oy, &
24 2
P

Darboux transformations for
quasi-birth-and-death processes™

Manuel Dominguez de la Iglesia
Instituto de Matematicas, UNAM, Mexico

VIl Iberoamerican Workshop in Orthogonal
Polynomials and Applications (EIBPOA2018)

Leganes, July 3rd, 2018

*Joint work with F. Alberto Griinbaum




OUTLINE

1. Stochastic Darboux transtformations for

random walks

2. Stochastic Darboux transtormations for quasi-
birth-and-death processes (QBD)

3. The (2x2) Jacobi type example



1. Stochastic Darboux transtormations

for random walks



UL (LU) STOCHASTIC FACTORIZATION

Let {X,

:n = 0,1,...} be an irreducible random walk with space state Z>o and P its

one-step transition probability matrix. We would like to perform a UL decomposition of the
matrix P in the following way

(bo ag \ (yo Tg \ (80 0 \
P = C1 bl ai 0 U1 I 1 S1 0 = PUPL
\ )\ VA ")
with the condition that Py and P; are also stochastic matrices, i.e. x, = 1 — y,,S0 =

1,r, =1—s,, and nonnegative entries.
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with the condition that Py and Pr are also stochastic matrices, i.e

Ln = 1 — Yn, S0 —
1,r, =1—s,, and nonnegative entries.

Comparing the coefficients, the only relevant equations are

Ap = (1 — yn)sn—i—la Cn+1 = yn—i—l(l — Sn—l—l)a n 2 0

The same can be done with the LU factorization. The important difference between both

cases is that in the UL factorization case there will be a free parameter yy while in the LU
factorization case the decomposition will be unique.

UL and LU decompositions of stochastic matrices have been considered earlier in the liter-

ature (W.K. Grassmann, D.P. Heyman, V. Vigon, etc.) in a different context related with
censored Markov chains and Wiener-Hopf factorizations.
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WHEN IS IT POSSIBLE?

From the relations

Ap = (1 — yn)sn—l—la Cn+1 — yn—|—1<1 — Sn—l—l): n Z 0
it is possible to compute all the coeflicients of Py and Py, in terms of .

We will need that the following continued fraction

ao i ao‘ C1 aj 02‘
H=1— =1 —

L c1 ‘1_‘1_‘1 ‘

is convergent and 0 < H < 1.

In Griinbaum-MdI (2017) we proved the following result

Theorem. Let H the continued fraction given before and the corresponding convergents

h, = A, /B,. Assume that
0<A,<B,, n=>1

Then H 1s convergent. Moreover, if P = Py Py, then both Py and Py, are stochastic matrices

of and only if we choose yg in the following range

a c a c
0<yy<1-— 0] & | a| O
R
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If P = Py Pr, then by inverting the order of multiplication we obtain another tridiagonal

matrix of the form
(80 0 \ (yo o \ (50 Qo \
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This is called a discrete Darboux transformation. It appeared for the first time in Matveev-
Salle in connection with Toda lattices. Later, many other authors (Griinbaum, Haine,
Horozov, Iliev, etc.) have used this transformation in the description of some families of
Krall polynomials.

The matrix P is actually stochastic, since the multiplication of two stochastic matrices
is again a stochastic matrix. Therefore it gives a family of new random walks with
coefficients (G, )n, (bn)n and (¢,), and depending on a free parameter .

Probabilistic interpretation. In terms of a model driven by urn experiments the factorization
P = Py P; may be thought as two urn experiments, Experiment 1 and Experiment 2,
respectively. We first perform the Experiment 1 and with the result we immediately perform
the Experiment 2. The urn model for P = P;, Py will proceed in the reversed order, first
the Experiment 2 and with the result the Experiment 1. The same can be done for the LU
decomposition.
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measure associated P. It is very well known that for every tridiagonal stochastic matrix
P (or Jacobi matrix) there exists an unique positive measure w supported on the interval
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SPECTRAL MEASURES

One important property of the Darboux transformation is how to transform the spectral
measure associated P. It is very well known that for every tridiagonal stochastic matrix
P (or Jacobi matrix) there exists an unique positive measure w supported on the interval
—1 <z <1 (Spectral or Favard’s Theorem).

The Darboux transformation gives a family of random walks P which is also a tridiagonal

stochastic matrix. If the moment p_; = f_ll dw(x)/x is well defined, then a candidate
for the family of spectral measures is then

o) =

+ Méo(x), M =1-—1you_1

where dg(x) is the Dirac delta located at x = 0 and yq is the free parameter from the
UL factorization. This transformation of the spectral measure w is also known as a
Geronimus transformation.

Similarly, for the LU decomposition, the corresponding Darboux transformation P gives
rise to a tridiagonal stochastic matrix and a spectral measure . In this case, it is possible
to see that this new spectral measure is given by

W(r) = zw(x)

or, in other words, a Christoffel transformation of w.



2. Stochastic Darboux transtormations for

quasi-birth-and-death processes (QBD)



QUASI-BIRTH-AND-DEATH PROCESSES

Let P be the one-step transition probability matrix of a discrete-time quasi-birth-and-
death (QBD) process with state space Z>o x {1,2,...,d}, d > 1, given by

(B, Ay 0 \
Cl Bl Al
0 Cy By A
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By definition of the process, we must have that all entries of P are nonnegative and

(Bo+A0)6d — €4, (Cn+Bn+An)ed — €4, n 2 1, €4 — (1,1,...,1)T
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Let P be the one-step transition probability matrix of a discrete-time quasi-birth-and-
death (QBD) process with state space Z>o x {1,2,...,d}, d > 1, given by

(B, Ay 0 \
Cl Bl Al
0 Cy By A

\ S

By definition of the process, we must have that all entries of P are nonnegative and

(Bo+A0)6d — €4, (Cn+Bn+An)ed — €4, n 2 1, €4 — (1,1,...,1)T

A diagram of the transitions between states looks as follows (for d = 2)
D)
&~ &~ &~

AL

A=) ===
O U U
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with the condition that Py and Pj, are also stochastic matrices, i.e. all (scalar) entries
are nonnegative and
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A direct computation shows that

An — XnSn—I—h n > 07
Bn — Xan—l—l =+ YnSTw n > 07
C,=Y,R, n>1.

The same can be done with the LU block factorization.

IMPORTANT DIFFERENCE: In the scalar situation the UL factorization has exactly
one free parameter 9y, while in the LU factorization case the factorization is unique. This
is not the case for the UL and LU block factorizations, where there may be many degrees
of freedom. For instance, it is not possible to compute all entries of Sy by having only the
information that Spe; = e4. The same is true for the rest of coefficients X,,,Y,,, R,,S,.
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i.e. writing P = LJL™!, where L = diag{Lo,L1,---}, L, = (Ag---Ap_1) " t,n>1,Ly =1
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Consider now the UL block factorization of the “monic” operator J in the following way

J = Cl Bl I = 0 aq I 61 I 0 = 04,8

With this decomposition, it is possible to compute all the coeflicients in terms only of a.

This is not enough to guarantee stochastic factors, so we introduce a new block diagonal
matrix T = diag{7, 71, - - } such that P can be written as

P=[LaT|[T7'BL™ "] = PyPr

Since both factor are assumed to be stochastic matrices, we get conditions on the sequence
(Tn )n, but not uniquely determined. Indeed they have to satisfy

Ly(anTn +Thi1)eq=eq, n >0
_ 1
(5n+1Ln1 + Ln—i—l)ed — Tn+1€4, N > 07

—1
To €d = €q,

and it is possible to see that the first one implies the second.

Therefore, if we are able to propose a good candidate for (7,),, then we can compute all
block entries X,,,Y,,, R,,, .S, in terms only of Yy = ag7y.
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interfere in the normalization of the corresponding matrix-valued polynomials. In the case
where o is a singular matrix, we will have a degenerate matrix-valued spectral measure.
Also we observe that W in general is neither symmetric nor positive semidefinite.



BLOCK STOCHASTIC DARBOUX TRANSFORMATION

If P = Py Py, then by reversing the order of multiplication we obtain another block tridiag-
onal matrix of the form

(Sy O \ (Yo X \ (B0 A \

P=PP;r=|R S 0 0 Y, X, —|C, B, A
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The matrix P is again stochastic. Therefore it is a new QBD process depending on many
free parameters. The same probabilistic interpretation applies here.

As in the scalar case, if the moment p_; = | _11 dW (z)/x is well defined, then a candidate for
the family of matrix-valued spectral measures associated with the Darboux transformation
P is again a Geronimus transformation of W, i.e.

+ Mo(z), M =g po—p

The free parameters of W only depend on aq and not on the sequence (7,),, which will only
interfere in the normalization of the corresponding matrix-valued polynomials. In the case
where o is a singular matrix, we will have a degenerate matrix-valued spectral measure.
Also we observe that W in general is neither symmetric nor positive semidefinite.

Similarly, for the LU factorization, the corresponding Darboux transformation gives rise to
matrix-valued spectral measure W, which is a Christoffel transformation of W, i.e. W( ) =

W (x). In this case the weight matrix W is unique and positive semidefinite.
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This example comes from group representation theory and was introduced for the first time in
Griinbaum-Pacharoni-Tirao (2002). In Griinbaum-MdI (2008) we studied the probabilistic
aspects of this example and gave an explicit expression of the block entries of P. The most
general situation is considered in Griinbaum-Pacharoni-Tirao (2013), where the authors also

give two stochastic models in terms of urns and Young diagrams.
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This example comes from group representation theory and was introduced for the first time in
Griinbaum-Pacharoni-Tirao (2002). In Griinbaum-MdI (2008) we studied the probabilistic
aspects of this example and gave an explicit expression of the block entries of P. The most
general situation is considered in Griinbaum-Pacharoni-Tirao (2013), where the authors also

give two stochastic models in terms of urns and Young diagrams.

For a, 5 > —1 and 0 < k < 8+ 1, the coefficients A,,, B,,, C,, of P are given by (2 x 2)

(B+n+2)(k4n)(atf+n+2) 0
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(k+n)(a+B—k+n+2)(a+B+2n+3) n
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UL DECOMPOSITION (SPECIAL CASE)

If we choose the free matrix parameter o as the following matrix (Griinbaum-Pacharoni-
Tirao, 2013)
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’ 14 (1+a)(1+a+B—k)
BTa+B)(2+atB—F) Bta+B8)(2+atB—Fk)

then the explicit expression for 7, in the (monic) UL decomposition is given by

k(B+2)n 0
1 _ TR (et A rnT D),
o n(8+2)n (atB—k+1)(B+2)n
(n+k)(a+B4+n—k+1)(a+B+n+1), (a+B4+n—k+1)(a+L+n+2),
where
» 1 0
To —
1 at+pB—k+1

atB—k+2 a+B—k+2

The block entries of the stochastic matrices Py and P, are given by

(n+k)(n+p+2) 0 (n+a)(n+a+pB—k+2) B—k+1
X — (2n+a+B4+2)(n+k+1) V. — 2n+a+p+2)(nt+a+1—k+8) (n+a+l—k+8)(n+k+1)
n 0 n—+p5+2 ’ " 0 n+o-+1 7
2n+a-t6-13 2n+a-t6-13
n+a+6+1 0 n 0
S — 2n+a+58+1 R — 2n+a+B+1
" k (nt+a+B+2)(n+a+1—k+8) |’ " 0 n(n+k+1)

(nta+B—k+2)(n+k) 2n+a+B8+2)(n+a+B—k+2) 2n+a+p+2)(n+k)

The weight matrix W of the Darboux transformation is given by the Geronimus transfor-
mation W(x) = W{(x)/x (there is no mass at 0!).
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Let us now study different situations with

S11 S12
g —

S§21 522
We know that a possible candidate for family of matrix-valued spectral measures associated
with the Darboux transformation P is given by

= W(z)

W(z) = 2 + Méy(a), M =aj" o —p

96

For that we need to assume that o is invertible.
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Let us now study different situations with

S11 S12
g —

S§21 522
We know that a possible candidate for family of matrix-valued spectral measures associated
with the Darboux transformation P is given by

W () = V@)

7 + Mdo(z), M:a()_llu() — H-1

For that we need to assume that o is invertible.
In the case of this example we have that

T(a+ 1B +2)(a+8—k+2) [1 0

T (at1)(k+1)
(@+F+3) 0 G (—rD

po =

and (assuming a > 0,8 > —1)

P(a)(B+2) [a+B—k+1 ~1

I'a+ B +2) 1 (a+1)(k+1)(a+B—k+2)—k(B—k+1)
(a+B+2)(B—k+1)

H—1 =
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S11 S12
g —

S§21 522
We know that a possible candidate for family of matrix-valued spectral measures associated
with the Darboux transformation P is given by

W () = V@)

7 + Mdo(z), M:a()_llu() — H-1

For that we need to assume that o is invertible.
In the case of this example we have that

T(a+ 1B +2)(a+8—k+2) [1 0

T (at1)(k+1)
(@+F+3) 0 G (—rD

po =

and (assuming a > 0,8 > —1)

P(a)(B+2) [a+B—k+1 ~1

I'a+ B +2) 1 (a+1)(k+1)(a+B—k+2)—k(B—k+1)
(a+B+2)(B—k+1)

With these data we have that M is symmetric if and only if one of the entries of g is chosen
according to the following relation

H—1 =

(B—k+1)(a+p5+3)
@+ Dk+1)

S12 =
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Let us study the particular case of (two free parameters s11 and so1)

(a+B+3)(B—k+1) (a+B+3)(B—k+1)
(k+1)(a+1)(a+B—k+1) 711 (k+1)(a+1)

S921 (Oé + B — k + 1)821
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Let us study the particular case of (two free parameters s11 and so1)
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For this ag we have that M can be written as
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Let us study the particular case of (two free parameters s11 and so1)

(a+f+3)(B—k+1) (a+B+3)(B—-k+1)
Gy = (k+1)(a+1)(a+p—k+1) 11 (k+1)(a+1)
S921 (Oé + 5 — k + 1)821

For this ag we have that M can be written as
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M=mn (B—k+1)(a+B+2)2(s11—521) Mo‘a:a—l 7_(>)k
0 oot —1

(a+B+2)(a+B—k+2)s21

In this case we are able to find a sequence of matrices (7,), such that X, and S, are
lower triangular, while Y,, and R,, are upper triangular (satisfying that (X,, + Y, )eq = eq,
Soeq = eq and (R, + S,)eq = €q).
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Let us study the particular case of (two free parameters s11 and so1)

(a+f+3)(B—k+1) (a+B+3)(B—-k+1)
Gy = (k+1)(a+1)(a+p—k+1) 11 (k+1)(a+1)
S921 (Oé + B — k + 1)821

For this ag we have that M can be written as

(a)2(k+1)(a+B—k+2) 1 0
M=mn (B—k+1)(a+B+2)2(s11—521) Mo‘a:a—l 7_(>)k
0 oot —1

(a+B+2)(a+B—k+2)s21

In this case we are able to find a sequence of matrices (7,), such that X, and S, are
lower triangular, while Y,, and R,, are upper triangular (satisfying that (X,, + Y, )eq = eq,
Soeq = eq and (R, + S,)eq = €q).

But we also need that all entries of X,,,Y,,,S5,, R, to be nonnegative. After extensive
symbolic computations we find that this holds (and therefore Py and Pp are stochastic
matrices) if the parameters s1; and ss; are chosen in the following range

1
0 <s91 < @ )
(a+B+3)(a+B—k+2)

a+1)%(k+1
S21 <321 — k(ﬁ(—k—l—%)((a—l-ﬁ)ﬁ-i%))

(a+1)(k+1)
521 ~ LlatP—k+1)(at+B13)

So1 <811 <
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. /
12 y

0.6 — A

04 — ,/r

02 — 5

0 =] ~ l Ll l ! I Ll l 1 I 1 l ' I Ll l
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
s 21

The region with red stripes (shaded area) gives all possible values of s3; and s1; for which
all entries of X,,,Y,,,5,, R, are nonnegative for the values of « = 3,8 = 2,k = 1. The green
line is the upper bound for which M is positive semidefinite.



FINAL COMMENTS

Remark 1. We have been able to find a nice urn model for the case where

(n+k)(n+5+2) 0 (n+a)(n+a+pB—k+2) B—k+1
X — 2n+a+6+2)(n+k+1) V. — 2n+a+6+2)(n+a+1—k+8) (n+a+l—k+B)(n+k+1)
n 0 n+p5+2 7 n 0 n+o+1 7
2n+a+pB+3 2n+a+pB+3
n+a+p£+1 0 n 0
n k (nt+a+B8+2)(nta+1—k+8) |’ n 0 n(n+k+1)

(nta+pB—k+2)(n+k) (2n+a+54+2)(n+a+B8—k+2) (2n+a+B+4+2)(n+k)
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For o, 8 and k nonnegative integers with 1 < k£ < [, the discrete-time QBD process on
Z>o x {1,2} generated by the coefficients A,,, B,,, C), can be decompose into two easier urn
experiments (Experiment 1 and Experiment 2).



FINAL COMMENTS

Remark 1. We have been able to find a nice urn model for the case where

(n+k)(n+54+2) 0 (n+a)(nta+B—k+2) B—k+1
X — 2n+a+6+2)(n+k+1) V. — 2n+a+6+2)(n+a+1—k+8) (n+a+l—k+B)(n+k+1)
n 0 n+5+42 o 0 ntatl
2n+a+6+3 2n+a+6+3
n+a+p£+1 0 n 0
g — 2n+a+6+1 R = 2n+a+£+1
n k (nt+a+B8+2)(nta+1—k+8) |’ n 0 n(n+k+1)

(nta+pB—k+2)(n+k) (2n+a+54+2)(n+a+B8—k+2) (2n+a+B+4+2)(n+k)

For o, 8 and k nonnegative integers with 1 < k£ < [, the discrete-time QBD process on
Z>o x {1,2} generated by the coefficients A,,, B,,, C), can be decompose into two easier urn
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The Experiment 1 is can be interpreted as a pure-birth discrete-time Markov chain on Z>
with transitions between not only adjacent states but second adjacent ones too, and with
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Remark 1. We have been able to find a nice urn model for the case where

(n+k)(n+54+2) 0 (n+a)(nta+B—k+2) B—k+1
X — 2n+a+6+2)(n+k+1) V. — 2n+a+6+2)(n+a+1—k+8) (n+a+l—k+B)(n+k+1)
n 0 n+5+42 o 0 ntatl
2n+a+6+3 2n+a+6+3
n+a+p£+1 0 n 0
g — 2n+a+6+1 R = 2n+a+£+1
n k (nt+a+B8+2)(nta+1—k+8) |’ n 0 n(n+k+1)

(nta+pB—k+2)(n+k) (2n+a+54+2)(n+a+B8—k+2) (2n+a+B+4+2)(n+k)

For o, 8 and k nonnegative integers with 1 < k£ < [, the discrete-time QBD process on
Z>o x {1,2} generated by the coefficients A,,, B,,, C), can be decompose into two easier urn
experiments (Experiment 1 and Experiment 2).

The Experiment 1 is can be interpreted as a pure-birth discrete-time Markov chain on Z>
with transitions between not only adjacent states but second adjacent ones too, and with

diagram

GO @ @ @ @ OO

The Experiment 2 is can be interpreted as a pure-death discrete-time Markov chain on Z>
with transitions between not only adjacent states but second adjacent ones too, and with
diagram

O, — 9

O giokoyfoRo it



Remark 2. It is well known that the original matrix-valued orthogonal polynomials P,
satisty a second-order differential equation of the form

Pl () Fa(x) + PL(x)Fi(w) + Pu(2)Fy = Ay Po(2)

where F5(x) = (1 — z)I and F1, Fy certain matrix polynomials of degree 1 and 0.
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where F5(x) = (1 — z)I and F1, Fy certain matrix polynomials of degree 1 and 0.
If we choose so1 = (@i B Hﬁ(;{ iy in the coefficient o above (therefore M is a singular

matrix and depending on one free parameter s11) we find a phenomenon that is not possible
in the scalar case.
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satisty a second-order differential equation of the form

Pl (@) Fa(x) + Pl (x)Fi () + Po(2)Fy = Ay Po(a)

where F5(x) = (1 — z)I and F1, Fy certain matrix polynomials of degree 1 and 0.
If we choose so1 = (@i B +2§‘E;1L ey in the coefficient o above (therefore M is a singular

matrix and depending on one free parameter s11) we find a phenomenon that is not possible
in the scalar case.

Indeed, in this situation (and only in this situation) the matrix-valued polynomials b,

obtained by performing the Darboux transformation also satisty a second-order differential
equation of the form with coefficients F5, Fy, F{y given by

N 0 0 B—k+1  B—k+1 '\ |
FQ(.CE) — T+ a+B—k+2 a+B—k+2 7
L b=l - oz+%J—ri+2 a+%t}c-|-2
_ [ 0 0 __B—ktl  _ (B—k+D)(atB—k+1)
Fi(z) =x 4 a+B—k+2 at+B—k+2 |
\k +1 —(a+f+3) oz—l—%ti—kQ (a+i)+(§fgll§+l)

= (D@t —k+1) 0
—(k+1) 0



Remark 2. It is well known that the original matrix-valued orthogonal polynomials P,
satisty a second-order differential equation of the form

Pl (@) Fa(x) + Pl (x)Fi () + Po(2)Fy = Ay Po(a)

where F5(x) = (1 — z)I and F1, Fy certain matrix polynomials of degree 1 and 0.

If we choose so1 = (@i B +2ﬁ;{ ey in the coefficient o above (therefore M is a singular

matrix and depending on one free parameter s11) we find a phenomenon that is not possible
in the scalar case.

Indeed, in this situation (and only in this situation) the matrix-valued polynomials P,
obtained by performing the Darboux transformation also satisty a second-order differential
equation of the form with coefficients F5, Fy, F{y given by

N | 0 0 B—k+1  B—k+1 '\ |
FQ(.CE) — T+ a+B—k+2 a+B—k+2 7
L b=l - a+%ti+2 a+%t}c-|-2
_ [ 0 0 __B—ktl  _ (B—k+D)(atB—k+1)
Fi(z) =x 4 a+B—k+2 at+B—k+2 |
\k +1 —(a+f+3) oz—l—%ti—kQ (a+i)+(§fgll§+l)

. [((k+D(a+B-k+1) 0
—(k+1) 0

Typically, in the scalar case, and for some special values of the parameters involved, the
order of the differential equation satisfied by the Darboux polynomials is higher than 2. In
the matrix case we have a family of matrix-valued orthogonal polynomials P, (depending on
one free parameter s11) satisfying again a second-order differential equation with coefficients

independent of s1;. This phenomenon is not new and appeared for the first time in Duran-
MdI (2008) using a different method.
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