / 2,-1 / 2,9}(x)+\beta_{n, 1} h_{n-1}^{1 / 2,-1 / 2,9}(x)+\beta_{n, 2} h_{n-2}^{1 / 2,-1 / 2,9}(x)
$$

for some choice of sequences $\beta_{n, 1}, \beta_{n, 2}$ are orthogonal with respect to

$$
\tilde{\omega}_{a, b, N}^{F_{4}}=(x+3)(x+1) \omega_{a-4, b, N+4}(x+4)
$$

If we change $a \rightarrow a+4, N \rightarrow N-4, x \rightarrow x-4$ then we obtain $\omega_{a, b, N}^{F_{4}}=(x-1)(x-3) \omega_{a, b, N}$.
The difference operator (of order 8) satisfying $D_{q}\left(q_{n}^{G_{4}}\right)=\lambda_{n} q_{n}^{G_{4}}$ is given by
$D_{q}=\frac{1}{2} P\left(D_{a, b, N}\right)+\tilde{M}_{1}\left(D_{a, b, N}\right) \mathcal{D}_{4} R_{1}^{-a,-b,-2-N}\left(D_{a, b, N}\right)+\tilde{M}_{2}\left(D_{a, b, N}\right) \mathcal{D}_{4} R_{3}^{-a,-b,-2-N}\left(D_{a, b, N}\right)$
where $D_{a, b, N}$ is the Hahn operator, \mathcal{D}_{4} is the fourth \mathcal{D}-operator for the Hahn family and

$$
\begin{aligned}
P(x) & =\frac{2}{70785} x\left(2 x^{3}+192 x^{2}+3925 x+34656\right) \\
\tilde{M}_{1}(x) & =-\frac{4}{2145} x^{2}-\frac{84}{715} x-\frac{12}{11}, \quad \tilde{M}_{2}(x)=\frac{4}{11} \\
\lambda_{n} & =\frac{2}{70785} n(n+1)\left(2 n^{6}+6 n^{5}+198 n^{4}+386 n^{3}+4117 n^{2}+3925 n+34656\right)
\end{aligned}
$$

