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Krall polynomials



SOME HISTORY

Families of orthogonal polynomials (OPs) (p, ), satisfying

dl
D(pn — )\n n ) h D =
(9 () = Aupn(z),  where Zfl -
where f;,l =1,...,k, are polynomials of degree at most [ independent of n.

e ik =2: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).
S. Bochner (1929): complete classification.

11 (1939). k Dhest Sserovdioanilledehec Rolympmsysfemecamples:
51), e~ * 4+ Moy and (1 — ZE) X%ml + Mg

S. Bochner "in chen.
1, L. Littlejohn, Koekoek’s, Zhedanov, Kwon, Lee, Grinbaum-
anSfOTmatm))etEi:ﬁﬂén @fgendeine Differentialgleichung der Foim
 eX¢

eXan Bples ard orthogonalpstad b’ regpedty té » @measire=of .the form
¥ Die Koeffizienten f o(2), Py (2), Py (x) sind 1rgendwelche reell- oder komplex-
I

N i werti der Variablen #; von denen wir in erster Linie nur
k\ : | A {:b)?leh b d édég; :::iﬂtffi& %emeins:eme:i\ Ir;';erv;ll J1 der
x-Achse eﬁ.nbe ind; un eutet einen Parameter, der aller komplexen

Sovmn Prtdiac Werte filug ist.

where w is a classical weight and x( is an endpoint of the sup(w).



DISCRETE CASE

Families of discrete OPs (p, ), satisfying difference equations
D(pn(x)) = Anpn(x), where D= fi(z)S
l=s

where f;,l =1,...,k, are polynomials independent of n and §;(p) = p(z + ).
Here r,s € Z,r > s, and the order is defined by » — s > 0.

e 1 = —s = 1: Chebychev (1858).
Charlier, Meixner, Krawtchouk and Hahn (20th century).
O. E. Lancaster (1941): complete classification.

o r—=—5>2: T%W%ﬂhﬁi@%?@%ﬁcﬂ%%@%suppom does not
work here (Bavinck-van Haeringen?ﬁo&ogl%‘, f1994). However it works if one con-
siders ¢-difference equations (G?ﬁﬂﬁ‘i%ll—‘ffgfﬁ’é“f"l996 and Vinet-Zhedanov, 2001).

It was not until very recently (Duran, 2012) where the first examples appeared (he also
proved that s =1—ntrpdpsHopk Menyl apalogant Hyepatiengt differential and differ-

Typica]]y now f‘%mfﬁ’le‘ }S}%ﬁ?e%ze%f{lgifdtpg?gltﬂﬁse analogies are extended to include

some 1deas relative rthogonal solutions of difference equations. ¥
Although some general theorems ari_i':en, the main study is confined to § 5,

polynomial solutions of diﬁéreﬁ@é)eq_uat 0 (& theff)él*a’n(aj )
(1) (a2®+ bo + c)A%y(2) + (da Afay(2) +Ay(z+h) — 0

where w is avepagdien? dilerotersweibifiasnde 2 s o dinide set cofsiadd mtbers.
This is also EaflEA§Re 4 YOS (TEHURSTLEC 8F &9 (PET @ P e SO Biimus transform).




FIRST EXAMPLES: DURAN (2012)

Let wq(x) = E a—'éx, a > 0 be the Charlier weight
!
reN

o F={1}: w'(2) = (x — DNwg(x) = =g + Z ;,;(gjaj 2)!%, a>0

Then, the corresponding OPs are eigentunctions of a fourth-order difference operator

D=x(x—3)S_s—2x(x—2)§_1 +z(z +2a — 1)S¢ — 2xaS; +a°S>, a#1,2,...

o F={12}: wh(z) =(x—1)(z —2ws(x) =25 + Z x(azaj 3)!5:1;, a>0

Then, the corresponding OPs are eigenfunctions of a sixth-order difference operator

4 _
D :Q:U(x ; )53 — 6x<x , 3)52 + 3z(z —3)(x+a—2)5_4

—x(z — 2)(x +6a — 1)S¢ + 3az(z +a — 1)$; — 3a°xSs + >S5

The same can be done with Meixner, Krawtchouk and Hahn families.



FIRST EXAMPLES

If we call pp(z) = H (x—f), then it is possible to generate examples of OPs with respect
Jer

F' = prw satisfying higher-order difference equations in the following situations:

to w

pr(z), p_e—r(x), PN_1-F(T), Patr(z)

where p(x) = p(—x), ¢c,a, N € R and F is a finite set of positive integers.

Positivity: If F' = | J F; where F; contains consecutive nonnegative integers, then w’ is

positive if and only if the cardinal of each Fj is even for all 1.

In all the examples gave by Duran in 2012, the sets F' contains consecutive positive
integers. A number of conjectures were proposed stating that this can always be done
for any set F' (not necessarilly consecutive). Moreover, the order of the higher-order
difference operator can be explicitly computed.

Some of these conjectures (for the Charlier, Meixner and Krawtchouk families) were
recently proved by Duran-MdI in 2014. In these cases the corresponding eigenvalue of
the second-order difference equation is linear in n.

More recently, in 2015, Duran-MdI worked out the Hahn case, where now the difficulty
comes in the fact that the corresponding eigenvalue of the second-order difference equa-
tion is nonlinear in n (quadratic).



Krall-Hahn polynomials. An example



HAHN POLYNOMIALS

Fora,a+b+1,a+b+N+1+# —1,—2,... we consider the Hahn polynomials defined by

" (—2)i(N —n+1Dp_jla+b+ 1)1,
ha,b,N _ ( ZIZ‘)]( J J 7 0
7N @) = 2+atbtNp(atl);(n—jy

§=0
Hahn polynomials are eigenfunctions of the second-order difference operator

Dopn =2(z—b—N-1)§_1—[(z+a+1)(z—N)+z(z—b—N-1)|50+(z+a+1)(z—N)S;

That is
Doy n(RE"NY = 0,h%5N 0, =n(n4+a+b+1), n>0

’

They satisfy the following three-term recurrence formula (TTRR) (h

a,b N __ a,b,N a,b,N a,b,N
xh, = apt1h, . + bnhy, +cph,7, n >0,

where

nn+a)n+a+b+N+1)

an:_(Qn—ka—kb—1)(2n+a+b)7
o Na+1)(a+b)+n2N+b—a)(n+a+b+1)
" 2n+a+b)(2n+a-+b+2) ’
cn:_(n—l—a—l—b)(n—l—b)(N—n—l—1)

2n+a+b)2n+a+b+1)



HAHN POLYNOMIALS

When N +1 is a positive integer, a,b # —1,—2,...,—N,and a+b # —1,—-2,..., —2N —1,
the first N + 1 Hahn polynomials are orthogonal with respect to the Hahn measure

Oz

a+z+ 10N —z+b+1)
pabN—N'Z (N—Q?)'

The discrete measure p, p n 1s positive only when a,b > —1 or a,b < —N.

We also need the so-called dual Hahn polynomials, a # —1, -2, ...

RN (@) =3 “”“}?jig !”)n—:f [Tl —iG+a+bs) nz0

Observe that (—1) Z 5((13(33 +a+b+1)—i(la+b+1+4) =(—x)j(zr+a+b+1);,
theretore we have the duality

(=D)"n!(N+a+b+2)n(—=N)s 1,0:0,N

RN b+ 1)) =
¥ (nn+a+b+1)) @+t DN, -



AN EXPLICIT EXAMPLE

Let FF = {1,3} and consider the discrete weight
Pap,n(2) = (& = 1)(2 = 3)pap,v ()
Now consider the change of variables
a—a—4, b—b N-—->N+4 zxz—zxz+4

The new weight is given by
The key torproye that(qu_l_ 3'5 %n T Bafoi" b()N§ (< n 1), 1 and :13 gné) 7f 0 1 1s

Pa,b,N
For this new Wél%hthwe trgf Todiite i Ofs) ﬂjn)fln 2 (@ (kY3 ?&ﬂ@%m@%&zrau determinant
0= B (F)Y1(0-1) + B2(F)Y; (9—1)
0 # BGPPYENO—o) HEREE IR (0_ohes (z)

for certain sequenceg”A%()n,:Fﬁ%ﬁzﬁégﬁgtal‘gts—Bléﬁge@—(@' %/14‘9@ 2)
This happens when Y7, Y5 saf gsf)éyp@gfglloy ng 1aG{Pency rejaiion 2@&8 a function of n)

where €, ; = CotyEaBHE Lhiq eyt geXa pollmodait 1 (n)

where ¢,, = —Z—]:Z and a,, b,, c, are the coefficients of the TTRR for the Hahn family.
The solutions are given by the dual Hahn polynomials Rj_a’_b’_Q_N(n +a+0).



AN EXPLICIT EXAMPLE

The right choice Y7, Y2 comes from the following involution of the the set F' = {1, 3}:
I(F)={1,2,.... max F'} \ {max F' — f, f € F'}

In this case I(F) = {1,3}. That means that

Yl(:v>=R1[“”””(x+a+b), =Ry " V(@ +a+b)

The OPs (g,)n with respect to pf" are then given by

hiy N () —h "y (x) Py ()

In = |EnaRy " " N0+ a+b) & R NG 4a+b) RN, 04+ a+b)
gn,QRg_a,_b’_2_N((9n 4+ a+ b) fn_l,lRS—a,—b,—Q—N(en_l 4+ a+ b) R;a,—b,—2—N(9n_2 4+ a4 b)

Now that we have the idea of constructing the polynomials (g, ), let us compute the
explicit expression of the higher-order difference operator for which the polynomials (qy, )
are eigenfunctions and the corresponding order.




AN EXPLICIT EXAMPLE

The higher-order difference operator can be written as

1 § g
D, :§P(Da,b,N)+M1(Da,b,N)DRl 2N (D)

Here P, M 1 and Mg are certain polynomials in 6, (we will explain later how to calculate
them) and D is what is called a D-operator for the Hahn family:

b+ 1
D:“+2+ I+(@—b=N—1)V

where V(f) = (§0 —$-1)f = f(z) — f(z - 1).

For instance, if we fix the parameters a = 1/2,b = —1/2 and N = 9, then we have

P(z) = 70785:1:(23:3 +1922% + 3925z + 34656)

- 4, 84 12

@) == o ~ Tt T
4

order(D,)=8
My(e) = ’

6n° + 198n* 4 386n°> + 4117n° + 3925n + 34656)



Krall-Hahn polynomials. General case



GENERAL CASE

In order to study the Krall-Hahn OPs (q,), we will follow the following guideline:

1. Computation of the higher-order difference operator

This result will be valid for any family of polynomials (p,), (not necessarily or-
thogonal) eigenfunctions of certain operator, i.e. D(p,) = 0,p,. It is based on the
abstract concept of D-operator and there will be Y7, ....Y,, arbitrary polynomials.

2.  Orthogonality

Only for a convenient choice of the polynomials Y7, ...,Y,,, the polynomials (¢ )
are also orthogonal with respect to a measure. We already have a clue on how to
construct this measure in terms of Christoffel transforms of the Hahn weight. The
right choice of the polynomials Y7,...,Y,, will be certain families of dual Hahn

polynomials.



D-OPERATORS

Let A be an algebra of difference operators acting in the linear space of polynomials P

_A_{Zhlﬁl:hZEP,l—S,...,T,SST}

l=s

We will work with the Hahn polynomials (h%:%"),, for which we know that there exists

a second-order difference operator D, ; ny € A such that

Doy n(h&PNY =0,h%0N 0, =n(n+a+b+1)

Given two sequences of numbers (¢,), and (o, ), a D-operator (of type 2) associated to
the algebra A and the Hahn polynomials is defined as

1 “ .
D(h%’b’N) — —§O'n-|_1hg’b’N + Z(—1)3+10'n_j+18n oo €n_j_|_1ha’b’N n >0

n—j
j=1

We then say that D is a D-operator if D € A.



D-OPERATORS

There are four different D-operators for the Hahn polynomials. They are defined by the
sequences (€n.p)n and (o, )n, h =1,2,3,4, given by

n—N-+1
En,l — — ’
L o Ya+brN+1
B (n+b)(n—N+1)
" T m+a)(n+a+b+N+1)
€n,3 = 1,
n—+b
n,4 — 9
n—+a

These sequences define four D-operators:

bh+1
D, = a+2+ [+2V,
a+b+1

2

D3 =

I+ (x+a+1)A,

on=—-02n+a+b—1),

o, =—-02n+a+b—1),
on=—2n4+a+b—1),

on=—2n+a+b-1).

DQ— 9 1 (ZIZ—N)A,
b+ 1
D4—a—|—2—|— 1 (ZE—b—N—l)V,

where A(f) = f(z +1) = f(z), V(f) = f(z) — flz - 1).

From now on we will restrict our attention ONLY to the fourth D-operator, in which
case we will use the notation ¢,,,0, and D. All the results can be generalize to include
all the D-operators for the Hahn polynomials.



THEOREM (DURAN-MDI, 2015)

Let &, ; = H‘ZL;% Exn = (—1)7 ((z:jizii))j and Y7,...,Y,, arbitrary polynomials such that
J

Qn) = det (En—jun— Yi(0n— )}y #0| 1 >0

Consider the sequence of polynomials (¢, )n

hiy" N () —hy7 (x) (D)™ ()
‘Sn,myl (en) fn—l,m—lyl (gn—l) T Yl (en—m)
Gn(T) = . : :
fn,mym(en) gn—l,m—lym((gn—l) " Ym(en—m)

REMARK: g,(x) is a linear combination of m + 1 consecutive Hahn polynomials.
Define the rational function S(x) given by

]m

(x—m+a+1),_1

q(x) (x—m+b+1)pms(x—m+1+a)m_y



THEOREM (DURAN-MDI, 2015)

With this choice of S(z) for the Hahn polynomials we get the following properties
1. S(x)Q(x) is a polynomial in x
Then, define the polynomial (eigenvalue) A, by

)\az — )\:13—1 — S(%)Q(w)
2. There exist My, ..., M,,, polynomials in x such that My (x) = 0x+1Mh(9x), where

Mh ($) — Z(_l)h+j€x,m—js(x - ]) det (€w+j—’r,m—fr‘Yl(9w+j—r))lg]1h;re]1j
j=1

where I, = {1,2,...,m} \ {h}.
3. There exists a polynomial Pg such that Pg(6,) = 2\, + Z Yn(0,) My (x)
h=1

Pg also satisfies Ps(0,;) — Ps(0,-1) = S(z)Q(x) + S(x + m)Q(x + m).

Then there exists an operator D, s € A such that D, s(¢n) = Angn, n > 0, where the
operator D, s is defined by

1 —\ -
Dys = §PS(Da,b,N) + > Mp(Dap,n)DYn(Dap,n)
h=1



ORTHOGONALITY

Consider the m-tuple G of m positive integers, G = (¢1,...,9m) and define

hiy® N (2) —hyy () o (=DM R ()
G fn,mZm (en) gn—l,m—lzm (Qn—l) T Zg1 (en—m)
Iy (¥) = , . .
€n,mng (Qn) fn—l,m—lZ m (en—l) e ng (en—m)

The polynomials (qu ) are orthogonal with respect to certain measure p if

(p, h2ONY = ZA n >0,

0= ZBn(G)Z;i(Hn), 1-m<n<0,

0# ) C(G)Z;,(0-m),

This will always be possible if (Z;(n))nez satisfies

Cn .
€n+1an+1Zj (n R 1) — anJ (n) R g—ZJ(n — 1) — (] + 1)Z](n), n € 7

where (@, )n, (bn)n and (¢, ), are the coefficients of the TTRR for the Hahn polynomials.
In this case we have that this recurrence relation is satisfied by the dual Hahn polynomial

Rj_a’_b’_2_N($ +a+0b), j>0



ORTHOGONALITY

For any set F' of positive integers, call max F' = f,;, and consider

G:{1,2,,fM}\{fM_fafEF}:(glaagm)

and the measure

laib,N = H (x+ fmr+1— f)pa—ta—1bN+fu+1(@+ far +1)

JeF

Then, for 0 < n < N + m, the polynomials

(—1)7the Y (2) P
an(w) — F.n—j,m—jRg_%_b,_Q_N((gn—j + a + b) ]
g e G

are orthogonal with respect to ﬁg, p. v and they are eigenfunctions of a higher-order dif-
ference operator D, s of order

ord(Dgs) =2 > f- <#2F) +1

feF

REMARK: After a proper change of variables the measure p, , n can be transformed
into the measure p, , ;v = [ ;cp (% — f)pap,n and the conjecture of A. Durdn is proved.



COMBINATION OF ALL D-OPERATORS

It is possible to combine the four D-operators and get the same result:

—17.a,bbN
(—1)/ 1hn—|—1—j (z) j=1,....m+1
f %—jﬂn—jfﬁ;h_%%a+b+JV(en—j'+(14‘b) -

..g c Gy .

_ %_j,m_jRga’_b’a—i_b—i_N(HN—j + a4+ b)

{q,(x) = | lg € Gy |

,_ ??;—j,m—jRg_b’_%_Q_N(en—j +a+b) ]
”'.g 65(23 _

_ i_j,m_jRg_a’_b’_z_N(en—j + a4+ b)

g € Gy

where m = my + m3+ ms + my, and m; denotes de cardinad’

Then, the associate'.

pasv = ]] (b‘_‘ 1—f—x) 11 (a;+a'—f)

fer hN feFs

Wsure is, for certain sets of positive. ifitegers Fy,i = 1,2,3,4

X H ( + f— ) H (x + fa,m )Pa,gyﬁ(w + fanmr +1)
fEF;3 fEF,

where f; pr = max F; and

d=a—forr—far—2, b=b—finr—fau—2, N=N+ fanr + farr +2






