
A variant of the Wright-Fisher diffusion model coming from
the theory of matrix-valued spherical functions∗ ,†

Manuel Domı́nguez de la Iglesia
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The Wright-Fisher model

Consider a gene population of constant size M composed of two types A and B with mutations

allowed (only) A
a
−→ B, B

b
−→ A,a,b > 0. Call #A = i. The next generation is determined by M

independent binomial trials where each trial results in A or B with probabilities

pi =
i

M
(1 − a) +

(

1 −
i

M

)

b, qi = 1 − pi.

Therefore we generate a discrete-time Markov chain {X(n)}whereX(n) = {#A in the n-th generation}
with state space S = {0, 1, . . . ,M} and transition probability matrix P = (Pi,j) with

Pi,j = Pr{X(n+ 1) = j|X(n) = i} =

(

M

j

)

p
j
iq
M−j
i .

Let us consider a huge population size (M→ ∞) and define the associated rescaled process

Yt = lim
M→∞

YM(t) = lim
M→∞

X([Mt])

M
, t ∈ [0,+∞).

If we call h = 1/M and x = i/M, we have that

τ(x) = lim
h→0+

1

h
E [YM(t+ h) − YM(t)|YM(t) = x] = −γ1x+ (1 − x)γ2,

σ2(x) = lim
h→0+

1

h
E
[

(YM(t+ h) − YM(t))2 |YM(t) = x
]

= x(1 − x),

where γ1 = aM and γ2 = bM are the intensities of mutation. Therefore Yt is a continuous-time
diffusion process with state space S = [0, 1], drift τ(x) and diffusion coefficient σ2(x). Yt evolves
according to the stochastic differential equation

dYt = τ(Yt) + σ(Yt)dBt.

Write γ1 =
1+β

2 and γ2 = 1+α
2 . The infinitesimal operator A of the process Yt is

A = x(1 − x)
d2

dx2
+ (1 + α− x(α+ β+ 2))

d

dx
, α,β > −1.

The orthonormal Jacobi polynomials Pα,β
n (x) (orthogonal with respect to ω(x) = xα(1 − x)β) are

eigenfunctions of the infinitesimal operator A, i.e.,

AP
α,β
n (x) = λnP

α,β
n (x), λn = −n(n + α+ β+ 1).

As a consequence, we get a spectral representation of the probability density

p(t; x,y) =
∞∑

n=0

eλntP
α,β
n (x)P

α,β
n (y)yα(1 − y)β,

and the invariant distribution of the process (α,β > 0)

ψ(y) = lim
t→∞

p(t; x,y) =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β+ 2)
yα(1 − y)β.

We know from [2] that the boundaries 0, 1 are absorbing if −1 < α,β < 0 and reflecting if α,β > 0.

A variant of the Wright-Fisher model

We consider now a hybrid process of the form {(Yt,Rt) : t ∈ [0,+∞)} where Yt ∈ [0, 1] is a Wright-
Fisher type diffusion process and Rt ∈ {1, 2, . . . ,N} is a continuous-time Markov chain representing
N different phases for which the coefficients of the process Yt may change. These processes are also
known as diffusions with Markovian switching. Our process evolves according to the stochastic
differential equation

dYt = τRt(Yt) + σRt(Yt)dBt,

τi(x) = α+ 1 +N− i− x(α+ β+ 2 +N− i), σ2
i (x) = 2x(1 − x).

Now the intensities of mutations depend on the phase so

A
β+1

2
−−→ B and B

α+N−i+1
2

−−−−−→ A, i = 1, 2, . . . ,N.

Observe that at phaseNwe recover the original Wright-Fisher model, but the intensity of mutation
B→ A grows as we get closer to the first phases.
The continuous-time process Rt (depending also on the position Yt) evolves according to a birth-
and-death process whose infinitesimal operator is given by an N×N tridiagonal matrix Q(x):

Qi,i−1(x) =
1

1 − x
(N− i)(i+ β− k), Qi,i+1(x) =

x

1 − x
(i− 1)(N− i+ k), (1)

Qi,i(x) = −(Qi,i−1(x) +Qi,i+1(x)), 0 < k < β+ 1. (2)

Q(x) only depends on β and a NEW parameter k. We have that the boundary 0 (or 1) is reflecting if
α > 0 (or β > 0) and absorbing if −1 < α < 0 AND the process is on phaseN (or −1 < β < 0).
Let us now study a couple of aspects from the discrete component Rt . First we will study the
waiting times at each phase depending on the parameters and secondly we will study the tendency
of moving forward or backward in phases. All these facts depend on the position of Xt.
For the waiting times we have to take a look to the diagonal entries ofQ(x) (see (2)). We remark that
if x→ 1− then all phases are instantaneous. If x→ 0+ or k→ 0+ then the phaseN is absorbing (see
first plot in Figure 1). Finally, if k→ β+1 then the phase 1 is absorbing (see second plot in Figure 1).
For the tendency, we observe from (1), that if k → β + 1 then we have a backward tendency,
meaning that the parameter k helps the population of A’s to survive against the population of B’s.
If k → 0+ then we have a forward tendency, meaning that both populations A and B fight in the
same conditions (see Figure 1). Finally, for middle values of k we may have forward and backward
tendency, depending on the position of the process.
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Figure 1: In the first plot k is close to 0, so the process tends to spend more time in the last absorbing
phase 3. In the second plot, k is close to β+ 1, so the phase 1 is absorbing.

The infinitesimal operator A of the process (Yt,Rt) is now matrix-valued

A =
1

2
A(x)

d2

dx2
+B(x)

d

dx
+Q(x)

d0

dx0
, A(x) = 2x(1 − x)I , Bii(x) = τi(x).

We already know (see [1]) a family of matrix-valued orthonormal eigenfunctions Φn(x) of A, i.e,

AΦn(x) = Φn(x)Γn, Γn diagonal.

They are called the matrix-valued spherical functions associated with the complex projective space
Pn(C) = SU(n+ 1)/U(n). The corresponding weight matrix W (x) is diagonal with entries

Wii(x) = x
α(1 − x)β

(

β− k+ i− 1
i− 1

)(

N+ k− i− 1
N− i

)

xN−i.

As a consequence, we get a spectral representation of the matrix-valued probability density

P (t; x,y) =
∞∑

n=0

Φn(x)e
ΓntΦ∗

n(y)W (y).

The invariant distribution (α,β > 0) is now a row vector ψ(y) = (ψ1(y),ψ2(y), . . . ,ψN(y)) with

0 6 ψj(y) 6 1 and
∑N
j=1

∫1
0ψj(y)dy = 1. In our case, we have

ψ(y) =

(∫1

0
eTNW (x)eNdx

)−1

eTNW (y).

where eT = (1, 1, . . . , 1). In particular, for our example (see Figure 2),

ψj(y) = y
α+N−j(1 − y)β

(

N− 1

j− 1

)(

α+ β+N

α

)

(β+N)(k)N−j(β− k+ 1)j−1

(α + β− k+ 2)N−1
.

Figure 2: The components ψj(y), j = 1, . . . ,N, for N = 2, 3, 4, 5, and α,β = 1,k = 5/4.
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