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Markov chains and OP The new example

One dimensional Markov chains

Let (Ω,F ,P) be a probability space. A (1-D) Markov chain with state space
S ⊂ N is a collection of S-valued random variables {Xt : t ∈ T } indexed by a
parameter set T (time) such that they have the Markov property, i.e. the
behavior of the future only depends on the present and not the past.
The main goal is to find a description of the transition probabilities

Pij(t) ≡ P(Xt = j |X0 = i), i , j ∈ S ⊂ N

1 Discrete time: the process is characterized in terms of the one-step
transition probability matrix P, which entries are given by

Pij = P(X1 = j |X0 = i) ⇒ Pij(n) = (Pn)ij

2 Continuous time: in this case the process is characterized (among other
properties) by the behavior near t → 0+, i.e.

Pij(t) =taij + o(t), t → 0+, aij ≥ 0,

Pii (t) =1− tai + o(t), t → 0+, ai =
∑
j 6=i

aij

If we denote by A = (aij), then we have P ′(t) = AP(t) = P(t)A.
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Examples related to OP

1. Random walks: S = {0, 1, 2, . . .}, T = {0, 1, 2, . . .}.
Transitions are only allowed between adjacent states, i.e.

Pij =


pi , if j = i + 1

ri , if j = i

qi , if j = i − 1

0, elsewhere

Therefore, P is a semi-infinite tridiagonal matrix (Jacobi matrix)

P =


r0 p0 0
q1 r1 p1 0
0 q2 r2 p2

. . .
. . .

. . .

 , ri ≥ 0, pi , qi > 0, pi + ri + qi = 1

The n-step transition probability matrix is then given by P(n) = Pn.
Some examples related to OP are the gambler’s ruin (Jacobi) and urn models
like the Ehrenfest model (Krawtchouk) or the Laplace-Bernoulli model (Hahn).
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Examples related to OP

2. Birth and death processes: S = {0, 1, 2, . . .}, T = [0,∞).
The infinitesimal transitions are only allowed between adjacent states, i.e.

lim
t→0+

Pij(t) =


tλi + o(t), if j = i + 1

1− (λi + µi )t + o(t), if j = i

tµi + o(t), if j = i − 1

o(t), elsewhere

Therefore we have a semi-infinite tridiagonal matrix A (also a Jacobi matrix)

A =


−λ0 λ0 0
µ1 −(µ1 + λ1) λ1 0
0 µ2 −(µ2 + λ2) λ2

. . .
. . .

. . .

 , λi , µi > 0

The transition probability matrix P(t) satisfies the backward and forward
Kolmogorov equations P ′(t) = AP(t) = P(t)A,P(0) = I .
Some examples of birth-and-death processes related to OP are the M/M/k
queue (Chebychev) or linear birth-and-death processes (Charlier, Meixner,
Krawtchouk, Laguerre).
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Spectral methods

Spectral or Favard’s Theorem: there exist a unique measure associated
with P or A. Therefore it is possible to find spectral representations of
the transition probabilities (Karlin-McGregor formulas):

1. Random walks: the measure ω is supported on [−1, 1]. If we denote
by (qi ) the sequence of OP generated by P then we have

P(Xn = j |X0 = i) = Pn
ij =

1

‖qi‖2

∫ 1

−1

xnqi (x)qj(x)dω(x)

2. Birth-and-death processes: now the measure ω is supported on [0,∞).
If we denote by (qi ) the sequence of OP generated by A then we have

P(Xt = j |X0 = i) = Pij(t) =
1

‖qi‖2

∫ ∞
0

e−xtqi (x)qj(x)dω(x)

**The spectral measure can either be discrete (finite or infinite) or

continuous.
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Bivariate Markov chains

Now consider a bivariate or 2-component Markov chain of the form

{(Xt ,Yt) : t ∈ T }, Xt ∈ S ⊂ N, Yt ∈ {1, 2, . . . ,N}

The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each
block of dimension N × N)

(P ij(t))i′j′ = P(Xt = j ,Yt = j ′|X0 = i ,Y0 = i ′)

1 Discrete time: as in one dimensional case the process is characterized by
its one-step transition probability block matrix P.

2 Continuous time: as in one dimensional case the process is characterized
by the Kolmogorov equations P ′(t) = AP(t) = P(t)A but now A is a
block matrix with same properties as before.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
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Processes related to matrix-valued OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

B0 A0

C 1 B1 A1

C 2 B2 A2

. . .
. . .

. . .


Depending if time is discrete or continuous we will have special stochastic
properties for the block entries of P or A:

1 Discrete time: all entries of Bn,An,C n+1 are nonnegative and
(B0 + A0)eN = eN , (C n + Bn + An)eN = eN , n ≥ 1, where
eN = (1, . . . , 1)T .

2 Continuous time: all off-diagonal entries of A are nonnegative and
(B0 + A0)eN = 0N , (C n + Bn + An)eN = 0N , n ≥ 1.

The main tool to study spectral methods will be the theory of
matrix-valued orthogonal polynomials.
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Spectral methods

Spectral or Favard’s Theorem: under certain symmetry conditions on the
coefficients of the block entries of P or A there exists a unique weight matrix
W . Therefore we will have again spectral representations of the transition
probabilities:

1. Quasi-birth-and-death processes (discrete time): the weight matrix W is
supported on [−1, 1]. If we denote by (Q i ) the sequence of MVOP generated
by P then we have (Grünbaum and Dette-Reuther-Studden-Zygmunt, 2007).

Pn
ij =

(∫ 1

−1

xnQ i (x)dW (x)Q∗j (x)

)(∫ 1

−1

Q j(x)dW (x)Q∗j (x)

)−1

2. Quasi-birth-and-death processes (continuous time): now the weight matrix
W is supported on [0,∞). If we denote by (Q i ) the sequence of MVOP
generated by A then we have (Dette-Reuther, 2010):

P ij(t) =

(∫ ∞
0

e−xtQ i (x)dW (x)Q∗j (x)

)(∫ ∞
0

Q j(x)dW (x)Q∗j (x)

)−1

**Again, the spectral weight matrix can either be discrete (finite or infinite) or

continuous.
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supported on [−1, 1]. If we denote by (Q i ) the sequence of MVOP generated
by P then we have (Grünbaum and Dette-Reuther-Studden-Zygmunt, 2007).

Pn
ij =

(∫ 1

−1

xnQ i (x)dW (x)Q∗j (x)

)(∫ 1

−1

Q j(x)dW (x)Q∗j (x)

)−1

2. Quasi-birth-and-death processes (continuous time): now the weight matrix
W is supported on [0,∞). If we denote by (Q i ) the sequence of MVOP
generated by A then we have (Dette-Reuther, 2010):

P ij(t) =

(∫ ∞
0

e−xtQ i (x)dW (x)Q∗j (x)

)(∫ ∞
0

Q j(x)dW (x)Q∗j (x)

)−1

**Again, the spectral weight matrix can either be discrete (finite or infinite) or

continuous.
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Matrix-valued spherical functions

Spherical functions associated with groups of the form G/K where (G ,K) is a
Gel’fand pair are very much related with OP (Helgason, Vilenkin, Klimyk).
They are eigenfunctions of the Casimir operator associated with the group.
The extension to the matrix-valued case was started by Tirao (1977). The
connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003).

1. Complex projective space: Pn(C) = SU(n + 1)/U(n).
Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with
stochastic processes by Grünbaum-MdI (2008), Grünbaum-Pacharoni-Tirao
(2012) and MdI (2012).

2. Complex hyperbolic plane: H2(C) = SU(2, 1)/U(2). Pacharoni-Román-Tirao
(2006). Dual to the complex projective plane P2(C) = SU(3)/U(2).

3. Real sphere: Sn = SO(n + 1)/O(n). Tirao-Zurrián (2013). Also connected
with the real projective space Pn(R) = SO(n + 1)/O(n).

In all cases (and others not mentioned) an explicit expression of the weight
matrix, the second-order differential operator, the three-term recurrence relation
and other structural formulas were derived for the matrix-valued spherical
functions. In most of the cases the relation with MVOP was also given.
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Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with
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The pair (SU(2)× SU(2),diag SU(2))

Koornwinder (1985) studied spherical functions associated with pairs of the
form (K ×K ,K), where the subgroup is diagonally embedded and K = SU(2).

More recently Koelink-van Pruijssen-Román (2012) studied with a different
approach this example and give the relation with MVOP.

For ` ∈ N and N = 2`+ 1 they produced a one-parameter family of N × N
MVOP where the weight matrix is

W (y) = [y(1− y)]ν−1/2 Ψ0(y)T (Ψ0(y))∗, Tij = δij

(
2`

i

)
(ν)i

(ν + 2`− i)i

where Ψ0(y) is certain matrix-valued function containing spherical functions.

The corresponding symmetric second-order differential operator is given by

D = y(1− y)∂2
y + (C + ν − y(2`+ 2ν + 1))∂y − (V − (ν − 1)(2`+ ν + 1))

where C is tridiagonal and V diagonal with eigenvalue

Λn = −n(n − 1)− n(2`+ 2ν + 1)− (V − (ν − 1)(2`+ ν + 1))
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Two important facts

1. The structure of the group induces the existence of a constant
matrix Y such that we can decompose by blocks the weight matrix
W in the form

W̃ (y) = YW (y)Y ∗ =

(
W1(y) 0

0 W2(y)

)
where W1 is (` + 1)× (` + 1) and W2 is `× `. So we will study the
probabilistic aspects of these two independent processes (` = 1).

2. We look for certain family of MVOP such that the
corresponding block tridiagonal Jacobi matrix A has a “stochastic”
interpretation, meaning that the sum of each row of A is ≤ 0 and
the off-diagonal entries of A are ≥ 0 (therefore the infinitesimal
operator of a continuous-time Markov chain).
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Two birth-and-death models (` = 1)

Let W1(y) (2× 2) and w2(y) (scalar) be the corresponding block weight
matrices and denote by Qn,1 and qn,2 the corresponding families of MVOP
satisfying Qn,1(0)e2 = e2, e2 = (1, 1)T and qn,2(0) = 1.

1. A birth-and-death process: The polynomials qn,2 satisfy the three-term
recurrence relation

−yqn,2(y) = anqn+1,2(y)− (an + cn)qn,2(y) + cnqn−1,2(y)

where the coefficients are given by

an =
2ν + n + 2

4(ν + n + 1)
, cn =

n

4(ν + n + 1)

Therefore the Jacobi matrix is

A2 =


− 1

2
1
2

0
1

4(ν+2)
− 1

2
2ν+3

4(ν+2)
0

0 1
2(ν+3)

− 1
2

ν+2
2(ν+3)

0

. . .
. . .

. . .

 , ν > −3/2

and it is the infinitesimal operator of a birth-and-death process.
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The potential coefficients (inverse of the norms of qn,2) are

π0 = 1, πn =
2(ν + n + 1)(2ν + 3)n−1

n!
, n ≥ 1

while the (normalized) weight is given by

w2(y) =
4ν+1Γ(ν + 2)√
πΓ(ν + 3/2)

[y(1− y)]ν+1/2 , y ∈ (0, 1), ν > −3/2

Therefore we have the Karlin-McGregor representation

P
(2)
ij (t) = P(Xt = j |X0 = i) = πj

∫ 1

0

e−ytqi,2(y)qj,2(y)w2(y)dy

=
2(ν + j + 1)(2ν + 3)j−14ν+1Γ(ν + 2)

j!
√
πΓ(ν + 3/2)

∫ 1

0

e−ytqi,2qj,2 [y(1− y)]ν+1/2 dy

Since we have the explicit expression of the weight w2(y) we can study the
recurrence of the process. For −3/2 < ν ≤ −1/2 the process is null recurrent
(since

∑
πn =∞), while if ν > −1/2 then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server
queue as the length of the queue increases.
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2. A quasi-birth-and-death process: The polynomials Qn,1(y) satisfy the
three-term recurrence relation

−yQn,1(y) = AnQn+1,1(y) + BnQn,1(y) + CnQn−1,1(y)

where the coefficients are given by

An =

 2ν+n+2
4(ν+n+2)

0

0
(n+ν)(2ν+n+2)

4(ν+n+1)2

 , Bn =

 − 1
2

ν
2(ν+n)(ν+n+2)

1+ν
2(ν+n+1)2 − 1

2

 , Cn =

 n
4(ν+n)

0

0
n(ν+n+2)

4(ν+n+1)2


Therefore the Jacobi matrix (pentadiagonal) is

A1 =



− 1
2

1
2(ν+2)

ν+1
2(ν+2)

0 0 0 0 0 · · ·
1

2(ν+1)
− 1

2
0 ν

2(ν+1)
0 0 0 0 · · ·

1
4(ν+1)

0 − 1
2

ν
2(ν+1)(ν+3)

2ν+3
4(ν+3)

0 0 0 · · ·

0 ν+3
4(ν+2)2

1+ν
2(ν+2)2 − 1

2
0

(1+ν)(2ν+3)

4(ν+2)2 0 0 · · ·

0 0 1
2(ν+2)

0 − 1
2

ν
2(ν+2)(ν+4)

ν+2
2(ν+4)

0 · · ·

0 0 0 ν+4
2(ν+3)2

1+ν
2(ν+3)2 − 1

2
0

(2+ν)2

2(ν+3)2 · · ·

. . .
. . .

. . .
. . .

. . .


and it is the infinitesimal operator of a quasi-birth-and-death process (ν ≥ 0).
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The (normalized) weight matrix is given by

W1(y) =
4ν+1/2Γ(ν + 1)
√
πΓ(ν + 1/2)

[y(1− y)]ν−1/2

1− 2(1+ν)
ν+1/2

y(1− y) ν+1
ν+2

(1− 2y)

ν+1
ν+2

(1− 2y) ν+1
ν+2

(
1− 2ν

ν+1/2
y(1− y)

) , ν ≥ 0

Each block entry (i , j) of P(1)(t) admits a Karlin-McGregor representation

P
(1)
ij (t) =

(∫ 1

0

e−ytQi,1(y)W1(y)Q∗j,1(y)dx

)
Πj

Π0 = I , Πn =
(
‖Qn,1‖2

W1

)−1

=
2(2ν + 3)n−1

n!

(
(ν+1)2

ν+n+1
0

0 ν(ν+2)(ν+n+1)
(ν+n)(ν+n+2)

)
We can also compute explicitly the invariant measure of the process

π =
(

(Π0e2)T ; (Π1e2)T ; (Π2e2)T ; · · ·
)
, eT

2 = (1, 1),

=

(
1, 1;

2(ν + 1)2

ν + 2
,

2ν(ν + 2)2

(ν + 1)(ν + 3)
;

(2ν + 3)(ν + 1)2

ν + 3
,

(2ν + 3)ν(ν + 3)

ν + 4
; · · ·

)
In a similar way studied in the scalar case, the process is null recurrent for

0 ≤ ν ≤ 1/2, while if ν > 1/2 then the process will be transient.
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1− 2(1+ν)
ν+1/2

y(1− y) ν+1
ν+2

(1− 2y)

ν+1
ν+2

(1− 2y) ν+1
ν+2

(
1− 2ν

ν+1/2
y(1− y)

) , ν ≥ 0

Each block entry (i , j) of P(1)(t) admits a Karlin-McGregor representation

P
(1)
ij (t) =

(∫ 1

0

e−ytQi,1(y)W1(y)Q∗j,1(y)dx

)
Πj

Π0 = I , Πn =
(
‖Qn,1‖2

W1

)−1

=
2(2ν + 3)n−1

n!

(
(ν+1)2

ν+n+1
0

0 ν(ν+2)(ν+n+1)
(ν+n)(ν+n+2)

)
We can also compute explicitly the invariant measure of the process

π =
(

(Π0e2)T ; (Π1e2)T ; (Π2e2)T ; · · ·
)
, eT

2 = (1, 1),

=

(
1, 1;

2(ν + 1)2

ν + 2
,

2ν(ν + 2)2

(ν + 1)(ν + 3)
;

(2ν + 3)(ν + 1)2

ν + 3
,

(2ν + 3)ν(ν + 3)

ν + 4
; · · ·

)
In a similar way studied in the scalar case, the process is null recurrent for

0 ≤ ν ≤ 1/2, while if ν > 1/2 then the process will be transient.



Markov chains and OP The new example

The (normalized) weight matrix is given by

W1(y) =
4ν+1/2Γ(ν + 1)
√
πΓ(ν + 1/2)

[y(1− y)]ν−1/2

1− 2(1+ν)
ν+1/2

y(1− y) ν+1
ν+2

(1− 2y)

ν+1
ν+2

(1− 2y) ν+1
ν+2

(
1− 2ν

ν+1/2
y(1− y)

) , ν ≥ 0

Each block entry (i , j) of P(1)(t) admits a Karlin-McGregor representation

P
(1)
ij (t) =

(∫ 1

0

e−ytQi,1(y)W1(y)Q∗j,1(y)dx

)
Πj

Π0 = I , Πn =
(
‖Qn,1‖2

W1

)−1

=
2(2ν + 3)n−1

n!

(
(ν+1)2

ν+n+1
0

0 ν(ν+2)(ν+n+1)
(ν+n)(ν+n+2)

)
We can also compute explicitly the invariant measure of the process

π =
(

(Π0e2)T ; (Π1e2)T ; (Π2e2)T ; · · ·
)
, eT

2 = (1, 1),

=

(
1, 1;

2(ν + 1)2

ν + 2
,

2ν(ν + 2)2

(ν + 1)(ν + 3)
;

(2ν + 3)(ν + 1)2

ν + 3
,

(2ν + 3)ν(ν + 3)

ν + 4
; · · ·

)
In a similar way studied in the scalar case, the process is null recurrent for

0 ≤ ν ≤ 1/2, while if ν > 1/2 then the process will be transient.



Markov chains and OP The new example

Interpretation: We have a 2 phases quasi-birth-and-death process. If the process
moves along any of the phases, then the process can add (or remove) 2 elements to
the queue. On the contrary, if the process moves from one phase to another, then the
process add (or remove) 1 element to the queue. As the length of the queue increases,
it is very unlikely that a transition between phases occurs. Therefore this
quasi-birth-and-death process may be viewed as a rational variation of a couple of
one-server queues where the interaction between them is significant in the first states
of the queue.
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