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THE SPACE L2(S)

Let w be a positive measure on S C R and consider the space of
functions L2 (8S) with the inner product

(f.8). = [ F(0g()du() J

We say that f € L2(S) if (f,f), = ||f]? < oc.
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THE SPACE L2(S)

Let w be a positive measure on S C R and consider the space of
functions L2 (8S) with the inner product

() = /S F(x)(x)dw(x)

We say that f € L2(S) if (f,f), = ||f]? < oc.

S can be a continuous interval, a discrete set of points or a combination
of both. The discrete component of the measure is usually written as

N
wd(x) = Zaxdtx, by -+ by € R
x=0
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THE SPACE L2(S)

Let w be a positive measure on S C R and consider the space of
functions L2 (8S) with the inner product

() = /S F(x)(x)dw(x)

We say that f € L2(S) if (f,f), = ||f]? < oc.

S can be a continuous interval, a discrete set of points or a combination
of both. The discrete component of the measure is usually written as

:Zax5tx, tXO,...,tXNER

In that case the inner product can be thought of as

z o [ F(g05. = Y- (2. )es,)
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

Py Prnbus = /S Pa(X)Pm(X)dw(x) = 1ol 0sm, 1, m > 0 J
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

Py Prnbus = /S Pa(X)Pm(X)dw(x) = 1ol 0sm, 1, m > 0 J

Every family of OP’s (p,)n satisfy a three-term recurrence relation

XPn(X) = ant1Pnt1(X) + bppn(x) + copr-1(x), n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

(Prs D)oo = / Po(3)Pm(X)dw(x) = |Pol26sm, 1, m > 0
S

Every family of OP’s (p,)n satisfy a three-term recurrence relation

XPn(X) = ant1Pnt1(X) + bppn(x) + copr-1(x), n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
Jacobi operator (tridiagonal):

bo a1 po(x) po(x)
a b a p1(x)
Jp= o b a pa(x) | =X | pa(x) [ =% X €S
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

(Prs D)oo = / Po(3)Pm(X)dw(x) = |Pol26sm, 1, m > 0
S

Every family of OP’s (p,)n satisfy a three-term recurrence relation

XPn(X) = ant1Pnt1(X) + bppn(x) + copr-1(x), n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
Jacobi operator (tridiagonal):

by ai Po(x) Po(x)
a b a p1(x) pi(x)
Jp= o b a pa(x) | =X | pa(x) [ =% X €S

The converse result is also true (Favard's or spectral theorem)
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER (1929)

d? d
J(X)an(x) + T(X)&pn(X) +Anpn(x) =0, x€eSCR

dego <2, degT=1
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER (1929)

d? d
J(X)an(x) + T(X)&pn(X) +Anpn(x) =0, x€eSCR

dego <2, degT=1

@ Hermite (Normal, Gaussian): w(x) = e, x € R

Ha(x)" — 2xH,(x)" = —2nH,(x) J
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER (1929)

d? d
J(X)an(x) + T(X)&pn(X) +Anpn(x) =0, x€eSCR

dego <2, degT=1

@ Hermite (Normal, Gaussian): w(x) = e, x € R

Ha(x)" — 2xH,(x)" = —2nH,(x) J

@ Laguerre (Gamma, Exponential): w(x) = x%e™, x>0, a > —1

M) + (a1 - X)LA(x) = —nL3(x) J
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER (1929)

d? d
J(X)an(x) + T(X)&pn(X) +Anpn(x) =0, x€eSCR

dego <2, degT=1

@ Hermite (Normal, Gaussian): w(x) = e, x € R

Ha(x)" — 2xH,(x)" = —2nH,(x) J

@ Laguerre (Gamma, Exponential): w(x) = x%e™, x>0, a > —1

M) + (a1 - X)LA(x) = —nL3(x) [

@ Jacobi (Beta, Uniform): w(x) = x*(1 - x)?, x € (0,1), a, 8 > —1
X(1 = X)PEO ()" + (a1 — (a+ §+2)x) PO (x) =
—n(n+ a+ 6+1)P*F(x)
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CLASSICAL FAMILIES (DISCRETE CASE)

If we set
Af(x)=f(x+1)—f(x), VIf(x)="f(x)—"f(x—1)

the classification problem is to find discrete OP's (pp)n

0(X)AV py(x) + 7(X)Apa(x) + Anpn(x) =0, x€SCN
dego <2, degr7=1

In other words, if we call the shift operator
5;f(x) = f(x+J)
the difference equation reads
[o(x) + 7(x)]S1Pn(x) — [20(x) + T(x)]S0pn(x)

+ 0(x)S_1Pn(x) + Anpn(x) =0, xe€SCN




CLASSICAL FAMILIES

@ Charlier (Poisson): S ={0,1,2,...}.

wa(x) = Z i—)l(éx, a>0
x=0 """
acy(x +1) — (x + a)e5(x) + xcp(x — 1) = —ncj(x) J

. = = A
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CLASSICAL FAMILIES

@ Charlier (Poisson): S ={0,1,2,...}.

wa(x) = Z i—);éx, a>0
x=0
aci(x+1) — (x + a)ci(x) + xci(x — 1) = —nc;(x) |

@ Meixner (Pascal, Geometric): S = {0,1,2,...}.

Warc(x) = T()1 = 2a)° Y (s gcact >0

x|
x=0

()j=i(i+1)---(i+j—1) is the Pochhammer symbol

a(x + c)m2(x + 1) — (x + a(x + ¢))m>°(x)

+xm7(x — 1) = n(a— 1)my<(x)
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CLASSICAL FAMILIES

@ Krawtchuok (Binomial, Bernoulli): S ={0,1,2,...N —1}.

N—-1
1 N-1\
wa,N(X):mg ( N >35X7 a>0
x=0

a(N — x — l)kﬁ’N(X +1)—[x+a(N—x— 1)]k,f’N(x)

—|—xkf7”N(x —1)=—-n(1+ a)k,f’N(X) J
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CLASSICAL FAMILIES

@ Krawtchuok (Binomial, Bernoulli

~—

:8§=1{0,1,2,...N —1}.
—1

1 N-1\
wa n(x) = W ( )a 0x, a>0

X
X

=

Il
o

a(N — x — 1)k2N(x + 1)—[x 4+ a(N — x — 1)]k>V(x)
Hxk?N(x —1) = —n(1 + a)k>N(x) ’
@ Hahn (Hypergeometric): S ={0,1,2,...N}

N
b+ N—
wa,b,,\,(x)—/v!z(aj:x)( JIFV_XX)dx, ab>—1, ab<—N

x=0

BOx)hy>" (x + 1)~[B(x) + D(x)]h3y>" (x)
+ D(x)h2PN(x — 1) = n(n+ a + b + 1)h2>"(x) J

where B(x) = (x+a+1)(x — N) and D(x) = x(x — b— N —1).
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EXTENSIONS

g-polynomials.

OP’s on the unit circle (or any other curves).
Krall orthogonal polynomials.

Sobolev type orthogonal polynomials.
Matrix-valued orthogonal polynomials.
Multiple orthogonal polynomials.

Multivariate orthogonal polynomials.

6 6 6 6 6 6 6 ¢
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (H.L. Krall, 1939): find families of OP’s (g,), which are also
eigenfunctions of a higher-order differential operator of the form

2m i
d’ .
De = Z hj(X)W7 deg(hj) <j = Dc(gn) = Anqn
=0
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (H.L. Krall, 1939): find families of OP’s (g,), which are also
eigenfunctions of a higher-order differential operator of the form

2m i
d’ .
De = E :hj(X)W7 deg(hj) <j = Dc(gn) = Anqn
Jj=0

A.M. Krall, Littlejohn, Koornwinder, Koekoek's, Lesky, Griinbaum, Heine,
lliev, Horozov, Zhedanov, etc (80's, 90's, 00's).
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (H.L. Krall, 1939): find families of OP’s (g,), which are also
eigenfunctions of a higher-order differential operator of the form

2m g
d )
D.=) hi(x) g, deg(h) <j = De(qn) = Andn
j=0

A.M. Krall, Littlejohn, Koornwinder, Koekoek's, Lesky, Griinbaum, Heine,
lliev, Horozov, Zhedanov, etc (80's, 90's, 00's).

(gn)n are typically orthogonal with respect to the measure
m—1 ]
w(x) aF Z ajdifo), aeR
j=0

where w is a (modified) classical weight and xg is an endpoint of the
support of orthogonality of w.
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

S
Dy = hi(x)8j, he,h #0, = Dy(qn) = AnGn
Jj=r
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy = hj(x)8;, hs,h, #0, = Dy(gn) = AnGa
Jj=r

Bavinck-van Haeringen-Koekoek, 1994: adding deltas at the endpoints of
the support does not work (infinite order difference operator).
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy = hj(x)8j, hs,h#0, = Da(qn) = Anan
Jj=r

Bavinck-van Haeringen-Koekoek, 1994: adding deltas at the endpoints of
the support does not work (infinite order difference operator).

Surprisingly, it has not been until very recently (Durdn, 2012) when the
first examples appeared. Also s — r =2m.
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy = hj(x)8j, hs,h#0, = Da(qn) = Anan
Jj=r

Bavinck-van Haeringen-Koekoek, 1994: adding deltas at the endpoints of
the support does not work (infinite order difference operator).

Surprisingly, it has not been until very recently (Durdn, 2012) when the
first examples appeared. Also s — r =2m.

(gn)n are typically orthogonal with respect to the measure
wF(x) = [T (x = ) w(x)
feF

where w is a discrete classical weight and F is a finite set of numbers.
This is also called a Christoffel transform of w.



CONJECTURES (DURAN, 2012)

For a finite set F consider rr = > . f — w + 1, where np = #(F).

f2ac
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CONJECTURES (DURAN, 2012)
For a finite set F consider rr = >, f — w + 1, where ng = #(F).

Conjecture A: Let w, be the Charlier weight and consider (F finite)
of =TT~ Pl
feF
The OP’s (gn). with respect to w’ are eigenfunctions of a higher-order
difference operator with —s = r = rr.
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CONJECTURES (DURAN, 2012)
For a finite set F consider rr = >, f — w + 1, where ng = #(F).

Conjecture A: Let w, be the Charlier weight and consider (F finite)
of =TT~ Pl
feF
The OP’s (gn). with respect to w’ are eigenfunctions of a higher-order
difference operator with —s = r = rr.

Conjecture B: Let w,, be the Meixner weight and consider (Fi1, F> finite)
wi? = H(x—|— c+f) H(x — fwa,c
fer feF
The OP’s (gn)n with respect to w!1'*2 are eigenfunctions of a higher-order
difference operator with —s =r =rf, + rr, — 1.
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CONJECTURES (DURAN, 2012)
For a finite set F consider rr =Y — w + 1, where ng = #(F).

Conjecture A: Let w, be the Charlier weight and consider (F finite)
wh = H(X — f)wa
feF
The OP’s (gn). with respect to w’ are eigenfunctions of a higher-order
difference operator with —s = r = rr.

w
Conjecture B: Let w,, be the Meixner weight and consider (Fi1, F> finite)
Wit = T+ e+ F) T (x = Fwac
fer feR,
The OP’s (gn)n with respect to w!1'*2 are eigenfunctions of a higher-order
difference operator with —s =r =rf, + rr, — 1.
w

Conjecture C: Let w, n be the Krawtchouk weight and consider (Fi, F> finite)
wii?=T[x=O)J]IN-1=F = x)wan
feR feR
The OP’s (gn)n with respect to wi'F2 are eigenfunctions of a higher-order
difference operator with —s =r =rf, + rr, — 1.
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: e =—-1=D = —.
dx
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: e =—-1=D = —.
dx

@ Charlier: ¢, =1=D=V.
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.

@ Laguerre: e =—-1=D = —.
dx
@ Charlier: ¢, =1=D=V.
@ Meixner: 1 1
1 a 2
= = = A = = =—V.
T 171237 1, 2 1—aV
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: e =—-1=D = —.
dx

@ Charlier: e,=1=D=V.

@ Meixner: 1 1
1 a a 2
= = D; = A, = = =—V.
En 1—a 171, En 1—a 27132
@ Krawtchouk: 1
1_ Dy = 27 o Dy=— 2 A.
ST, T TV ST T P E o,
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D-OPERATORS

THEOREM (DURAN, 2013)

Let A, (pn)n, Dp(pPn) = npn, (€n)n and D.
For an arbitrary polynomial R such that R(n) # 0, n > 0, we define a
new polynomial P by

P(x) — P(x — 1) = R(x)
and a sequence of polynomials (g,), by go = 1 and

Gn = Pn+ Bapa—1, n=>1
where the numbers (§,, n > 0, are given by

03) n>1

Bn :ﬁnm7 Z

Then there exist D, € A sucht that Dg(q,) = P(n)q, where

Dq = P(Dp) + DR(DP)
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D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m 4 1 consecutive p,’s:

gn = Pn + Bn,lpn—l + ,Bn,2pn—2 oo F ﬂn,mpn—m J
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D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m 4 1 consecutive p,’s:

n = Pn + ﬁn,lpn—l + ﬂn,2pn—2 +--+ ﬁn,mpn—m J

Let Ri, Rs, ..., R, be m arbitrary polynomials and m D-operators
D1, Dy, ..., D defined by the sequences (f),, h=1,..., m.
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D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m 4 1 consecutive p,’s:

n = Pn + ﬁn,lpn—l + ﬂn,2pn—2 +--+ ﬁn,mpn—m J

Let Ri, Rs, ..., R, be m arbitrary polynomials and m D-operators
D1, Dy, ..., D defined by the sequences (f),, h=1,..., m.

Define the auxiliary functions & ; by

h __ _h_h h
fn,i =Ep€n—1" " En—it1

and assume that the following Casorati determinant never vanish (n > 0)

5,11—1,m—1R1(” -1) f,%—z,m—le(” =2) -+ Ri(n—m)
Q(n) = : : .| #0
frT—l,m—lRm(n -1) fﬁn—z,m—sz(” =2) -+ Rm(n—m)
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D-OPERATORS

Now consider the sequence of polynomials (gn), defined by

Pn(x) —Pn—1(x) o (=1)"pn—m(x)
mRi(n) & 4 Ri(n=1) - Ri(n—m)
dn(x) = : : :
EnmRm(n) &Ly maRm(n—1) -+ Rm(n—m)

Observation: g, is a linear combination of of m + 1 consecutive p,'s.
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D-OPERATORS

Now consider the sequence of polynomials (gn), defined by

Pn(x) —Pn-1(x) o (=1)"pn—m(x)
mRi(n) & 4 Ri(n=1) - Ri(n—m)
Gn(x) = : : °, :
EnmRm(n) &Ly maRm(n—1) -+ Rm(n—m)
Observation: g, is a linear combination of of m + 1 consecutive p,'s.
Define for h=1,..., m, the following functions
Mh(x) = Z(_l)h+j§>l<7,mfj det (f)l<+jfr,mer/(X +J- r)){ I#h }
J=1 r#j

Observation: My, are linear combinations of adjoint determinants of Q(x).
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D-OPERATORS

Now consider the sequence of polynomials (gn), defined by

Pn(x) —Pn-1(x) o (=1)"pn—m(x)
EamRi(n) &y, Ri(n=1) -~ Ri(n—m)
Gn(x) = : : °, :
EnmRm(n) &Ly maRm(n—1) -+ Rm(n—m)
Observation: g, is a linear combination of of m + 1 consecutive p,'s.
Define for h=1,..., m, the following functions
Mh(x) = Z(_l)h—wg:,mfj det (£)I<+jfr,mer/(X +J- r)){ I#h }
J=1 r#j

Observation: M, are linear combinations of adjoint determinants of Q(x).
If we assume that Q(x) and Mj(x) are polynomials in x, then 3 D, € A
with Dg(gn) = P(n)gn and P(x) — P(x — 1) = Q(x), where

Dq = P(Dp) + Y Mh(Dp)DiRi(Dp) J
h=1
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ORTHOGONALITY (CHOICE OF Ry, Ry, ..., Rp)

GOAL: Make (qn)n bispectral (we already have Dq(gn) = Angn).
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ORTHOGONALITY (CHOICE OF Ry, Ry, ..., Rp)

GOAL: Make (qn)n bispectral (we already have Dq(gn) = Angn).

For that we have to make an appropriate choice of the arbitrary
polynomials Ry, Ry, ..., Ry. This choice is based on the following
recurrence formula (h=1,...,m):

Cn .
5Z+1a,,+1th(n+ 1)— b,,th(n) + ;th(n —1) = (nnj + nh)th(n), nez

n

where 7, and kp, are real numbers independent of n and j, (ap)nez,
(bn)nez: (cn)nez are the coefficients in the TTRR for the OP’s (p,)n,
and (¢h),, defines a D-operator for (p,)n.
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ORTHOGONALITY (CHOICE OF Ry, Ry, ..., Rp)

GOAL: Make (qn)n bispectral (we already have Dq(gn) = Angn).

For that we have to make an appropriate choice of the arbitrary
polynomials Ry, Ry, ..., Ry. This choice is based on the following
recurrence formula (h=1,...,m):

Cn .
5Z+1a,,+1th(n +1)— b,,th(n) + ERJ-"(n —1) = (nnj + /ih)th(n), ne ZJ
where 7, and kp, are real numbers independent of n and j, (ap)nez,

(bn)nez: (¢n)nez are the coefficients in the TTRR for the OP’s (p,)n,
and (¢h),, defines a D-operator for (p,)n.

Classical discrete family | D-operators R;(x)
Charlier: ¢3, n>0 \Y ¢ °(=x-1),j>0
Meixner: m2:€, n > 0 A m} 27276(—X —1),j>0
liaV mf’z_c( x—1),j>0
Krawtchouk: k2N, n >0 =V kK "(—x-1),j>0
—a 1/a,—N .
i k" N x—1),j>0
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IDENTIFYING THE MEASURE

Given a set G of m positive integers, G = {gi, ...

the sequence of polynomials (g¢), by

pn(X) _pn—l(X)
qG(X) _ f%,ngi(n) f%—l}mflRél(n — 1)

ngngn(n) ng—l,m—len(n_ 1)

Orthogonal matrix polynomials
0000000000000 0000

,&m} we then define

(_1)mpn—m(x)

R;l(n —m)
Rg: (n— m)
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IDENTIFYING THE MEASURE

Given a set G of m positive integers, G = {g1,...,8m} we then define
the sequence of polynomials (g¢), by

1 pn()1<) _pn—l(X) e (_1)mpn—m(x)
qG(X) _ fn,ngl(n) fﬁfl,mfl'?él(n - 1) T Rgll(n._ m)
ETRE(N) Gy maRO(1—1) - RE(n—m)

(g%), will be orthogonal w.r.t a Christoffel transform of w (or several)

WF(x) = [](x - ) w(x) J

feF
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IDENTIFYING THE MEASURE

Given a set G of m positive integers, G = {g1,...,8m} we then define
the sequence of polynomials (g¢), by

1 pn()l() _pn—l(X) e (_1)mpn—m(x)
qG(X) _ fn,ngl(n) fﬁfl,mfl'?él(n - 1) T Rgll(n._ m)
ETRE(N) Gy maRO(1—1) - RE(n—m)

(g%), will be orthogonal w.r.t a Christoffel transform of w (or several)

wh(x) = H(X — f) w(x)

feF

How is the set G related with the set F?7: G will be identified by one of
the following sets:

I(F):{172a7fk}\{fk_f,f€F},
J(F)=10,1,2,... . i+ h—1}\{f —1,f € F}, h>1
where fy = max F and k = #(F).
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8m}-
Let w, be the Charlier measure and (c?), its sequence of OP’s. Assume
that Q¢(n) = det (c;?(—n—Jj — 1)),71.:1 £,
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8m}-
Let w, be the Charlier measure and (c?), its sequence of OP’s. Assume

that Qg (n) = det (c;(=n—j —1));",_, #0.
If we define (gn)n by

¢a(x) —ca(x) - (F1)7Te i (x)
(=n—=1) cz%(=n) - cgx¥(=n+m-—1)
an(x) = : : :
g 2(=n=1) ¢ (=n) - c?(=n+m-1)

then the polynomials (g,), are orthogonal with respect to the measure

of = H(x+fk—|-1— flwa(x + fx +1)
feF
and they are eigenfunctions of a higher order difference operator D, with

== ZfeF _ %Fl) + 1, where ng = #(F) and fx = max F.
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8m}-

Let w, be the Charlier measure and (c?), its sequence of OP’s. Assume
that Q¢(n) = det (c;?(—n—Jj — 1))7;.:1 £,

If we define (gn)n by

¢a(x) —ca(x) - (F1)7Te i (x)
(=n—=1) cz%(=n) - cgx¥(=n+m-—1)
an(x) = : : . :
g 2(=n=1) ¢ (=n) - c?(=n+m-1)

then the polynomials (g,), are orthogonal with respect to the measure

of = H(x+fk—|-1— flwa(x + fx +1)
feF
and they are eigenfunctions of a higher order difference operator D, with

== ZfeF _ %Fl) + 1, where ng = #(F) and fx = max F.

Proof of Conjecture A: wf = a* 1o (x — £ — 1).
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CHARLIER POLYNOMIALS: EXPLICIT EXAMPLE

Let a=1, F={1,3}, G = I(F) = {1,3}.

q¢

O C + Baact_q + Bnact_, are orthogonal w.r.t

of = (x +3)(x + Dwi(x + 4)
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CHARLIER POLYNOMIALS: EXPLICIT EXAMPLE

Let a=1, F={1,3}, G = I(F) = {1,3}.

G
% = ¢+ Bnict i + Baacl_, are orthogonal w.r.t
Of = (x +3)(x + Dwi(x + 4)
The difference operator (of order 8) satisfying Dy(q¢) = P(n)q¢ is

Dq = P(Dl) + Ml(Dl)VRl(Dl) + M2(D]_)VR2(D]_)

where
D= —x$_1+ (x+1)8 — &1, Di(ct)=ncp, n>0
Ri(x) = —x, Ro(x) = —%(x3 +3x% + 5x + 2)
Mi(x) =x*> +2x+2,  My(x) = -2
P(x) = —i(x“?’ —2x* —x —2)



@ CLASSICAL ORTHOGONAL POLYNOMIALS

© KRALL ORTHOGONAL POLYNOMIALS

© ORTHOGONAL MATRIX POLYNOMIALS
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Matrix polynomials on the real line:

E.x"+ -+ Eix+Ey, E eCVN
Krein (1949): Orthogonal matrix polynomials ( )

Orthogonality: W supported on S C R (positive definite with
finite moments) and a matrix-valued inner product (L (S;CV*")):

(P,Qw = / P(x)W(x)Q™(x) dx

JS

A sequence of OMP (Q,)n ((

Q,, Qm>W = ||Q,||%y0nm) satisfies a
(Q-1=10,Q0

xQn(x) = AnQuy1(x) + BnQ,(x) + ChQ,_1(x), det(A,),det(C,) #0

(block tridiagonal)

Bo Ao Qo(x) Qo(x)
C; B: A, Ql(x) Ql(x)
1Q G B A Q) | =x|Qx) | =xQ xeS
«O>» «Fr» «F» «E>» = waQ>
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ORTHOGONAL MATRIX POLYNOMIALS

Matrix polynomials on the real line:

E.x"+---+Ex+E, E ec"V
Krein (1949): Orthogonal matrix polynomials (OMP)

Orthogonal matrix polynomials
©0000000000000000
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ORTHOGONAL MATRIX POLYNOMIALS

Matrix polynomials on the real line:
E.x"+---+Ex+E, E ec"V

Krein (1949): Orthogonal matrix polynomials (OMP)
Orthogonality: weight matrix W supported on S C R (positive definite with
finite moments) and a matrix-valued inner product (L3 (S;CV*M)):

(P,Qw = /S P(x)W(x)Q"(x) dx J
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ORTHOGONAL MATRIX POLYNOMIALS

Matrix polynomials on the real line:
E.x"+ -+ Ex+E, EeC"™"
Krein (1949): Orthogonal matrix polynomials (OMP)
Orthogonality: weight matrix W supported on S C R (positive definite with
finite moments) and a matrix-valued inner product (L3 (S;CV*M)):

(P,Qw = /S P(x)W(x)Q"(x) dx J

A sequence of OMP (Q,)s ({Qn, Qm)w = ||Qn||3ydnm) satisfies a three-term
recurrence relation (Q_; =0,Qq = 1)

xQu(x) = AnQni1(x) + BoQn(x) + CoQp1(x),  det(An), det(C,) #0
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ORTHOGONAL MATRIX POLYNOMIALS

Matrix polynomials on the real line:

E.x"+---+Ex+E, E ec"V
Krein (1949): Orthogonal matrix polynomials (OMP)
Orthogonality: weight matrix W supported on S C R (positive definite with
finite moments) and a matrix-valued inner product (L3 (S;CV*M)):

(P,Qw = /S P(x)W(x)Q"(x) dx J

A sequence of OMP (Q,)s ({Qn, Qm)w = ||Qn||3ydnm) satisfies a three-term
recurrence relation (Q_; =0,Qq = 1)

XQu(x) = AnQni1(x) + BaQn(x) + CaQp1(x),  det(An),det(C,) #0 |

Jacobi operator (block tridiagonal)
Bo Ao Qo(x) Qo(x)
C B A Qi (x) Q:(x)
JQ= C: B A Q(x) | =X | Qu(x) | =xQ, x€S8
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ORTHOGONAL MATRIX POLYNOMIALS

Matrix polynomials on the real line:

E.x"+---+Ex+E, E ec"V
Krein (1949): Orthogonal matrix polynomials (OMP)
Orthogonality: weight matrix W supported on S C R (positive definite with
finite moments) and a matrix-valued inner product (L3 (S;CV*M)):

(P,Qw = /S P(x)W(x)Q"(x) dx J

A sequence of OMP (Q,)s ({Qn, Qm)w = ||Qn||3ydnm) satisfies a three-term
recurrence relation (Q_; =0,Qq = 1)

XQu(x) = AnQni1(x) + BaQn(x) + CaQp1(x),  det(An),det(C,) #0 |

Jacobi operator (block tridiagonal)

By Ao Qo(x) Qo(x)
C: B: A Q:(x) Qi (x)
JQ= C B, A Q2(X) =X Q2(X) = XQ, xe€S

The converse is also true (Favard's or spectral theorem**)
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DIFFERENTIAL PROPERTIES

Durdn (1997): characterize families of OMP (Q,), satisfying

Q,(x)D = Q(x)F2(x) + Qu(x)F1(x) + Qn(x)Fo(x) = TnQn(x) |

where
Fa(x) = F3x® + Fyx + F3, F1(x) = Fix + F}

and T',, is a Hermitian matrix.
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DIFFERENTIAL PROPERTIES

Durdn (1997): characterize families of OMP (Q,), satisfying

Q1 (x)D = Q;(x)F2(x) + Qu(x)F1(x) + Qn(x)Fo(x) = TrQn(x) |

where
Fa(x) = F3x* + Fyx + F9, F1(x) = Fix + F{
and T',, is a Hermitian matrix.

Equivalent to the symmetry of the second-order differential
operator

D = 9°Fy(x) + 0'F1(x) + °Fg(x), 0= Xl

dx
with Q,D=T,Q,

D is symmetric with respect to W if (PD,Q)w = (P, QD)w
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HOW TO GENERATE EXAMPLES

@ Group representation theory: matrix-valued spherical functions
associated with different groups (Griinbaum, Pacharoni,
Tirao, Roman, Zurrian, Koelink).
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HOW TO GENERATE EXAMPLES

@ Group representation theory: matrix-valued spherical functions
associated with different groups (Griinbaum, Pacharoni,
Tirao, Roman, Zurrian, Koelink).

@ Moment equations: solving moment equations from the
symmetry equations (Durdn, Griinbaum, Mdl). Used in
Durdn-Mdl (2008) to generate examples of OMP orthogonal

with respect to a weight matrix plus a Dirac delta at some
point.
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HOW TO GENERATE EXAMPLES

@ Group representation theory: matrix-valued spherical functions
associated with different groups (Griinbaum, Pacharoni,
Tirao, Roman, Zurrian, Koelink).

@ Moment equations: solving moment equations from the
symmetry equations (Durdn, Griinbaum, Mdl). Used in
Durdn-Mdl (2008) to generate examples of OMP orthogonal
with respect to a weight matrix plus a Dirac delta at some
point.

@ Matrix bispectral problem: solving the so-called ad-conditions
(ad¥™(T") = 0) where k is the order of the differential
operator (Castro, Griinbaum, Tirao). Used to generate
examples of OMP satisfying differential equations of order
k =1 in Castro-Griinbaum (2005, 2008).
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HOW TO GENERATE EXAMPLES

@ Symmetry equations: Duran-Griinbaum (2004):

.
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HOW TO GENERATE EXAMPLES

@ Symmetry equations: Duran-Griinbaum (2004):

W(x)F3(x) = F2(x)W(x)
W(x)Fi(x) = 2(F2(X)W(X))' — F1(x)W(x
W(x)F5(x) = (F2(x)W(x))"” — (F1(x)W(x))" + Fo(x)W(x)

General method: Assume Fa(x) = f(x)l. Factorize
W(x) = w()T()T* (),
where w is an scalar weight (Hermite, Laguerre or Jacobi) and T is
a matrix function, solution of the first order differential equation
T(x)=G(x)T(x), T(c)=1, ce€(ab)



© The first symmetry equation is trivial.

Defining

Fi(x) = 26(x)G(x) + MI
the

w(x)
of the symmetry equations also holds.
Finally, the

of the symmetry equations is equivalent to
(F1(x)W(x) — W(x)F1(x))" = FoW(x) — W(x)Fg
Therefore, it is enough to find Fqy such that the matrix function

X() = T () <7(2(X)G/(X)+7(2(X)G(X)2+

IS

(500 o p N ri
9 6o ) T

The method has been generalized to situations where F» is not
necessarily an scalar matrix (Durdn, 2008).

for all x.

«0)>» «F»r «=Z»r «

it
v
!

DA



© The first symmetry equation is trivial.
@ Defining

F1(x) = 2h(x)G(x) +

(R()w(x))’,
w(x)
the second of the symmetry equations also holds.

DA
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© The first symmetry equation is trivial.
@ Defining

F1(x) = 26,()G(x) + %.

the second of the symmetry equations also holds.

@ Finally, the third of the symmetry equations is equivalent to
(F1()W(x) = W(x)Fi(x))" = FoW(x) — W(x)Fg
Therefore, it is enough to find Fy such that the matrix function

(R(x)w(x))'

w(x)

x(x) =T '(x) (6(X)G’(X)+fz(X)G(X)2+ (X)—Fo> T(x)

is Hermitian for all x.
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© The first symmetry equation is trivial.
@ Defining

F1(x) = 26,()G(x) + %.

the second of the symmetry equations also holds.

@ Finally, the third of the symmetry equations is equivalent to
(F1()W(x) = W(x)Fi(x))" = FoW(x) — W(x)Fg
Therefore, it is enough to find Fy such that the matrix function

h(x)w(x))’

() = T (R0 00+ (0B + I 6o T

is Hermitian for all x.

The method has been generalized to situations where F; is not
necessarily an scalar matrix (Duran, 2008).
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EXAMPLES
Let F; =1and w = e . Then G(x) = A + 2Bx

If B=0= W(x) = e erxeh™
IfA=0= W(x)=e ¥ eB’ B
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EXAMPLES
Let F; =1and w = e . Then G(x) = A + 2Bx
IfA=0= W(x)=e XeB’ B

For the first case, a solution such that

x(x) = A% — 2Ax — e AXFe?~

{If B=0= W(x) = e X erxeA

is hermitian is choosing Fg = A? — 2J, with

0 vy 0 - 0 N-1 0 - 00
0 0 w - 0 0 N-2 -~ 00
A=|: o ¢ o | a=] o : L
00 0 N1 0 0 10

o
o
o
o
o
o
o
o
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EXAMPLES
Let F; =1and w = e . Then G(x) = A + 2Bx
IfA=0= W(x)=e XeB’ B

For the first case, a solution such that

x(x) = A% — 2Ax — e AXFe?~

{If B=0= W(x) = e X erxeA

is hermitian is choosing Fg = A? — 2J, with

0O v»u 0 .- 0 N—-1 0 -+ 0 0
0 0 v .- 0 0 N—-2 - 00
A=l s =
0 0 0 - vy 0 0 -+ 1.0
o 0 o0 -- 0 0 0 - 0 0

For the second case, a solution such that
x(x) = 2B + (4B? — 4B)x? — e B 'F(eB
is hermitian is choosing Fy = 2B — 4J with B = Ejl\:ll(—l)jHAj
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NEW PHENOMENA

@ For a fixed family of OMP there exist several differential
operators having them as eigenfunctions (Castro, Duran, Mdl,
Griinbaum, Pacharoni, Tirao, Roman).

@ For a fixed second-order differential operator, there may be
infinitely many linearly independent families of OMP having
them as eigenfunctions (Duran, Mdl).

@ There exist families of OMP satisfying odd order differential
equations (Castro, Griinbaum, Duran, Mdl).

@ There exists a family of ladder operators (upper and lower) for
some examples of OMP, some of them of order 0 (Griinbaum,
Mdl, Martinez-Finkelshtein).
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APPLICATIONS

@ Bivariate Markov processes: The first component is a regular
Markov process (level) while the second is a finite Markov chain
(discrete or continuous time) representing N phases (Dette,
Reuther, Zygmunt, Griilnbaum, Pacharoni, Tirao, Mdl).

@ Matrix-valued harmonic analysis: Matrix functions that are
eigenfunctions at the same time of a second-order differential
operator of Schrodinger type and an integral operator of Fourier
type (Mdl).

@ Other applications: scattering theory (Geronimo), Lanczos method
for block matrices (Golub, Underwood), asymptotic results (Durdn,
Lépez-Rodriguez), quadrature formuale (Durdn, Polo, van Assche,
Sinap), Sobolev OP's (Durén, van Assche), doubly infinite Jacobi
matrices (Berezanskii, Nikishin, van Assche), Dirac equation
(Durdn-Griinbaum), time-and-band limiting problems (Duran,
Griinbaum, Pacharoni, Zurridn), noncommutative integrable systems
(Cafasso, Mdl), Riemann-Hilbert problems (Griinbaum, Mdl,
Martinez-Finkelshtein, Delvaux), etc.
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RANDOM WALKS

The state space is S = {0,1,2,...}, while time is T = {0,1,2,...}
bo ao
p=1ca by a , bj>0,a3,¢,>0, a+b+c=1

P(n) = P" is the n—step transition probabi/ity matrix.

WO alﬂj;ﬂ T I
C® < O+ "@*/
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RANDOM WALKS

The state space is S = {0,1,2,...}, while time is T = {0,1,2,...}
bo ao
p=1ca by a , bj>0,a3,¢,>0, a+b+c=1

P(n) = P" is the n—step transition probabi/ity matrix.

ao ﬂ 31 ﬂ an ﬂ 83 O 34 O
[ec} Cs Cs Co
Spectral theorem (Karlin-MacGregor, 1959): there exists a measure w

associated with P which OP’s (q,), satisfy (g1 = 0,q0 = 1)

bo ao qo(x) qo(x)
Pg= | b & q(x) | = x [ () , x€[-1,1]
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RANDOM WALKS

We get spectral representations of the transition probabilities:

. ) I
P = PrlX =X =) = T | *aa(0du(x) }
I'lw =
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RANDOM WALKS

We get spectral representations of the transition probabilities:

. ) I
P = PrlX =X =) = T | *aa(0du(x) J
I'lw =

and the invariant measure

Non-null vector w = (mg, 71,...) > 0 such that

apd1 - - dj—1 . 1
€G- G ||q,-||f,

nP=mw ==
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RANDOM WALKS

We get spectral representations of the transition probabilities:
1

. ) 1 n
P = PrlX =X =) = T / X'6(x)g5(x) ()
I'lw =

and the invariant measure
Non-null vector w = (mg, 71,...) > 0 such that

apd1 - - dj—1 1

C1C -+ G B ||Qi||3)

TP=7 =m7i=

Other probabilistic models related with OP’s: birth-and-death
processes (linear growth models, queuing theory, etc) and diffusion
processes (Orstein-Uhlenbeck process, Wright-Fisher models, etc)
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BIVARIATE MARKOV PROCESSES

Quasi-birth-and-death processes: Now we have a bivariate or 2-component
Markov process of the form

{(X:,Ye): teT}

indexed by time 7 = {0,1,2,...} and with state space
{0,1,2,...} x {1,2,..., N}.
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BIVARIATE MARKOV PROCESSES

Quasi-birth-and-death processes: Now we have a bivariate or 2-component
Markov process of the form

{(X:,Ye): teT}

indexed by time 7 = {0,1,2,...} and with state space
{0,1,2,...} x{1,2,...,N}.
The first component is the level while the second component is the phase.



Classical orthogonal polynomials Krall orthogonal polynomials Orthogonal matrix polynomials
0000000 00000000000 O000000000e000000

BIVARIATE MARKOV PROCESSES

Quasi-birth-and-death processes: Now we have a bivariate or 2-component
Markov process of the form

{(X:,Ye): teT}

indexed by time 7 = {0,1,2,...} and with state space

{0,1,2,...} x{1,2,...,N}.

The first component is the level while the second component is the phase.
The allowed transitions satisfy

(Pi)irjy =Pr(Xos1 =j, Yorr =j | Xo =i, Ya=i)=0 for |i—j|>1
i.e. an stochastic block transition probability matrix

By Ao
p=|G B A
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BIVARIATE MARKOV PROCESSES

Quasi-birth-and-death processes: Now we have a bivariate or 2-component
Markov process of the form

{(X:,Ye): teT}

indexed by time 7 = {0,1,2,...} and with state space

{0,1,2,...} x{1,2,...,N}.

The first component is the level while the second component is the phase.
The allowed transitions satisfy

(Pi)irjy =Pr(Xos1 =j, Yorr =j | Xo =i, Ya=i)=0 for |i—j|>1
i.e. an stochastic block transition probability matrix

Bo Ag
P — C1 Bl Al

The invariant measure (n — o0) is now
7= (mo;my;--) >0, m R

such that 7P = «.
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BIVARIATE MARKOV PROCESSES

Spectral theorem (Griinbaum, Dette et al., 2006): 3* W on [—1,1]
associated with P with OMP (Q,), satisfying PQ = xQ
(Q—l - Oa QO = I)

pp= ([ wacoweoaeos) ([ auawe;a) |
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BIVARIATE MARKOV PROCESSES

Spectral theorem (Griinbaum, Dette et al., 2006): 3* W on [—1,1]
associated with P with OMP (Q,), satisfying PQ = xQ
(Q—l = Oa QO = I)

pr (/1 X"Q,-(X)W(X)Qf(X)dX) (/11 Qj(x)W(x)Qf(x)dx) -1

-1

INVARIANT MEASURE (MDI, 2011)

7 = (mo; 71; - - ) = (oen; II1ep; - - - ) such that 7P ==

M, = (C -+ C;) ' Tho(Ag - A1) = (/_11 Q"(X)W(X)Qﬁ(x)dx) h

and ey = (1,1,...,1)7.
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BIVARIATE MARKOV PROCESSES

Spectral theorem (Griinbaum, Dette et al., 2006): 3* W on [—1,1]
associated with P with OMP (Q,), satisfying PQ = xQ
(Q—l - Oa QO = I)

pr (/1 X"Q,-(X)W(X)Qf(X)dX) (/11 Qj(x)W(x)Qf(x)dx) -1

-1

INVARIANT MEASURE (MDI, 2011)

7 = (mo; 71; - - ) = (oen; II1ep; - - - ) such that 7P ==

M, = (C -+ C;) ' Tho(Ag - A1) = (/_11 Q"(X)W(X)Qﬁ(x)dx) h

and ey = (1,1,...,1)7.

Other probabilistic models related with OMP: quasi-birth-and-death
processes in continuous time and switching diffusion models.
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HERMITE FUNCTIONS

HERMITE OR WAVE FUNCTIONS

Pn(x) = ﬁe—xzp Ha(x)

where Hp(x) = (—1)"e**(e*)("), are the Hermite polynomials
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HERMITE FUNCTIONS

HERMITE OR WAVE FUNCTIONS

'1/}'7()() = me—XZ/an(X)

where Hp(x) = (—1)"e**(e*)("), are the Hermite polynomials
(¥n)n is a complete orthonormal set in L2(R), i.e.

/ w;kn(x)iﬁn(x)dx =0pm, n,m=>0
R
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HERMITE FUNCTIONS

HERMITE OR WAVE FUNCTIONS

Pn(x) = ﬁe—xzp Ha(x)

where Hp(x) = (—1)"e**(e*)("), are the Hermite polynomials
(¥n)n is a complete orthonormal set in L2(R), i.e.

/ w;kn(x)iﬁn(x)dx =0pm, n,m=>0
R

(vn)n are eigenfunctions of the Schrodinger operator

Pip(x) = X*n(x) = —(2n + L)pn(x), x €R )

and at the same time of the Fourier transform

= [ nlede = (a0, xR J
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MATRIX-VALUED HERMITE FUNCTIONS

Matrix case: Let W(x) = e~ eAxeA™ (A nilpotent)
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MATRIX-VALUED HERMITE FUNCTIONS

Matrix case: Let W(x) = e~ eAxeA™ (A nilpotent)
We know from Durdn-Griinbaum (2004) that

Q) (x) — 2Q(x)(x1 — A) + Qu(x)(A — 21) = (~2nl — 20)Qu(x) |




Classical orthogonal polynomials Krall orthogonal polynomials Orthogonal matrix polynomials
0000000 00000000000 0000000000000 0e00

MATRIX-VALUED HERMITE FUNCTIONS

Matrix case: Let W(x) = e~ eAxeA™ (A nilpotent)
We know from Durdn-Griinbaum (2004) that

Q) (x) — 2Q(x)(x1 — A) + Qu(x)(A — 21) = (~2nl — 20)Qu(x) |

The family ®,(x) = e */2Q,(x)e”* is orthogonal in L2(R, CV*N)
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MATRIX-VALUED HERMITE FUNCTIONS

Matrix case: Let W(x) = e~ eAxeA™ (A nilpotent)
We know from Durdn-Griinbaum (2004) that

Q) (x) — 2Q(x)(x1 — A) + Qu(x)(A — 21) = (~2nl — 20)Qu(x) |

The family ®,(x) = e */2Q,(x)e”* is orthogonal in L2(R, CV*N)
(@), are eigenfunctions of the matrix-valued Schrodinger operator

D! (x) — ®(x)1+20) + (2n + D1 +20)®,(x) =0, xR )
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MATRIX-VALUED HERMITE FUNCTIONS

Matrix case: Let W(x) = e~ eAxeA™ (A nilpotent)
We know from Durdn-Griinbaum (2004) that

Qi (x) — 2Q,(x)(x1 — A) + Qu(x)(A% — 2J) = (—2nl — 23)Q,(x) )
The family ®,(x) = e */2Q,(x)e”* is orthogonal in L2(R, CV*N)
(®,,), are eigenfunctions of the matrix-valued Schrodinger operator
D! (x) — ®(x)1+20) + (2n + D1 +20)®,(x) =0, xR )
and a matrix-valued Fourier transform

1 [ N o
— &, (t)e'27e™dt = ()"’ 29, (x), x€eR
= @0 QR NE



The normalized family is

Pn(x)/ v/ Anr1

.00 Vi oo nia (x)
n(X) =

— [ () (/v
That means [

n
) Yn = 1 + _Vlz.
P, (x)P(x)dx = dnml, so the diagonal entries are

on R. The plots for the first values of n and v1 = 1 are given by
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CASE N =2

The normalized family is

®,(x) = Un(x)/ v/t n 2’Y +1 w"+1(x)
' o[t a0/

That means [ ®,(x)®},(x)dx = daml, so the diagonal entries are probability
distributions on R. The plots for the first values of n and 11 = 1 are given by

n
) 'Yn:1+§7/f
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CASE N =2

The normalized family is

Yn(X)/ /Y1 3 2:1; Ynt1(x)

P,(x) = -
o [E () )/

n
) 'Yn:1+§7/f

That means [ ®,(x)®},(x)dx = daml, so the diagonal entries are probability
distributions on R. The plots for the first values of n and 11 = 1 are given by
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Yn(X)/ /Y1 3 2:1; Ynt1(x)

P,(x) = -
o [E () )/

n
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We also have

NYn+1

oo 0
(Xl)nm i‘/ xfID,,(x)‘P*m(X)dX = ” v 5m,n71
e 0 \V gvn

0 21 / (n+1)Yni2 0
+ 23/ YnYnt1 5m + 2%n41 oD 5m,n+1
23/ YnYnt1 0 A/ %



Classical orthogonal polynomials Krall orthogonal polynomials Orthogonal matrix polynomials
0000000 00000000000 O000000000000000e

We also have

%) / n;n+1 0
(Xl)nm i‘/ x(I),,(x)(I)*m(X)dx = ” P 5m,n71
o 0 £
0 vy (n‘2~’1)7n+2 0
+ < " 2\/76%“) 5,,,’,7 + v Ynt1 D 5m,n+1
2\/AnYnt1 0 v/ Tﬂ"

Therefore (x1) is the matrix of the homomorphism F — xF in
L2(R, CN*N) with respect to the basis (®,),

0 % *
* 0 0 «x
* 0 0 *x
(x1) = * x 0 0 x
* 0 0 *x %
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