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DISCRETE ORTHOGONAL POLYNOMIALS

A system of polynomials (p,), is orthogonal with respect to a discrete
measure w(x) = Y s axd,S C N if

Pum Z axPn(t Pm ||pn||3;6nma n,m2=>0 J
XES
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DISCRETE ORTHOGONAL POLYNOMIALS

A system of polynomials (p,), is orthogonal with respect to a discrete
measure w(x) = Y s axd,S C N if

(Pny Pm)es = D, axPn(t:)Pm(t) = 1Pall20mm, n,m >0 J
XES

Every family of OP’s (p,), satisfy a three-term recurrence relation

Xpn(X) = an+1pn+1(X) + bnpn(X) + Cnpn—l(X); n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
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DISCRETE ORTHOGONAL POLYNOMIALS

A system of polynomials (p,), is orthogonal with respect to a discrete
measure w(x) = Y s axd,S C N if

(Pny Pm)ws = D 3xPa(t)Pm(tc) = 1Pnll280m, 7, m >0 J
XES

Every family of OP’s (p,), satisfy a three-term recurrence relation

Xpn(X) = an+1pn+l(X) + bnpn(X) + Cnpn—l(X); n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
Jacobi operator (tridiagonal):

by a1 PO(X) po(X)
a b a %1 (X ) P1 (X )
)| =% pa(x) | =P, xeS

Jp= o b a3 p2(x
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DISCRETE ORTHOGONAL POLYNOMIALS

A system of polynomials (p,), is orthogonal with respect to a discrete
measure w(x) = Y s axd,S C N if

pmpm w Z axpn(t pm X) - ”anE;(Snmv n,m 2 0 J
xeS

Every family of OP’s (p,), satisfy a three-term recurrence relation

Xpn(X) = an+1pn+l(X) + bnpn(X) + Cnpn—l(X); n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
Jacobi operator (tridiagonal):

by a1 PO(X) po(X)
a b a %1 (X ) P1 (X )
) )| =xp, x€ S

Jp= o b a3 p2(x

The converse result is also true (Favard's or spectral theorem)
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CLASSICAL FAMILIES

If we set
Af(x)=f(x+1)—f(x), VfF(x)="Ff(x)—Ff(x—-1)

the classification problem is to find discrete OP's (pp)n

0 (x)AV pp(x) + T(Xx)Apn(x) + Anpa(x) =0, x€SCN
dego <2, degr=1

In other words, if we call the shift operator
5;f(x) =f(x+))
the difference equation reads
[o(x) + 7(x)]S1pn(x) — [20(x) + 7(x)]S0pn(x)
+ o(x)S_1pn(x) + Anpn(x) =0, xS CN




CLASSICAL FAMILIES

@ Charlier (Poisson): § ={0,1,2,...}.
wal) = Z L 20

aci(x +1) — (x+ a)cp(x) + xci(x — 1) = —ncy(x) J

- — = wae



Introduction Methodology Examples
00®0000 000000 000000

CLASSICAL FAMILIES

@ Charlier (Poisson): § = {0,1,2,...}.

X

o0
wa(x) = Z %5)(, a>0
x=0 """

aci(x+1) — (x + a)ci(x) + xci(x — 1) = —nci(x) J

e Meixner (Pascal, Geometric): S = {0,1,2,...}.

wWac(x) =T(c)(1-a)) (c)xa 6, 0<a<l, ¢>0

x|
x=0

()j=i(i+1)---(i+j—1) is the Pochhammer symbol

a(x + c)m(x + 1) — (x + a(x + ¢))m>(x)
+xm7(x — 1) = n(a— 1)m;°(x)
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CLASSICAL FAMILIES

@ Krawtchuok (Binomial, Bernoulli

-1
1 N1\
wavN(X) = W < X >a 6X, a>0

~

:8=1{0,1,2,...N —1}.

=

Il
o

X

a(N — x — 1)k2N(x + 1)—=[x 4+ a(N — x — 1)]k>"(x)
+xk2N(x — 1) = —n(1 + a)k2N(x) J
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CLASSICAL FAMILIES

@ Krawtchuok (Binomial, Bernoulli): § ={0,1,2,... N —1}.
N—1
1 N-1\
wa,N(X): W}(:O < X >a 5)(, a>0
a(N — x — 1)k2N(x + 1)—=[x 4+ a(N — x — 1)]k>"(x)
+xk?N(x — 1) = —n(1 + a)k>N(x) J

@ Hahn (Hypergeometric): S = {0,1,2,... N}
N
a+x\/b+N—x
Wa7b,N(X)—;< N )( N x )6X, ab>-1, ab<-—-N

B(x)hy>" (x + 1)=[B(x) + D(x)]hy*" (x)
+ D(x)h2PN(x —1) = n(n+ a+ b+ 1)h2>N(x) J

where B(x) = (x+a+1)(x — N) and D(x) = x(x — b— N —1).
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (H.L. Krall, 1939): find families of OP’s (q,), which are also
eigenfunctions of a higher-order differential operator of the form

2m g
a’ .
De=) hi(x)55. deg(h) <j = De(dn)=Andn
j=0

Examples
000000
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (H.L. Krall, 1939): find families of OP’s (q,), which are also
eigenfunctions of a higher-order differential operator of the form

2m g
a’ .
De=) hi(x)55. deg(h) <j = De(dn)=Andn
j=0

A.M. Krall, Littlejohn, Koornwinder, Koekoek's, Lesky, Griinbaum, Heine,
lliev, Horozov, Zhedanov, etc (80's, 90's, 00's).
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (H.L. Krall, 1939): find families of OP’s (q,), which are also
eigenfunctions of a higher-order differential operator of the form

2m g
i .
D= hi(x) 5+ deg(h) <j = De(gn) = Andn I
j=0

A.M. Krall, Littlejohn, Koornwinder, Koekoek's, Lesky, Griinbaum, Heine,
lliev, Horozov, Zhedanov, etc (80's, 90's, 00's).

(gn)n are typically orthogonal with respect to the measure

w(x) T Z aj(S)((J(;), acR

m—1
Jj=0

where w is a (modified) classical weight and xg is an endpoint of the
support of orthogonality of w.
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy = hj(x)8j, hs,h #0, = Da(qn) = Ands
Jj=r
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy =Y hi(x)$;, hs,hy #0, = Da(qn) = AnGs
Jj=r

Bavinck-van Haeringen-Koekoek, 1994: adding deltas at the endpoints of
the support does not work (infinite order difference operator).
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy =Y hi(x)$;, hs,hy #0, = Da(qn) = AnGs
Jj=r

Bavinck-van Haeringen-Koekoek, 1994: adding deltas at the endpoints of
the support does not work (infinite order difference operator).

Surprisingly, it has not been until very recently (Durdn, 2012) when the
first examples appeared. Also s — r =2m.
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy =Y hi(x)$;, hs,hy #0, = Da(qn) = AnGs
Jj=r

Bavinck-van Haeringen-Koekoek, 1994: adding deltas at the endpoints of
the support does not work (infinite order difference operator).

Surprisingly, it has not been until very recently (Durdn, 2012) when the
first examples appeared. Also s — r =2m.

(gn)n are typically orthogonal with respect to the measure

wF(x) = JJ(x = f) w(x)

feF

where w is a discrete classical weight and F is a finite set of numbers.
This is also called a Christoffel transform of w.



For a finite set F consider rr = >, f — w + 1, where ng = #(F).

: Let w, be the weight and consider (F finite)
wh = H(x — f)wa
feF
The OP’s (gn)n with respect to wh are eigenfunctions of a higher-order
difference operator with —s =r = rr.

: Let w, . be the weight and consider (Fi, F> finite)
w?c":" = H (x+c+f) H (x — fwa,c
feR feR,

The OP’s (gn)» with respect to w’'f2 are eigenfunctions of a higher-order

difference operator with —s =r =rg, + 7, — 1.

. Let wa,n be the weight and consider (F1, F> finite)
w2 = [TG=HTIN-1~F —x)wan
fer fer

The OP’s (g,), with respect to w2 are eigenfunctions of a higher-order

difference operator with —s =r =rg, +rr, — 1. Sac
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CONJECTURES (DURAN, 2012)
For a finite set F consider rr =Y . — w + 1, where ng = #(F).

Conjecture A: Let w, be the Charlier weight and consider (F finite)
ot = L= s
feF
The OP’s (gn)n with respect to w! are eigenfunctions of a higher-order
difference operator with —s = r = rr.
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CONJECTURES (DURAN, 2012)
For a finite set F consider rr =Y . — w + 1, where ng = #(F).

Conjecture A: Let w, be the Charlier weight and consider (F finite)
wh = H(x — fwa
feF
The OP’s (g,). with respect to w’ are eigenfunctions of a higher-order
difference operator with —s = r = rr.

Conjecture B: Let w,, be the Meixner weight and consider (Fi1, F> finite)
w2 = H(x +c+f) H(x — fwa,c
feEFR feF
The OP’s (gn)n with respect to wfF2 are eigenfunctions of a higher-order

difference operator with —s =r =rf, +rr, — 1.




Introduction Methodology Examples
000000 000000 000000

CONJECTURES (DURAN, 2012)
For a finite set F consider rr =Y . — W + 1, where ng = #(F).

Conjecture A: Let w, be the Charlier weight and consider (F finite)
ot = L= s
feF
The OP’s (gn)n with respect to w! are eigenfunctions of a higher-order
difference operator with —s = r = rr.

Conjecture B: Let w,, be the Meixner weight and consider (Fi1, F> finite)
w2 = H(x +c+f) H(x — fwa,c
feEFR feF
The OP’s (gn)n with respect to wfF2 are eigenfunctions of a higher-order

difference operator with —s =r =rf, +rr, — 1.

Conjecture C: Let w, n be the Krawtchouk weight and consider (F1, F> finite)

wzl,\’,FZ = H(X —f) H(N —1—f—xX)wan
feF feR,
The OP’s (gn)n with respect to witF2 are eigenfunctions of a higher-order

difference operator with —s =r = rg, + 5, — 1.
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D-OPERATORS
Let A be an algebra of (differential or difference) operators and (p,), a

family of polynomials such that there exists D, € A with D,(p,) = nps.
Given a sequence of numbers (g,),, let us consider the operator

n
D(pn) = Z(_l)H—IEn < €n—jPn—j = €nPn—1 — En€n—1Pn—2 + - -
j=1

We say that D is an D-operator associated with A and (p,), if D € A.
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D-OPERATORS
Let A be an algebra of (differential or difference) operators and (p,), a

family of polynomials such that there exists D, € A with D,(p,) = nps.
Given a sequence of numbers (g,),, let us consider the operator

n
D(pn) = Z(_l)H—IEn < €n—jPn—j = €nPn—1 — En€n—1Pn—2 + - -
j=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: gp=—-1=D = —.
dx
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D-OPERATORS
Let A be an algebra of (differential or difference) operators and (p,), a

family of polynomials such that there exists D, € A with D,(p,) = nps.
Given a sequence of numbers (g,),, let us consider the operator

n
D(pn) = Z(_l)H—IEn < €n—jPn—j = €nPn—1 — En€n—1Pn—2 + - -
j=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: gp=—-1=D = —.
dx

@ Charlier: e, =1=D =V.
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with D,(p,) = nps.
Given a sequence of numbers (g,),, let us consider the operator

n
D(pn) = Z(_l)H—IEn < €n—jPn—j = €nPn—1 — En€n—1Pn—2 + - -
j=1

We say that D is an D-operator associated with A and (p,), if D € A.

@ Laguerre: gp=—-1=D = —.
dx
@ Charlier: e, =1=D =V.
@ Meixner:
sl—a:>—A2—1:>——V
"1 TT1oaT T 11—, T 1-2
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D-OPERATORS
Let A be an algebra of (differential or difference) operators and (p,), a

family of polynomials such that there exists D, € A with D,(p,) = nps.
Given a sequence of numbers (g,),, let us consider the operator

n
D(pn) = Z(_l)H—IEn < €n—jPn—j = €nPn—1 — En€n—1Pn—2 + - -
j=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ lLaguerre: e, =—-1=D = —.

dx

@ Charlier: e, =1=D =V.
@ Meixner: 1 1

1 a a 2

T, 1= 12325 71, 2 1—aV
@ Krawtchouk:

el=—— =D = L Vv, 2=—2 p,——_°2 A

" 1—a T m T 1, 2T 1
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D-OPERATORS

THEOREM (DURAN, 2013)

Let A, (pn)n, Dp(pn) = npn, (€n)n and D.
For an arbitrary polynomial R such that R(n) £ 0, n > 0, we define a
new polynomial P by

P(x) — P(x — 1) = R(x)
and a sequence of polynomials (g,), by go = 1 and
Gn = Pn+ Bapn—1, n=>1

where the numbers 5,, n > 0, are given by

_ R(n)
By = €nm7 n>1

Then there exist Dy € A sucht that Dy(g,) = P(n)g, where

Dy = P(D,) + DR(D,)




D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m + 1 consecutive p,’s:

Gn = pn+ /Bn,lpn—l + /Bn,2pn—2 qpecoqp ﬂn,mpn—m

DA
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D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m 4 1 consecutive p,’s:

dn = Pn + Bn,lpn—l + ﬂn,2pn—2 A oooSF Bn,mpn—m J

Let Ry, R», ..., Ry be m arbitrary polynomials and m D-operators
D1, Dy, ..., Dy defined by the sequences (¢f),, h=1,...,m.



Introduction Methodology Examples
0000000 008000 000000

D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m 4 1 consecutive p,’s:

dn = Pn + Bn,lpn—l + ﬂn,2pn—2 A oooSF Bn,mpn—m J

Let Ry, R», ..., Ry be m arbitrary polynomials and m D-operators
D1, Dy, ..., Dy defined by the sequences (¢f),, h=1,...,m.

Define the auxiliary functions & ; by
h h_h h
fn,/ =E€n€n—1"""€n—in1
and assume that the following Casorati determinant never vanish (n > 0)

5,1171,m71R1(” -1) 5%72,m72R1(n -2) -+ Ri(n—m)

Q(n) = #0

flel,mflRm(n —-1) fffz,mszm(” =2) -+ Rp(n—m)
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D-OPERATORS

Now consider the sequence of polynomials (g,), defined by

Pn(x) —pn-1(x) o (=1)"pn—m(x)
GomRi(n) & 1, Ri(n=1) -+ Ri(n—m)
Gn(x) = : : :
mmBm(n) &1 1 Rm(n—1) - Rm(n — m)

Observation: g, is a linear combination of of m + 1 consecutive p,'s.
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D-OPERATORS

Now consider the sequence of polynomials (g,), defined by

Pn(x) —pn-1(x) o (=1)"pn—m(x)
GomRi(n) & 1, Ri(n=1) -+ Ri(n—m)
Gn(x) = : : :
mmBm(n) &1 1 Rm(n—1) - Rin(n — m)

Observation: g, is a linear combination of of m + 1 consecutive p,'s.

Define for h =1,..., m, the following functions
Mh(X) = Z(_l)thjg)IZ,m—j det (£>I<+j—r,m—rR/(X +J - I’)){ I#h

Observation: M, are linear combinations of adjoint determinants of Q(x).
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D-OPERATORS

Now consider the sequence of polynomials (g,), defined by

Pn(x) —pn-1(x) o (=1)"pn—m(x)
GomRi(n) & 1, Ri(n=1) -+ Ri(n—m)
Gn(x) = : : :
mmBm(n) &1 1 Rm(n—1) - Rin(n — m)

Observation: g, is a linear combination of of m + 1 consecutive p,'s.

Define for h =1,..., m, the following functions
Mh(X) = Z(_l)thjg)IZ,m—j det (£>I<+j—r,m—rR/(X +J - I’)){ I#h

Observation: M, are linear combinations of adjoint determinants of Q(x).
If we assume that Q(x) and Mj(x) are polynomials in x, then 3 D, € A
with Dg(gn) = P(n)gn and P(x) — P(x — 1) = Q(x), where
Dg = P(DP) + Z Mh(Dp)Dth(Dp) \
h=1




GOAL: Make (gn)n bispectral (we already have Dq(qn) = Angn).

For that we have to make an appropriate choice of the
polynomials Ry, R>, ..., Rpm. This choice is based on the following

Cn )
sgua,,,leh(nJr 1) — b,,RJ-h(n) + ;Rh(n —1)=(nnj + Hh)Rf'(n), nez

where 71, and kj, are real numbers independent of n and J, (an)nez,
(bn)nez, (cn)nez are the coefficients in the TTRR for the OP's (p,)a,
and ("), defines a D-operator for (p,),.

Classical discrete family | D-operators R;(x)
Charlier: ¢2, n>0 \% ¢ (—x—-1),;>0
Meixner: m€, n >0 A m} 3'276(7 —1),;>0
T;V mj‘-"2 “(—x—1),j>0
Krawtchouk: k2N n >0 5V kf77N(*X —1),j=>0
—2a 1/a,—N
e ki (=x—1),j>0 -
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CHOICE OF Ry, Ry, ..., R,

GOAL: Make (q,)n bispectral (we already have Dg(gn) = Angn).

For that we have to make an appropriate choice of the arbitrary
polynomials Ry, Ry, ..., Ry. This choice is based on the following
recurrence formula (h=1,..., m):

Cn .
ehi1an1 R (n+1) — bR (n) + gth(” —1) = (mwj +n)Rf(n), neZ

n

where 7, and &, are real numbers independent of n and j, (ap)nez,
(bn)nez: (¢n)nez are the coefficients in the TTRR for the OP's (p,)n,
and ("), defines a D-operator for (p,),.
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CHOICE OF Ry, R, ..., Ry,

GOAL: Make (q,)n bispectral (we already have Dg(gn) = Angn).

For that we have to make an appropriate choice of the arbitrary
polynomials Ry, Ry, ..., Ry. This choice is based on the following
recurrence formula (h=1,..., m):

Cn .
ehi1an1 R (n+1) — bR (n) + gth(” —1) = (mwj +n)Rf(n), neZ

where 7, and &, are real numbers independent of n and j, (ap)nez,
(bn)nez: (¢n)nez are the coefficients in the TTRR for the OP's (p,)n,
and ("), defines a D-operator for (p,),.

Classical discrete family | D-operators R;(x)

Charlier: ¢2, n >0 \V4 cjf"(—x -1),j>0

Meixner: m2:¢, n > 0 A mj1 a’27‘:(—x —-1),j>0
=V m T (—x—1),j>0

Krawtchouk: k2N, n >0 =V k' N(—x-1),j>0
—a 1/a,—N B
EEETA ki (—x—1),j>0
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IDENTIFYING THE MEASURE

Given a set G of m positive integers, G = {g1,. ..

the sequence of polynomials (g¢), by

pn(X) —Pn— 1( )
qG(X) _ fr%,mRél(n) gn 1,m— 1’1'?1 ( )
,T_l,m_le,’n(n —-1)

nng"l,( n)

Examples
000000

,8m} we then define

(—=1)™Pn—m(x)

R;l(n— m)
Rg: (n—m)



Introduction Methodology Examples
0000000 00000e 000000

IDENTIFYING THE MEASURE

Given a set G of m positive integers, G = {g1,...,8m} we then define
the sequence of polynomials (g¢), by
) pn()f) ~Pn— 11( x) T (fll)mpn—m(x)
G fn,ngl(n) gn 1,m— 1R ( ) Rgl(n - m)
qn (x) = : . :
nng";( n) rT—l,m—le:,,(n_ 1) - Rg(n—m)

(g), will be orthogonal w.r.t a Christoffel transform of w (or several)

W (x) = [T (x = ) w(x) J

feF
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IDENTIFYING THE MEASURE

Given a set G of m positive integers, G = {g1,...,8m} we then define
the sequence of polynomials (g¢), by
) pn()f) ~Pn— 11( x) T (fll)mpn—m(x)
G fn,ngl(n) gn 1,m— 1R ( ) Rgl(n - m)
qn (x) = : . :
nng";( n) rT—l,m—le:,,(n_ 1) - Rg(n—m)

(g), will be orthogonal w.r.t a Christoffel transform of w (or several)

W (x) = [T (x = ) w(x) J

feF

How is the set G related with the set F7: G will be identified by one of
the following sets:

I(F)={1,2,....f}\ {fi — f,f € F},
(F)=1{0,1,2,.... it h—1}\{f —1,f€ F}, h>1

where fy = max F and k = #(F).
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8&m}-
Let w, be the Charlier measure and (c?), its sequence of OP’s. Assume
that Qg(n) = det (c;2(—n—j — 1))7’1,:1 # 0.
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8&m}-

Let w, be the Charlier measure and (c?), its sequence of OP’s. Assume
that Q¢(n) = det (c;,*(—n—Jj — 1))7;,:1 # 0.

If we define (g,), by

) =) o ()" a(x)
g(—=n—1) *(=n) -+ c(=n+m—1)

qn(x) = : : - :
g 2(=n=1) ¢ 2(-=n) - c(=n+m-1)

then the polynomials (g,), are orthogonal with respect to the measure

of = H(x+fk—|—1— Awa(x + fr +1)
feF
and they are eigenfunctions of a higher order difference operator D, with

— G = — W + 1, where ng = #(F) and f, = maxF.
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8&m}-

Let w, be the Charlier measure and (c?), its sequence of OP’s. Assume
that Q¢(n) = det (c;,*(—n—Jj — 1))7;,:1 # 0.

If we define (g,), by

) =) o ()" a(x)
g(—=n—1) *(=n) -+ c(=n+m—1)

qn(x) = : : . :
g 2(=n=1) ¢ 2(-=n) - c(=n+m-1)

then the polynomials (g,), are orthogonal with respect to the measure

of = H(x+fk—|—1— Awa(x + fr +1)
feF
and they are eigenfunctions of a higher order difference operator D, with

— G = — W + 1, where ng = #(F) and f, = maxF.

Proof of Conjecture A: wf = afH1of (x — £ — 1).
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CHARLIER POLYNOMIALS: EXPLICIT EXAMPLE

Leta=1, F={1,3}, G = I(F) = {1,3}.

ay
Q(n)

= ¢} 4 Bnict | + Bnacl_, are orthogonal w.r.t

(ZJf = (x+3)(x + Dwi(x + 4)
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CHARLIER POLYNOMIALS: EXPLICIT EXAMPLE

Leta=1, F={1,3}, G = I(F) = {1,3}.

ay
Q(n)

= ¢} 4 Bnict | + Bnacl_, are orthogonal w.r.t

O = (x+3)(x + Dwn(x +4)
The difference operator (of order 8) satisfying Dy(q%) = P(n)q¢ is
Dg = P(D1) + Mi(D1)VRi(D1) + Mo(D1)VR:(Dy)
where

Dy =—x5_1+(x+1)5 — 61, Di(c})=nct, n>0
1
Ri(x) = —x, Ry(x) = 76(X3 +3x% 4 5x + 2)
My(x) = X2 4+ 2x + 2, My(x) = =2

P(x) = —%(X?’ —2x2 —x—-2)

Examples
O@0000
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MEIXNER POLYNOMIALS

In this case have two different D-operators. That means that we will
have to consider two sets of positive integers F;, F, C N.
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MEIXNER POLYNOMIALS

In this case have two different D-operators. That means that we will
have to consider two sets of positive integers F;, F, C N.

Consider H = Jp(F1) = {hs, ...,
m = my + my, w, c the Meixner measure and (m2°<),.

If we define (g,)n by

qn(x) =

(1 — a)"m2(x)

—(1—a)"1m

hm 1K = 1(F3) = {ku, ..., km,} and

2f1(x)

m

1/a,2—2
il B 75(—n—1)

M

}1‘/:2 c( n—l)

12—
le “(—n—1)

am

2-c
mimz ‘(—n—1)

am

am—1

l/a 2— c( n)

l/a 2 c( n)

2—
m22=¢(~n)

am—1

ma2 C( n)

am—l

my =" (=n+m—1)

Examples
0O0e000

(=1)"myC, (%)

1/a,2—c

,17232 C( n+m—1)

32 C( n+m_1)

32c

(=n+m-—-1)
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MEIXNER POLYNOMIALS

Then the polynomials (g,), are orthogonal with respect to the measure
offoh = T (x+e—F) [] cHamt1=Fwacfiy—bow—h-1(x+fomu+1)
fer feF,

and they are eigenfunctions of a higher order difference operator D, with

ng (ng — 1 ne(ng, — 1
fs:r:fofo A 21 ) FZ(ZZ )+nF1(7C1,M+h)+1

fer feF

where ng, = #(F;) and f; y = max F;, i =1,2.
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MEIXNER POLYNOMIALS

Then the polynomials (g,), are orthogonal with respect to the measure

offoh = T (x+e—F) [] cHamt1=Fwacfiy—bow—h-1(x+fomu+1)
fer feF,

and they are eigenfunctions of a higher order difference operator D, with

-1 -1
==Y oY - MR0ATD meR D )
fer feF

where ng, = #(F;) and f; y = max F;, i =1,2.

Proof of Conjecture B: Write E = {Am—f+1,feF}
E=c+fm+fhm+2and h=minF. In particular Jo(F1) = I(Fr).
Therefore we have

w:—}c,Fz _ (l _ a)cfEa)QéFz,h(X _ fQ,M _ 1)
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KRAWTCHOUK POLYNOMIALS

Examples
[elelele] le}

Again we have two different D-operators. Consider Fi, F, C N finite and

K = I(Fl) = {kl, soag kmz}, H= Jh(Fg) = {hl, coog hml}, m= my + my,
w, n the Krawtchouk measure and (k3N),. We assume that i p, o < N/2
(so that FFN{N —1—f,f € F} = 0), where f; yy = max F;.
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KRAWTCHOUK POLYNOMIALS

Again we have two different D-operators. Consider Fi, F, C N finite and

K = I(Fl) = {kl, ceey kmz}, H= Jh(Fg) = {hl, ceey hml}, m=m + moy,
w, n the Krawtchouk measure and (k3N),. We assume that i p, o < N/2
(so that FFN{N —1—f,f € F} = 0), where f; yy = max F;.

If we define (gn)n by

O A O B CE) L TO I G LA C)
k:r/\’(_n_l) ka; (—n) k,‘;’l’*N(—n—i-m—l)
) = kjm:N( n—1) k:;;"’(—n) ki’m:N(—n-i—m—l)
(~a)mky/mM(=n—1) (—a)" kN0 o kTN (entm 1)
(—a)mk;:jv*’v(_n_n (_a)mflk;é:'v*’v(_n) l/a* (- n+m_1)
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KRAWTCHOUK POLYNOMIALS

Examples
00000e

Then the polynomials (g,), are orthogonal with respect to the measure
~F1,F>,h

o = [T Cetmt1=F) T[T (N—x=14F)wa ns o gt ot hr (X +1)
feFR feF

and they are eigenfunctions of a higher order difference operator D, with

-1 -1
== e - TR P s
feFR fer,

where ng, = #(F;) and f; y = max F;, i =1,2.
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KRAWTCHOUK POLYNOMIALS

Then the polynomials (g,), are orthogonal with respect to the measure
~F1,F>,h

o = [T Cetmt1=F) T[T (N—x=14F)wa ns o gt ot hr (X +1)
feFR feF

and they are eigenfunctions of a higher order difference operator D, with

-1 -1
== e - TR P s
feFR fer,

where ng, = #(F;) and f; y = max F;, i =1,2.

Proof of Conjecture C: Write F, = {Am—Ff+1,fehF}
Fo={fim+hbm—f+2,fcF}, N=N-fm—fhm—2and h=minF;.
In particular J,(F2) = I(F»). Therefore we have

2P(x — fm—1)
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