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Krall polynomials



SOME HISTORY

• k = 4: H. L. Krall (1939). k must be even and there are 3 NEW examples:

�[�1,1] +M(��1 + �1), e
�x +M�0 and (1� x)↵�[0,1] +M�0

Families of orthogonal polynomials (OPs) (pn)n satisfying

D(pn(x)) = �npn(x), where D =

kX

l=1

fl(x)
d

l

dx

l

where fl, l = 1, . . . , k, are polynomials of degree at most l independent of n.

• k = 2: Legendre (18th century). Jacobi, Hermite and Laguerre (19th century).

S. Bochner (1929): complete classification.

• k � 6: A. M. Krall, L. Littlejohn, Koekoek’s, Zhedanov, Kwon, Lee, Grünbaum-
Haine (Darboux transformation), Iliev, etc.

Typically all examples are orthogonal with respect to a measure of the form

!(x) +
m�1X

j=0

a

j

, �

(j)
x0

, a

j

2 R

where ! is a classical weight and x0 is an endpoint of the sup(!).



DISCRETE CASE

O. E. Lancaster (1941): complete classification.

Families of discrete OPs (pn)n satisfying di↵erence equations

D(pn(x)) = �npn(x), where D =
rX

l=s

fl(x)sl

where fl, l = 1, . . . , k, are polynomials independent of n and sl(p) = p(x+ l).
Here r, s 2 Z, r � s, and the order is defined by r � s � 0.

It was not until very recently (Durán, 2012) where the first examples appeared (he also

proved that s = �r. Then the order must be even).

Typically now the measures are of the form

!

F
(x) =

Y

f2F

(x� f)!(x)

where ! is a classical discrete weight and F is a finite set of real numbers.

This is also called a Christo↵el transform of ! (related to the Geronimus transform).

• r = �s � 2: The trick of adding deltas at the endpoints of the support does not
work here (Bavinck-van Haeringen-Koekoek, 1994). However it works if one con-
siders q-di↵erence equations (Grünbaum-Haine, 1996 and Vinet-Zhedanov, 2001).

• r = �s = 1: Chebychev (1858).

Charlier, Meixner, Krawtchouk and Hahn (20th century).



FIRST EXAMPLES: DURÁN (2012)
Let !

a

(x) =
X

x2N

a

x

x!
�

x

, a > 0 be the Charlier weight

Then, the corresponding OPs are eigenfunctions of a fourth-order di↵erence operator

D = x(x� 3)s�2 � 2x(x� 2)s�1 + x(x+ 2a� 1)s0 � 2xas1 + a

2s2, a 6= 1, 2, . . .

• F = {1, 2}: !F (x) = (x� 1)(x� 2)!
a

(x) = 2�0 +
1X

x=3

a

x

x(x� 3)!
�

x

, a > 0

• F = {1}: !F (x) = (x� 1)!
a

(x) = ��0 +
1X

x=2

a

x

x(x� 2)!
�

x

, a > 0

Then, the corresponding OPs are eigenfunctions of a sixth-order di↵erence operator

D =2x

✓
x� 4

2

◆
s�3 � 6x

✓
x� 3

2

◆
s�2 + 3x(x� 3)(x+ a� 2)s�1

� x(x� 2)(x+ 6a� 1)s0 + 3ax(x+ a� 1)s1 � 3a2xs2 + a

3s3

The same can be done with Meixner, Krawtchouk and Hahn families.



FIRST EXAMPLES
If we call pF (x) =

Y

f2F

(x�f), then it is possible to generate examples of OPs with respect

to !

F = pF! satisfying higher-order di↵erence equations in the following situations:

pF (x), p�c�F (x), p̆N�1�F (x), p̆↵+F (x)

where p̆(x) = p(�x), c,↵, N 2 R and F is a finite set of positive integers.

Positivity: If F =

S
Fi where Fi contains consecutive nonnegative integers, then !F

is

positive if and only if the cardinal of each Fi is even for all i.

In all the examples gave by Durán in 2012, the sets F contains consecutive positive

integers. A number of conjectures were proposed stating that this can always be done

for any set F (not necessarilly consecutive). Moreover, the order of the higher-order

di↵erence operator can be explicitly computed.

Some of these conjectures (for the Charlier, Meixner and Krawtchouk families) were

recently proved by Durán-MdI in 2014. In these cases the corresponding eigenvalue of

the second-order di↵erence equation is linear in n.

More recently, in 2015, Durán-MdI worked out the Hahn case, where now the di�culty
comes in the fact that the corresponding eigenvalue of the second-order di↵erence equa-
tion is nonlinear in n (quadratic).



Krall-Hahn polynomials. An example



HAHN POLYNOMIALS
For a, a+ b+1, a+ b+N +1 6= �1,�2, . . . we consider the Hahn polynomials defined by

h

a,b,N
n (x) =

nX

j=0

(�x)j(N � n+ 1)n�j(a+ b+ 1)j+n

(2 + a+ b+N)n(a+ 1)j(n� j)!j!
, n � 0

Hahn polynomials are eigenfunctions of the second-order di↵erence operator

Da,b,N = x(x�b�N�1)s�1�
⇥
(x+a+1)(x�N)+x(x�b�N�1)

⇤
s0+(x+a+1)(x�N)s1

That is
Da,b,N (ha,b,N

n ) = ✓nh
a,b,N
n , ✓n = n(n+ a+ b+ 1), n � 0

They satisfy the following three-term recurrence formula (TTRR) (h

a,b,N
�1 = 0)

xh

a,b,N
n = an+1h

a,b,N
n+1 + bnh

a,b,N
n + cnh

a,b,N
n�1 , n � 0,

where

an = �n(n+ a)(n+ a+ b+N + 1)

(2n+ a+ b� 1)(2n+ a+ b)

,

bn =

N(a+ 1)(a+ b) + n(2N + b� a)(n+ a+ b+ 1)

(2n+ a+ b)(2n+ a+ b+ 2)

,

cn = � (n+ a+ b)(n+ b)(N � n+ 1)

(2n+ a+ b)(2n+ a+ b+ 1)



HAHN POLYNOMIALS
When N+1 is a positive integer, a, b 6= �1,�2, . . . ,�N , and a+b 6= �1,�2, . . . ,�2N�1,
the first N + 1 Hahn polynomials are orthogonal with respect to the Hahn measure

⇢

a,b,N

= N !
NX

x=0

�(a+ x+ 1)�(N � x+ b+ 1)

x!(N � x)!
�

x

The discrete measure ⇢

a,b,N

is positive only when a, b > �1 or a, b < �N .

We also need the so-called dual Hahn polynomials, a 6= �1,�2, . . .

R

a,b,N

n

(x) =
nX

j=0

(�1)j(�n)
j

(�N + j)
n�j

(a+ 1)
j

j!

j�1Y

i=0

[x� i(i+ a+ b+ 1)], n � 0

Observe that (�1)j
Q

j�1
i=0 (x(x + a + b + 1) � i(a + b + 1 + i)) = (�x)

j

(x + a + b + 1)
j

,
therefore we have the duality

R

a,b,N

x

(n(n+ a+ b+ 1)) =
(�1)nn!(N + a+ b+ 2)

n

(�N)
x

(a+ b+ 1)
n

(�N)
n

h

a,b,N

n

(x), x, n � 0



AN EXPLICIT EXAMPLE
Let F = {1, 3} and consider the discrete weight

⇢

F
a,b,N (x) = (x� 1)(x� 3)⇢a,b,N (x)

Now consider the change of variables

a ! a� 4, b ! b, N ! N + 4, x ! x+ 4

The new weight is given by

⇢̃

F
a,b,N (x) = (x+ 3)(x+ 1)⇢a�4,b,N+4(x+ 4), x = �4,�2, 0, 1, . . . , N

For this new weight we try to write its OPs (q
n

)
n

as the following Casorati determinant

q

n

(x) =

���������

h

a,b,N

n

(x) �h

a,b,N

n�1 (x) h

a,b,N

n�2 (x)

⇠

n,2Y1(✓n) ⇠

n�1,1Y1(✓n�1) Y1(✓n�2)

⇠

n,2Y2(✓n) ⇠

n�1,1Y2(✓n�1) Y2(✓n�2)

���������

where ⇠

x,j

= (�1)j
(x�j+b+1)j
(x�j+a+1)j

and Y1, Y2 are certain polynomials.

The key to prove that h⇢̃F , xj
qni = 0 for 0  j  n� 1 and h⇢̃F , xn

qni 6= 0 is

h⇢̃F , ha,b,N
n i = A1(n, F )Y1(✓n) +A2(n, F )Y2(✓n), n � 0,

0 = B1(F )Y1(✓�1) +B2(F )Y1(✓�1),

0 6= C1(F )Y1(✓�2) + C2(F )Y2(✓�2),

for certain sequences Ai(n, F ) and constants Bi(F ), Ci(F ), i = 1, 2.

This happens when Y1, Y2 satisfy the following recurrence relations (as a function of n)

"n+1an+1Yj(n+ 1)� bnYj(n) +
cn
"n

Yj(n� 1) = (j + 1)Yj(n)

where "n = � n+b
n+a and an, bn, cn are the coe�cients of the TTRR for the Hahn family.

The solutions are given by the dual Hahn polynomials R�a,�b,�2�N
j (n+ a+ b).



AN EXPLICIT EXAMPLE
The right choice Y1, Y2 comes from the following involution of the the set F = {1, 3}:

I(F ) = {1, 2, . . . ,maxF} \ {maxF � f, f 2 F}

In this case I(F ) = {1, 3}. That means that

Y1(x) = R

�a,�b,�2�N
1 (x+ a+ b), Y2(x) = R

�a,�b,�2�N
3 (x+ a+ b)

The OPs (qn)n with respect to ⇢̃

F are then given by

qn =

���������

h

a,b,N
n (x) �h

a,b,N
n�1 (x) h

a,b,N
n�2 (x)

⇠n,2R
�a,�b,�2�N
1 (✓n + a+ b) ⇠n�1,1R

�a,�b,�2�N
1 (✓n�1 + a+ b) R

�a,�b,�2�N
1 (✓n�2 + a+ b)

⇠n,2R
�a,�b,�2�N
3 (✓n + a+ b) ⇠n�1,1R

�a,�b,�2�N
3 (✓n�1 + a+ b) R

�a,�b,�2�N
3 (✓n�2 + a+ b)

���������

Now that we have the idea of constructing the polynomials (qn)n let us compute the

explicit expression of the higher-order di↵erence operator for which the polynomials (qn)n
are eigenfunctions and the corresponding order.



AN EXPLICIT EXAMPLE
The higher-order di↵erence operator can be written as

D

q

=
1

2
P (D

a,b,N

) + M̃1(Da,b,N

)DR

�a,�b,�2�N

1 (D
a,b,N

)

+ M̃2(Da,b,N

)DR

�a,�b,�2�N

3 (D
a,b,N

)

Here P , M̃1 and M̃2 are certain polynomials in ✓

x

(we will explain later how to calculate
them) and D is what is called a D-operator for the Hahn family:

D =
a+ b+ 1

2
I + (x� b�N � 1)r

where r(f) = (s0 � s�1)f = f(x)� f(x� 1).

For instance, if we fix the parameters a = 1/2, b = �1/2 and N = 9, then we have

P (x) =
2

70785
x(2x3 + 192x2 + 3925x+ 34656)

M̃1(x) =� 4

2145
x

2 � 84

715
x� 12

11

M̃2(x) =
4

11

and the OPs (qn)n are eigenfunctions of Dq, i.e. Dq(qn) = �nqn, where

�n =
2

70785
n(n+ 1)(2n6 + 6n5 + 198n4 + 386n3 + 4117n2 + 3925n+ 34656)

order(Dq)=8



Krall-Hahn polynomials. General case



GENERAL CASE

2. Orthogonality

Only for a convenient choice of the polynomials Y1, . . . , Ym, the polynomials (qn)n
are also orthogonal with respect to a measure. We already have a clue on how to
construct this measure in terms of Christo↵el transforms of the Hahn weight. The
right choice of the polynomials Y1, . . . , Ym will be certain families of dual Hahn
polynomials.

In order to study the Krall-Hahn OPs (qn)n we will follow the following guideline:

1. Computation of the higher-order di↵erence operator

This result will be valid for any family of polynomials (pn)n (not necessarily or-

thogonal) eigenfunctions of certain operator, i.e. D(pn) = ✓npn. It is based on the

abstract concept of D-operator and there will be Y1, . . . , Ym arbitrary polynomials.



D-OPERATORS

Given two sequences of numbers ("n)n and (�n)n, a D-operator (of type 2) associated to
the algebra A and the Hahn polynomials is defined as

D(ha,b,N
n ) = �1

2
�n+1h

a,b,N
n +

nX

j=1

(�1)j+1�n�j+1"n · · · "n�j+1h
a,b,N
n�j , n � 0

We then say that D is a D-operator if D 2 A.

Let A be an algebra of di↵erence operators acting in the linear space of polynomials P

A =

(
rX

l=s

hlsl : hl 2 P, l = s, . . . , r, s  r

)

We will work with the Hahn polynomials (ha,b,N
n )n for which we know that there exists

a second-order di↵erence operator Da,b,N 2 A such that

Da,b,N (ha,b,N
n ) = ✓nh

a,b,N
n , ✓n = n(n+ a+ b+ 1)



D-OPERATORS
There are four di↵erent D-operators for the Hahn polynomials. They are defined by the
sequences ("n,h)n and (�n)n, h = 1, 2, 3, 4, given by

"n,1 = � n�N + 1

n+ a+ b+N + 1
, �n = �(2n+ a+ b� 1),

"n,2 =
(n+ b)(n�N + 1)

(n+ a)(n+ a+ b+N + 1)
, �n = �(2n+ a+ b� 1),

"n,3 = 1, �n = �(2n+ a+ b� 1),

"n,4 = �n+ b

n+ a
, �n = �(2n+ a+ b� 1).

These sequences define four D-operators:

D1 =

a+ b+ 1

2

I + xr, D2 =

a+ b+ 1

2

I + (x�N)�,

D3 =

a+ b+ 1

2

I + (x+ a+ 1)�, D4 =

a+ b+ 1

2

I + (x� b�N � 1)r,

where �(f) = f(x+ 1)� f(x),r(f) = f(x)� f(x� 1).

From now on we will restrict our attention ONLY to the fourth D-operator, in which
case we will use the notation "n,�n and D. All the results can be generalize to include
all the D-operators for the Hahn polynomials.



THEOREM (DURÁN-MDI, 2015)
Let ⇠

x,j

=

Q
j�1
h=0 "x�h

= (�1)

j

(x�j+b+1)j
(x�j+a+1)j

and Y1, . . . , Ym

arbitrary polynomials such that

⌦(n) = det (⇠
n�j,m�j

Y
l

(✓
n�j

))

m

l,j=1 6= 0, n � 0

Consider the sequence of polynomials (qn)n defined by

qn(x) =

������������

h

a,b,N
n (x) �h

a,b,N
n�1 (x) · · · (�1)mh

a,b,N
n�m (x)

⇠n,mY1(✓n) ⇠n�1,m�1Y1(✓n�1) · · · Y1(✓n�m)
...

...
. . .

...

⇠n,mYm(✓n) ⇠n�1,m�1Ym(✓n�1) · · · Ym(✓n�m)

������������

REMARK: qn(x) is a linear combination of m+ 1 consecutive Hahn polynomials.
Define the rational function S(x) given by

S(x) = ��

x�m�1
2

[(x�m+ a+ 1)

m�1]
m

q(x)

m�1Y

i=1

(x�m+ b+ 1)

m�i

(x�m+ i+ a)

m�i

where q(x) = (�1)

m(m�1)
2

m�1Y

p=1

 
pY

s=1

�

x�m+ s+p+1
2

!
.



THEOREM (DURÁN-MDI, 2015)
With this choice of S(x) for the Hahn polynomials we get the following properties

1. S(x)⌦(x) is a polynomial in x

Then, define the polynomial (eigenvalue) �
x

by

�

x

� �

x�1 = S(x)⌦(x)

2. There exist

˜

M1, . . . ,
˜

M

m

, polynomials in x such that M

h

(x) = �

x+1
˜

M

h

(✓

x

), where

M

h

(x) =

mX

j=1

(�1)

h+j

⇠

x,m�j

S(x+ j) det (⇠

x+j�r,m�r

Y

l

(✓

x+j�r

))

l2Ih;r2Ij

where I
h

= {1, 2, . . . ,m} \ {h}.

3. There exists a polynomial P

S

such that P

S

(✓

x

) = 2�

x

+

mX

h=1

Y

h

(✓

x

)M

h

(x)

P

S

also satisfies P

S

(✓

x

)� P

S

(✓

x�1) = S(x)⌦(x) + S(x+m)⌦(x+m).

Then there exists an operator Dq,S 2 A such that Dq,S(qn) = �nqn, n � 0, where the

operator Dq,S is defined by

Dq,S =

1

2

PS(Da,b,N ) +

mX

h=1

˜Mh(Da,b,N )DYh(Da,b,N )



ORTHOGONALITY
Consider the m-tuple G of m positive integers, G = (g1, . . . , gm) and define

q

G
n (x) =

������������

h

a,b,N
n (x) �h

a,b,N
n�1 (x) · · · (�1)

m
h

a,b,N
n�m (x)

⇠n,mZg1(✓n) ⇠n�1,m�1Zg1(✓n�1) · · · Zg1(✓n�m)

.

.

.

.

.

.

.

.

.

.

.

.

⇠n,mZgm(✓n) ⇠n�1,m�1Zgm(✓n�1) · · · Zgm(✓n�m)

������������

This will always be possible if (Zj(n))n2Z satisfies

"n+1an+1Zj(n+ 1)� bnZj(n) +
cn
"n

Zj(n� 1) = (j + 1)Zj(n), n 2 Z

where (an)n, (bn)n and (cn)n are the coe�cients of the TTRR for the Hahn polynomials.

The polynomials (qGn )n are orthogonal with respect to certain measure ⇢̃ if

h⇢̃, ha,b,N
n i =

mX

i=1

An(G)Zi
gi(✓n), n � 0,

0 =

mX

i=1

Bn(G)Zi
gi(✓n), 1�m  n < 0,

0 6=
mX

i=1

C(G)Zi
gi(✓�m),

In this case we have that this recurrence relation is satisfied by the dual Hahn polynomial

R

�a,�b,�2�N
j (x+ a+ b), j � 0



ORTHOGONALITY
For any set F of positive integers, call maxF = fM , and consider

G = {1, 2, . . . , fM} \ {fM � f, f 2 F} = (g1, . . . , gm)

and the measure

⇢̃

F
a,b,N =

Y

f2F

(x+ fM + 1� f)⇢a�fM�1,b,N+fM+1(x+ fM + 1)

Then, for 0  n  N +m, the polynomials

qn(x) =

���������

(�1)

j�1
h

a,b,N
n+1�j(x) j=1,...,m+1


⇠n�j,m�jR

�a,�b,�2�N
g (✓n�j + a+ b)

�

g 2 G

���������

are orthogonal with respect to ⇢̃

F
a,b,N and they are eigenfunctions of a higher-order dif-

ference operator Dq,S of order

ord(Dq,S) = 2

0

@
X

f2F

f �
✓
#F

2

◆
+ 1

1

A

REMARK: After a proper change of variables the measure ⇢̃

F
a,b,N can be transformed

into the measure ⇢

F
a,b,N =

Q
f2F (x� f)⇢a,b,N and the conjecture of A. Durán is proved.



COMBINATION OF ALL D-OPERATORS
It is possible to combine the four D-operators and get the same result:

qn(x) =

���������������������������

(�1)

j�1
h

a,b,N
n+1�j(x) j=1,...,m+1


⇠

1
n�j,m�jR

�b,�a,a+b+N
g (✓n�j + a+ b)

�

g 2 G1


⇠

2
n�j,m�jR

�a,�b,a+b+N
g (✓n�j + a+ b)

�

g 2 G2


⇠

3
n�j,m�jR

�b,�a,�2�N
g (✓n�j + a+ b)

�

g 2 G3


⇠

4
n�j,m�jR

�a,�b,�2�N
g (✓n�j + a+ b)

�

g 2 G4

���������������������������

where m = m1 +m2 +m3 +m4, and mi denotes de cardinal of Gi.

Then, the associate measure is, for certain sets of positive integers Fi, i = 1, 2, 3, 4

⇢̃a,b,N =

Y

f2F1

(b+N + 1� f � x)

Y

f2F2

(x+ a+ 1� f)

⇥
Y

f2F3

(N + f � x)

Y

f2F4

(x+ f4,M + 1� f)⇢ã,b̃,Ñ (x+ f4,M + 1)

where fi,M = maxFi and

ã = a� f2,M � f4,M � 2,

˜

b = b� f1,M � f3,M � 2,

˜

N = N + f3,M + f4,M + 2



THANK   YOU


