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Families of orthogonal polynomials (OPs) (pn)n satisfying

D(pn(x)) = �npn(x), where D =

kX

l=1

fl(x)
dl

dxl

where fl, l = 1, . . . , k, are polynomials of degree at most l independent of n.

• k = 2: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).

• k � 6: A. M. Krall, L. Littlejohn, Koekoek’s, Zhedanov, Kwon, Lee, Grünbaum-

Haine (Darboux transformation), Iliev, etc.

Typically all examples are orthogonal with respect to a measure of the form

!(x) +
m�1X

j=0

aj , �
(j)
x0

, aj 2 R

where ! is a classical weight and x0 is an endpoint of the sup(!).
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Families of discrete OPs (pn)n satisfying di↵erence equations

D(pn(x)) = �npn(x), where D =
rX

l=s

fl(x)sl

where fl, l = 1, . . . , k, are polynomials independent of n and sl(p) = p(x+ l).
Here r, s 2 Z, r � s, and the order is defined by r � s � 0.

It was not until very recently (Durán, 2012) where the first examples appeared (he also
proved that s = �r. Then the order must be even).
Typically now the measures are of the form

!F (x) =
Y

f2F

(x� f)!(x)

where ! is a classical discrete weight and F is a finite set of real numbers.
This is also called a Christo↵el transform of ! (related to the Geronimus transform).
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The same can be done with Meixner, Krawtchouk and Hahn families.

Positivity: If F =
S

Fi where Fi contains consecutive nonnegative integers, then !F is
positive if and only if the cardinal of each Fi is even for all i.
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