SOME RECENT DEVELOPMENTS ABOUT BIRTH-AND-DEATH MODELS AND ORTHOGONAL POLYNOMIALS

Manuel Domínguez de la Iglesia

Instituto de Matemáticas, UNAM, México

VI Iberoamerican Workshop on Orthogonal Polynomials and Applications
Uberaba, May 9-12, 2017

1 Joint work with Pablo Román
OUTLINE

1. Markov chains and OP
 - Markov chains
 - Bivariate Markov chains

2. The new example
 - Matrix-valued spherical functions
 - Two birth-and-death models
Markov chains and OP

1. Markov chains and OP
 - Markov chains
 - Bivariate Markov chains

2. The new example
 - Matrix-valued spherical functions
 - Two birth-and-death models
Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space. A (1-D) Markov chain with state space \(S \subset \mathbb{N}\) is a collection of \(S\)-valued random variables \(\{X_t : t \in \mathcal{T}\}\) indexed by a parameter set \(\mathcal{T}\) (time) such that they have the Markov property, i.e. the behavior of the future only depends on the present and not the past.

The main goal is to find a description of the transition probabilities

\[P_{ij}(t) \equiv \mathbb{P}(X_t = j | X_0 = i), \quad i, j \in S \subset \mathbb{N} \]

- **Discrete time:** the process is characterized in terms of the one-step transition probability matrix \(P\), which entries are given by

\[P_{ij} = \mathbb{P}(X_1 = j | X_0 = i) \quad \Rightarrow \quad P_{ij}(n) = (P^n)_{ij} \]

- **Continuous time:** in this case the process is characterized (among other properties) by the behavior near \(t \to 0^+\), i.e.

\[
\begin{align*}
P_{ij}(t) &= ta_{ij} + o(t), \quad t \to 0^+, \quad a_{ij} \geq 0, \\
P_{ii}(t) &= 1 - ta_i + o(t), \quad t \to 0^+, \quad a_i = \sum_{j \neq i} a_{ij}
\end{align*}
\]

If we denote by \(A = (a_{ij})\), then we have \(P'(t) = AP(t) = P(t)A\).
One dimensional Markov Chains

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A (1-D) Markov chain with state space $S \subset \mathbb{N}$ is a collection of S-valued random variables $\{X_t : t \in \mathcal{T}\}$ indexed by a parameter set \mathcal{T} (time) such that they have the Markov property, i.e. the behavior of the future only depends on the present and not the past. The main goal is to find a description of the transition probabilities

$$P_{ij}(t) \equiv \mathbb{P}(X_t = j|X_0 = i), \quad i, j \in S \subset \mathbb{N}$$

Discrete time: the process is characterized in terms of the one-step transition probability matrix P, which entries are given by

$$P_{ij} = \mathbb{P}(X_1 = j|X_0 = i) \quad \Rightarrow \quad P_{ij}(n) = (P^n)_{ij}$$

Continuous time: in this case the process is characterized (among other properties) by the behavior near $t \to 0^+$, i.e.

$$P_{ij}(t) = t\alpha_{ij} + o(t), \quad t \to 0^+, \quad a_{ij} \geq 0,$$

$$P_{ii}(t) = 1 - t\alpha_i + o(t), \quad t \to 0^+, \quad a_i = \sum_{j \neq i} a_{ij}$$

If we denote by $\mathcal{A} = (a_{ij})$, then we have $P'(t) = \mathcal{A}P(t) = P(t)\mathcal{A}$.
One dimensional Markov chains

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space. A (1-D) Markov chain with state space \(S \subset \mathbb{N}\) is a collection of \(S\)-valued random variables \(\{X_t : t \in \mathcal{T}\}\) indexed by a parameter set \(\mathcal{T}\) (time) such that they have the Markov property, i.e. the behavior of the future only depends on the present and not the past. The main goal is to find a description of the transition probabilities

\[
P_{ij}(t) \equiv \mathbb{P}(X_t = j | X_0 = i), \quad i, j \in S \subset \mathbb{N}
\]

1. **Discrete time**: the process is characterized in terms of the one-step transition probability matrix \(P\), which entries are given by

\[
P_{ij} = \mathbb{P}(X_1 = j | X_0 = i) \quad \Rightarrow \quad P_{ij}(n) = (P^n)_{ij}
\]

2. **Continuous time**: in this case the process is characterized (among other properties) by the behavior near \(t \to 0^+\), i.e.

\[
P_{ij}(t) = ta_{ij} + o(t), \quad t \to 0^+, \quad a_{ij} \geq 0,
\]

\[
P_{ii}(t) = 1 - ta_i + o(t), \quad t \to 0^+, \quad a_i = \sum_{j \neq i} a_{ij}
\]

If we denote by \(\mathcal{A} = (a_{ij})\), then we have \(P'(t) = \mathcal{A}P(t) = P(t)\mathcal{A} \).
One dimensional Markov chains

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A (1-D) Markov chain with state space $S \subset \mathbb{N}$ is a collection of S-valued random variables $\{X_t : t \in T\}$ indexed by a parameter set T (time) such that they have the Markov property, i.e. the behavior of the future only depends on the present and not the past. The main goal is to find a description of the transition probabilities

$$P_{ij}(t) \equiv \mathbb{P}(X_t = j|X_0 = i), \quad i, j \in S \subset \mathbb{N}$$

1. **Discrete time**: the process is characterized in terms of the one-step transition probability matrix P, which entries are given by

$$P_{ij} = \mathbb{P}(X_1 = j|X_0 = i) \Rightarrow P_{ij}(n) = (P^n)_{ij}$$

2. **Continuous time**: in this case the process is characterized (among other properties) by the behavior near $t \to 0^+$, i.e.

$$P_{ij}(t) = ta_{ij} + o(t), \quad t \to 0^+, \quad a_{ij} \geq 0,$$

$$P_{ii}(t) = 1 - ta_i + o(t), \quad t \to 0^+, \quad a_i = \sum_{j \neq i} a_{ij}$$

If we denote by $\mathcal{A} = (a_{ij})$, then we have $P'(t) = \mathcal{A}P(t) = P(t)\mathcal{A}$.
Examples related to OP

1. **Random walks**: \(S = \{0, 1, 2, \ldots\} \), \(T = \{0, 1, 2, \ldots\} \). Transitions are only allowed between adjacent states, i.e.

\[
P_{ij} = \begin{cases}
p_i, & \text{if } j = i + 1 \\
r_i, & \text{if } j = i \\
q_i, & \text{if } j = i - 1 \\
0, & \text{elsewhere} \end{cases}
\]

Therefore, \(P \) is a semi-infinite tridiagonal matrix (Jacobi matrix)

\[
P = \begin{pmatrix}
 r_0 & p_0 & 0 \\
 q_1 & r_1 & p_1 & 0 \\
 0 & q_2 & r_2 & p_2 \\
 \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}, \quad r_i \geq 0, p_i, q_i > 0, \quad p_i + r_i + q_i = 1
\]

The \(n \)-step transition probability matrix is then given by \(P^{(n)} = P^n \).

Some examples related to OP are the gambler’s ruin (Jacobi) and urn models like the Ehrenfest model (Krawtchouk) or the Laplace-Bernoulli model (Hahn).
Examples related to OP

1. Random walks: $S = \{0, 1, 2, \ldots \}$, $T = \{0, 1, 2, \ldots \}$. Transitions are only allowed between adjacent states, i.e.

 \[
 P_{ij} = \begin{cases}
 p_i, & \text{if } j = i + 1 \\
 r_i, & \text{if } j = i \\
 q_i, & \text{if } j = i - 1 \\
 0, & \text{elsewhere}
 \end{cases}
 \]

 Therefore, P is a semi-infinite tridiagonal matrix (Jacobi matrix)

 \[
 P = \begin{pmatrix}
 r_0 & p_0 & 0 & & & \\
 q_1 & r_1 & p_1 & 0 & & \\
 0 & q_2 & r_2 & p_2 & & \\
 & & \ddots & \ddots & \ddots
 \end{pmatrix}, \quad r_i \geq 0, p_i, q_i > 0, \quad p_i + r_i + q_i = 1
 \]

 The n-step transition probability matrix is then given by $P^{(n)} = P^n$.

 Some examples related to OP are the gambler’s ruin (Jacobi) and urn models like the Ehrenfest model (Krawtchouk) or the Laplace-Bernoulli model (Hahn).
EXAMPLES RELATED TO OP

1. Random walks: $S = \{0, 1, 2, \ldots\}$, $T = \{0, 1, 2, \ldots\}$. Transitions are only allowed between adjacent states, i.e.

$$P_{ij} = \begin{cases} p_i, & \text{if } j = i + 1 \\ r_i, & \text{if } j = i \\ q_i, & \text{if } j = i - 1 \\ 0, & \text{elsewhere} \end{cases}$$

Therefore, P is a semi-infinite tridiagonal matrix (Jacobi matrix)

$$P = \begin{pmatrix} r_0 & p_0 & 0 \\ q_1 & r_1 & p_1 & 0 \\ 0 & q_2 & r_2 & p_2 \\ & & & \ddots & \ddots & \ddots \end{pmatrix}, \quad r_i \geq 0, p_i, q_i > 0, \quad p_i + r_i + q_i = 1$$

The n-step transition probability matrix is then given by $P^{(n)} = P^n$. Some examples related to OP are the gambler’s ruin (Jacobi) and urn models like the Ehrenfest model (Krawtchouk) or the Laplace-Bernoulli model (Hahn).
2. **Birth and death processes**: \(S = \{0, 1, 2, \ldots \} \), \(T = [0, \infty) \).

The infinitesimal transitions are only allowed between adjacent states, i.e.

\[
\lim_{t \to 0^+} P_{ij}(t) = \begin{cases}
 t\lambda_i + o(t), & \text{if } j = i + 1 \\
 1 - (\lambda_i + \mu_i) t + o(t), & \text{if } j = i \\
 t\mu_i + o(t), & \text{if } j = i - 1 \\
 o(t), & \text{elsewhere}
\end{cases}
\]

Therefore we have a semi-infinite tridiagonal matrix \(A \) (also a Jacobi matrix)

\[
A = \begin{pmatrix}
-\lambda_0 & \lambda_0 & 0 & \cdots \\
\mu_1 & -(\mu_1 + \lambda_1) & \lambda_1 & \cdots \\
0 & \mu_2 & -(\mu_2 + \lambda_2) & \lambda_2 & \cdots \\
& & \ddots & \ddots & \ddots \\
\end{pmatrix}, \quad \lambda_i, \mu_i > 0
\]

The transition probability matrix \(P(t) \) satisfies the backward and forward Kolmogorov equations \(P'(t) = AP(t) = P(t)A, P(0) = I \).

Some examples of birth-and-death processes related to OP are the \(M/M/k \) queue (Chebychev) or linear birth-and-death processes (Charlier, Meixner, Krawtchouk, Laguerre).
EXAMPLES RELATED TO OP

2. Birth and death processes: \(S = \{0, 1, 2, \ldots \} \), \(T = [0, \infty) \).
The infinitesimal transitions are only allowed between adjacent states, i.e.

\[
\lim_{t \to 0^+} P_{ij}(t) = \begin{cases}
 t\lambda_i + o(t), & \text{if } j = i + 1 \\
 1 - (\lambda_i + \mu_i)t + o(t), & \text{if } j = i \\
 t\mu_i + o(t), & \text{if } j = i - 1 \\
 o(t), & \text{elsewhere}
\end{cases}
\]

Therefore we have a semi-infinite tridiagonal matrix \(A \) (also a Jacobi matrix)

\[
A = \begin{pmatrix}
-\lambda_0 & \lambda_0 & 0 \\
\mu_1 & -(\mu_1 + \lambda_1) & \lambda_1 & 0 \\
0 & \mu_2 & -(\mu_2 + \lambda_2) & \lambda_2 \\
& & \ddots & \ddots & \ddots
\end{pmatrix}, \quad \lambda_i, \mu_i > 0
\]

The transition probability matrix \(P(t) \) satisfies the backward and forward Kolmogorov equations \(P'(t) = AP(t) = P(t)A, P(0) = I \).
Some examples of birth-and-death processes related to OP are the \(M/M/k \) queue (Chebychev) or linear birth-and-death processes (Charlier, Meixner, Krawtchouk, Laguerre).
2. **Birth and death processes**: \(S = \{0, 1, 2, \ldots\} \), \(T = [0, \infty) \).

The infinitesimal transitions are only allowed between adjacent states, i.e.

\[
\lim_{t \to 0^+} P_{ij}(t) = \begin{cases}
 t\lambda_i + o(t), & \text{if } j = i + 1 \\
 1 - (\lambda_i + \mu_i)t + o(t), & \text{if } j = i \\
 t\mu_i + o(t), & \text{if } j = i - 1 \\
 o(t), & \text{elsewhere}
\end{cases}
\]

Therefore we have a semi-infinite tridiagonal matrix \(A \) (also a Jacobi matrix)

\[
A = \begin{pmatrix}
 -\lambda_0 & \lambda_0 & 0 & \cdots \\
 \mu_1 & -(\mu_1 + \lambda_1) & \lambda_1 & 0 & \cdots \\
 0 & \mu_2 & -(\mu_2 + \lambda_2) & \lambda_2 & \cdots \\
 & & \ddots & \ddots & \ddots
\end{pmatrix}, \quad \lambda_i, \mu_i > 0
\]

The transition probability matrix \(P(t) \) satisfies the backward and forward Kolmogorov equations \(P'(t) = AP(t) = P(t)A, P(0) = I \).

Some examples of birth-and-death processes related to OP are the \(M/M/k \) queue (Chebychev) or linear birth-and-death processes (Charlier, Meixner, Krawtchouk, Laguerre).
Spectral methods

Spectral or Favard’s Theorem: there exist a unique measure associated with P or A. Therefore it is possible to find spectral representations of the transition probabilities (Karlin-McGregor formulas):

1. **Random walks**: the measure ω is supported on $[-1, 1]$. If we denote by (q_i) the sequence of OP generated by P then we have

 $$\mathbb{P}(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^{1} x^n q_i(x) q_j(x) d\omega(x)$$

2. **Birth-and-death processes**: now the measure ω is supported on $[0, \infty)$. If we denote by (q_i) the sequence of OP generated by A then we have

 $$\mathbb{P}(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_{0}^{\infty} e^{-xt} q_i(x) q_j(x) d\omega(x)$$

The spectral measure can either be discrete (finite or infinite) or continuous.
Spectral methods

Spectral or Favard’s Theorem: there exist a unique measure associated with P or A. Therefore it is possible to find spectral representations of the transition probabilities (Karlin-McGregor formulas):

1. Random walks: the measure ω is supported on $[-1,1]$. If we denote by (q_i) the sequence of OP generated by P then we have

\[
P(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^{1} x^n q_i(x) q_j(x) d\omega(x)
\]

2. Birth-and-death processes: now the measure ω is supported on $[0, \infty)$. If we denote by (q_i) the sequence of OP generated by A then we have

\[
P(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_{0}^{\infty} e^{-xt} q_i(x) q_j(x) d\omega(x)
\]

The spectral measure can either be discrete (finite or infinite) or continuous.
Spectral methods

Spectral or Favard’s Theorem: there exist a unique measure associated with P or A. Therefore it is possible to find **spectral representations** of the transition probabilities (Karlin-McGregor formulas):

1. **Random walks**: the measure ω is supported on $[-1, 1]$. If we denote by (q_i) the sequence of OP generated by P then we have

\[
\mathbb{P}(X_n = j|X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^{1} x^n q_i(x) q_j(x) d\omega(x)
\]

2. **Birth-and-death processes**: now the measure ω is supported on $[0, \infty)$. If we denote by (q_i) the sequence of OP generated by A then we have

\[
\mathbb{P}(X_t = j|X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_{0}^{\infty} e^{-xt} q_i(x) q_j(x) d\omega(x)
\]

The spectral measure can either be discrete (finite or infinite) or continuous.
Bivariate Markov Chains

Now consider a bivariate or 2-component Markov chain of the form

$$\{(X_t, Y_t) : t \in \mathcal{T}\}, \quad X_t \in S \subset \mathbb{N}, \quad Y_t \in \{1, 2, \ldots, N\}$$

The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each block of dimension $N \times N$)

$$(P_{ij}(t))_{i,j'} = \mathbb{P}(X_t = j, Y_t = j' | X_0 = i, Y_0 = i')$$

- Discrete time: as in one dimensional case the process is characterized by its one-step transition probability block matrix P.
- Continuous time: as in one dimensional case the process is characterized by the Kolmogorov equations $P'(t) = \mathcal{A}P(t) = P(t)\mathcal{A}$ but now \mathcal{A} is a block matrix with same properties as before.

Ideas behind: *random evolutions* (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
Bivariate Markov chains

Now consider a bivariate or 2-component Markov chain of the form

\(\{(X_t, Y_t) : t \in T\}, \quad X_t \in S \subset \mathbb{N}, \quad Y_t \in \{1, 2, \ldots, N\} \)

The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each block of dimension \(N \times N \))

\[
(P_{ij}(t))_{i', j'} = \mathbb{P}(X_t = j, Y_t = j' | X_0 = i, Y_0 = i')
\]

- Discrete time: as in one dimensional case the process is characterized by its one-step transition probability block matrix \(P \).

- Continuous time: as in one dimensional case the process is characterized by the Kolmogorov equations \(P'(t) = AP(t) = P(t)A \) but now \(A \) is a block matrix with same properties as before.

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
Bivariate Markov Chains

Now consider a bivariate or 2-component Markov chain of the form

\[\{(X_t, Y_t) : t \in \mathcal{T}\}, \quad X_t \in \mathcal{S} \subset \mathbb{N}, \quad Y_t \in \{1, 2, \ldots, N\} \]

The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each block of dimension \(N \times N \))

\[
\begin{pmatrix}
(P_{ij}(t))_{i',j'} \equiv \mathbb{P}(X_t = j, Y_t = j'|X_0 = i, Y_0 = i')
\end{pmatrix}
\]

1. **Discrete time:** as in one dimensional case the process is characterized by its one-step transition probability block matrix \(P \).

2. **Continuous time:** as in one dimensional case the process is characterized by the Kolmogorov equations \(P'(t) = \mathcal{A}P(t) = P(t)\mathcal{A} \) but now \(\mathcal{A} \) is a block matrix with same properties as before.

Ideas behind: *random evolutions*

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz…60’s and 70’s).
Bivariate Markov Chains

Now consider a bivariate or 2-component Markov chain of the form
\[
\{(X_t, Y_t) : t \in T\}, \quad X_t \in S \subset \mathbb{N}, \quad Y_t \in \{1, 2, \ldots, N\}
\]
The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each block of dimension \(N \times N\))

\[
(P_{ij}(t))_{i', j'} = P(X_t = j, Y_t = j' | X_0 = i, Y_0 = i')
\]

1. **Discrete time:** as in one dimensional case the process is characterized by its one-step transition probability block matrix \(P\).

2. **Continuous time:** as in one dimensional case the process is characterized by the Kolmogorov equations \(P'(t) = A P(t) = P(t)A\) but now \(A\) is a block matrix with same properties as before.

Ideas behind: *random evolutions* (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
Now consider a bivariate or 2-component Markov chain of the form
\[
\{(X_t, Y_t) : t \in \mathcal{T}\}, \quad X_t \in \mathcal{S} \subset \mathbb{N}, \quad Y_t \in \{1, 2, \ldots, N\}
\]
The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each block of dimension $N \times N$)
\[
(P_{ij}(t))_{i',j'} = \mathbb{P}(X_t = j, Y_t = j' | X_0 = i, Y_0 = i')
\]

1. **Discrete time:** as in one dimensional case the process is characterized by its one-step transition probability block matrix P.

2. **Continuous time:** as in one dimensional case the process is characterized by the Kolmogorov equations $P'(t) = A P(t) = P(t)A$ but now A is a block matrix with same properties as before.

Ideas behind: *random evolutions* (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
Processes related to matrix-valued OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

$$
\begin{pmatrix}
B_0 & A_0 & & \\
C_1 & B_1 & A_1 & \\
& C_2 & B_2 & A_2 \\
& & \ddots & \ddots & \ddots \\
\end{pmatrix}
$$

Depending if time is discrete or continuous we will have special stochastic properties for the block entries of P or A:

- Discrete time: all entries of B_n, A_n, C_{n+1} are nonnegative and $(B_0 + A_0)e_N = e_N$, $(C_n + B_n + A_n)e_N = e_N$, $n \geq 1$, where $e_N = (1, \ldots, 1)^T$.

- Continuous time: all off-diagonal entries of A are nonnegative and $(B_0 + A_0)e_N = 0_N$, $(C_n + B_n + A_n)e_N = 0_N$, $n \geq 1$.

The main tool to study spectral methods will be the theory of matrix-valued orthogonal polynomials.
Processes related to matrix-valued OP

Quasi-birth-and-death processes:

P and A are now **block-tridiagonal** matrices of the form

$$
\begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& C_2 & B_2 & A_2 \\
& & & & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}
$$

Depending if time is discrete or continuous we will have special stochastic properties for the block entries of P or A:

1. **Discrete time:** all entries of B_n, A_n, C_{n+1} are nonnegative and
 \[(B_0 + A_0)e_N = e_N, \quad (C_n + B_n + A_n)e_N = e_N, \quad n \geq 1,\]
 where $e_N = (1, \ldots, 1)^T$.

2. **Continuous time:** all off-diagonal entries of A are nonnegative and
 \[(B_0 + A_0)e_N = 0_N, \quad (C_n + B_n + A_n)e_N = 0_N, \quad n \geq 1.\]

The **main tool** to study spectral methods will be the theory of matrix-valued orthogonal polynomials.
Processes related to matrix-valued OP

Quasi-birth-and-death processes:
\[P \text{ and } A \text{ are now block-tridiagonal matrices of the form} \]

\[
\begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& C_2 & B_2 & A_2 \\
& & & \ddots & \ddots & \ddots
\end{pmatrix}
\]

Depending if time is discrete or continuous we will have special stochastic properties for the block entries of \(P \) or \(A \):

1. **Discrete time:** all entries of \(B_n, A_n, C_{n+1} \) are nonnegative and
 \[
 (B_0 + A_0)e_N = e_N, \quad (C_n + B_n + A_n)e_N = e_N, \quad n \geq 1, \text{ where } e_N = (1, \ldots, 1)^T.
 \]

2. **Continuous time:** all off-diagonal entries of \(A \) are nonnegative and
 \[
 (B_0 + A_0)e_N = 0_N, \quad (C_n + B_n + A_n)e_N = 0_N, \quad n \geq 1.
 \]

The main tool to study spectral methods will be the theory of matrix-valued orthogonal polynomials.
Processes related to matrix-valued OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

$$
\begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& C_2 & B_2 & A_2 \\
& & & \ddots & \ddots & \ddots
\end{pmatrix}
$$

Depending if time is discrete or continuous we will have special stochastic properties for the block entries of P or A:

1. **Discrete time:** all entries of B_n, A_n, C_{n+1} are nonnegative and

 $$(B_0 + A_0)e_N = e_N, \quad (C_n + B_n + A_n)e_N = e_N, \quad n \geq 1,$

 where $e_N = (1, \ldots, 1)^T$.

2. **Continuous time:** all off-diagonal entries of A are nonnegative and

 $$(B_0 + A_0)e_N = 0_N, \quad (C_n + B_n + A_n)e_N = 0_N, \quad n \geq 1.$$

The main tool to study spectral methods will be the theory of matrix-valued orthogonal polynomials.
Processes related to matrix-valued OP

Quasi-birth-and-death processes:

P and A are now block-tridiagonal matrices of the form

\[
\begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& C_2 & B_2 & A_2 \\
& & & \ddots & \ddots & \ddots
\end{pmatrix}
\]

Depending if time is discrete or continuous we will have special stochastic properties for the block entries of P or A:

1. **Discrete time:** all entries of B_n, A_n, C_{n+1} are nonnegative and
 \[(B_0 + A_0)e_N = e_N, \quad (C_n + B_n + A_n)e_N = e_N, \quad n \geq 1,\]
 where $e_N = (1, \ldots, 1)^T$.

2. **Continuous time:** all off-diagonal entries of A are nonnegative and
 \[(B_0 + A_0)e_N = 0_N, \quad (C_n + B_n + A_n)e_N = 0_N, \quad n \geq 1.\]

The main tool to study spectral methods will be the theory of matrix-valued orthogonal polynomials.
SPECTRAL METHODS

Spectral or Favard’s Theorem: under certain symmetry conditions on the coefficients of the block entries of \(P \) or \(A \) there exists a unique weight matrix \(W \). Therefore we will have again spectral representations of the transition probabilities:

1. **Quasi-birth-and-death processes** (discrete time): the weight matrix \(W \) is supported on \([-1, 1]\). If we denote by \((Q_i)\) the sequence of MVOP generated by \(P \) then we have (Grüenbaum and Dette-Reuther-Studden-Zygmunt, 2007):

\[
P^n_{ij} = \left(\int_{-1}^{1} x^n Q_i(x) dW(x) Q_j^*(x) \right) \left(\int_{-1}^{1} Q_j(x) dW(x) Q_j^*(x) \right)^{-1}
\]

2. **Quasi-birth-and-death processes** (continuous time): now the weight matrix \(W \) is supported on \([0, \infty)\). If we denote by \((Q_i)\) the sequence of MVOP generated by \(A \) then we have (Dette-Reuther, 2010):

\[
P_{ij}(t) = \left(\int_{0}^{\infty} e^{-xt} Q_i(x) dW(x) Q_j^*(x) \right) \left(\int_{0}^{\infty} Q_j(x) dW(x) Q_j^*(x) \right)^{-1}
\]

Again, the spectral weight matrix can either be discrete (finite or infinite) or continuous.
Spectral methods

Spectral or Favard’s Theorem: under certain symmetry conditions on the coefficients of the block entries of P or A there exists a unique weight matrix W. Therefore we will have again spectral representations of the transition probabilities:

1. Quasi-birth-and-death processes (discrete time): the weight matrix W is supported on $[-1, 1]$. If we denote by (Q_i) the sequence of MVOP generated by P then we have (Grünbaum and Dette-Reuther-Studden-Zygmunt, 2007):

$$P_{ij}^n = \left(\int_{-1}^{1} x^n Q_i(x) dW(x) Q_j^*(x) \right) \left(\int_{-1}^{1} Q_j(x) dW(x) Q_j^*(x) \right)^{-1}$$

2. Quasi-birth-and-death processes (continuous time): now the weight matrix W is supported on $[0, \infty)$. If we denote by (Q_i) the sequence of MVOP generated by A then we have (Dette-Reuther, 2010):

$$P_{ij}(t) = \left(\int_{0}^{\infty} e^{-xt} Q_i(x) dW(x) Q_j^*(x) \right) \left(\int_{0}^{\infty} Q_j(x) dW(x) Q_j^*(x) \right)^{-1}$$

Again, the spectral weight matrix can either be discrete (finite or infinite) or continuous.
Spectral methods

Spectral or Favard’s Theorem: under certain symmetry conditions on the coefficients of the block entries of P or A there exists a unique weight matrix W. Therefore we will have again spectral representations of the transition probabilities:

1. **Quasi-birth-and-death processes** (discrete time): the weight matrix W is supported on $[-1, 1]$. If we denote by (Q_i) the sequence of MVOP generated by P then we have (Gr" unbaum and Dette-Reuther-Studden-Zygmunt, 2007):

\[
P^n_{ij} = \left(\int_{-1}^{1} x^n Q_i(x) dW(x) Q_j^*(x) \right) \left(\int_{-1}^{1} Q_j(x) dW(x) Q_j^*(x) \right)^{-1}
\]

2. **Quasi-birth-and-death processes** (continuous time): now the weight matrix W is supported on $[0, \infty)$. If we denote by (Q_i) the sequence of MVOP generated by A then we have (Dette-Reuther, 2010):

\[
P_{ij}(t) = \left(\int_{0}^{\infty} e^{-xt} Q_i(x) dW(x) Q_j^*(x) \right) \left(\int_{0}^{\infty} Q_j(x) dW(x) Q_j^*(x) \right)^{-1}
\]

Again, the spectral weight matrix can either be discrete (finite or infinite) or continuous.
Outline

1. Markov chains and OP
 - Markov chains
 - Bivariate Markov chains

2. The new example
 - Matrix-valued spherical functions
 - Two birth-and-death models
Matrix-valued spherical functions

Spherical functions associated with groups of the form G/K where (G, K) is a Gel’fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group. The extension to the matrix-valued case was started by Tirao (1977). The connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003).

1. **Complex projective space:** $P_n(\mathbb{C}) = SU(n+1)/U(n)$. Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with stochastic processes by Grünbaum-MdI (2008), Grünbaum-Pacharoni-Tirao (2012) and MdI (2012).

2. **Complex hyperbolic plane:** $H_2(\mathbb{C}) = SU(2,1)/U(2)$. Pacharoni-Román-Tirao (2006). Dual to the complex projective plane $P_2(\mathbb{C}) = SU(3)/U(2)$.

3. **Real sphere:** $S^n = SO(n+1)/O(n)$. Tirao-Zurrián (2013). Also connected with the real projective space $P_n(\mathbb{R}) = SO(n+1)/O(n)$.

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical functions. In most of the cases the relation with MVOP was also given.
Matrix-valued spherical functions

Spherical functions associated with groups of the form G/K where (G, K) is a Gel’fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group. The extension to the **matrix-valued case** was started by Tirao (1977). The connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003).

1. **Complex projective space**: $P_n(\mathbb{C}) = SU(n + 1)/U(n)$. Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with stochastic processes by Grünbaum-Mdl (2008), Grünbaum-Pacharoni-Tirao (2012) and Mdl (2012).

2. **Complex hyperbolic plane**: $H_2(\mathbb{C}) = SU(2, 1)/U(2)$. Pacharoni-Román-Tirao (2006). Dual to the complex projective plane $P_2(\mathbb{C}) = SU(3)/U(2)$.

3. **Real sphere**: $S^n = SO(n + 1)/O(n)$. Tirao-Zurrián (2013). Also connected with the real projective space $P_n(\mathbb{R}) = SO(n + 1)/O(n)$.

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical functions. In most of the cases the relation with MVOP was also given.
Matrix-valued spherical functions

Spherical functions associated with groups of the form G/K where (G, K) is a Gel’fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group. The extension to the matrix-valued case was started by Tirao (1977). The connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003).

1. **Complex projective space**: $P_n(\mathbb{C}) = \text{SU}(n+1)/\text{U}(n)$. Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with stochastic processes by Grünbaum-Mdl (2008), Grünbaum-Pacharoni-Tirao (2012) and Mdl (2012).

2. **Complex hyperbolic plane**: $H_2(\mathbb{C}) = \text{SU}(2, 1)/\text{U}(2)$. Pacharoni-Román-Tirao (2006). Dual to the complex projective plane $P_2(\mathbb{C}) = \text{SU}(3)/\text{U}(2)$.

3. **Real sphere**: $S^n = \text{SO}(n+1)/\text{O}(n)$. Tirao-Zurrián (2013). Also connected with the real projective space $P_n(\mathbb{R}) = \text{SO}(n+1)/\text{O}(n)$.

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical functions. In most of the cases the relation with MVOP was also given.
Matrix-valued spherical functions

Spherical functions associated with groups of the form G/K where (G, K) is a Gel’fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group. The extension to the matrix-valued case was started by Tirao (1977). The connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003).

1. Complex projective space: $P_n(\mathbb{C}) = SU(n+1)/U(n)$. Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with stochastic processes by Grünbaum-MdI (2008), Grünbaum-Pacharoni-Tirao (2012) and MdI (2012).

2. Complex hyperbolic plane: $H_2(\mathbb{C}) = SU(2,1)/U(2)$. Pacharoni-Román-Tirao (2006). Dual to the complex projective plane $P_2(\mathbb{C}) = SU(3)/U(2)$.

3. Real sphere: $S^n = SO(n + 1)/O(n)$. Tirao-Zurrián (2013). Also connected with the real projective space $P_n(\mathbb{R}) = SO(n + 1)/O(n)$.

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical functions. In most of the cases the relation with MVOP was also given.
The pair \((SU(2) \times SU(2), \text{diag } SU(2))\)

Koornwinder (1985) studied spherical functions associated with pairs of the form \((K \times K, K)\), where the subgroup is **diagonally embedded** and \(K = SU(2)\).

More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with MVOP.

For \(\ell \in \mathbb{N}\) and \(N = 2\ell + 1\) they produced a one-parameter family of \(N \times N\) MVOP where the **weight matrix** is

\[
W(y) = [y(1 - y)]^{\nu-1/2} \Psi_0(y) T(\Psi_0(y))^*, \quad T_{ij} = \delta_{ij} \left(\frac{2\ell}{i}\right) \frac{(\nu)_i}{(\nu + 2\ell - i)_i}
\]

where \(\Psi_0(y)\) is certain matrix-valued function containing spherical functions.

The corresponding **symmetric second-order differential operator** is given by

\[
D = y(1 - y)\partial_y^2 + (C + \nu - y(2\ell + 2\nu + 1))\partial_y - (V - (\nu - 1)(2\ell + \nu + 1))
\]

where \(C\) is tridiagonal and \(V\) diagonal with **eigenvalue**

\[
\Lambda_n = -n(n - 1) - n(2\ell + 2\nu + 1) - (V - (\nu - 1)(2\ell + \nu + 1))
\]
The pair \((\text{SU}(2) \times \text{SU}(2), \text{diag SU}(2))\)

Koornwinder (1985) studied spherical functions associated with pairs of the form \((K \times K, K)\), where the subgroup is diagonally embedded and \(K = \text{SU}(2)\).

More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with MVOP.

For \(\ell \in \mathbb{N}\) and \(N = 2\ell + 1\) they produced a one-parameter family of \(N \times N\) MVOP where the weight matrix is

\[
W(y) = [y(1 - y)]^{\nu - 1/2} \psi_0(y) T(\psi_0(y))^*, \quad T_{ij} = \delta_{ij} \left(\frac{2\ell}{i}\right) \frac{(\nu)_{i}}{(\nu + 2\ell - i)_{i}}
\]

where \(\psi_0(y)\) is certain matrix-valued function containing spherical functions.

The corresponding symmetric second-order differential operator is given by

\[
D = y(1 - y)\partial_y^2 + (C + \nu - y(2\ell + 2\nu + 1))\partial_y - (V - (\nu - 1)(2\ell + \nu + 1))
\]

where \(C\) is tridiagonal and \(V\) diagonal with eigenvalue

\[
\Lambda_n = -n(n - 1) - n(2\ell + 2\nu + 1) - (V - (\nu - 1)(2\ell + \nu + 1))
\]
The pair \((\text{SU}(2) \times \text{SU}(2), \text{diag } \text{SU}(2))\)

Koornwinder (1985) studied spherical functions associated with pairs of the form \((K \times K, K)\), where the subgroup is diagonally embedded and \(K = \text{SU}(2)\).

More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with MVOP.

For \(\ell \in \mathbb{N}\) and \(N = 2\ell + 1\) they produced a one-parameter family of \(N \times N\) MVOP where the weight matrix is

\[
W(y) = [y(1 - y)]^{\nu - 1/2} \psi_0(y) T(\psi_0(y))^*, \quad T_{ij} = \delta_{ij} \binom{2\ell}{i} \frac{(\nu)_i}{(\nu + 2\ell - i)_i},
\]

where \(\psi_0(y)\) is certain matrix-valued function containing spherical functions.

The corresponding symmetric second-order differential operator is given by

\[
D = y(1 - y)\partial_y^2 + (C + \nu - y(2\ell + 2\nu + 1))\partial_y - (V - (\nu - 1)(2\ell + \nu + 1))
\]

where \(C\) is tridiagonal and \(V\) diagonal with eigenvalue

\[
\Lambda_n = -n(n - 1) - n(2\ell + 2\nu + 1) - (V - (\nu - 1)(2\ell + \nu + 1))
\]
The pair \((\text{SU}(2) \times \text{SU}(2), \text{diag SU}(2))\)

Koornwinder (1985) studied spherical functions associated with pairs of the form \((K \times K, K)\), where the subgroup is diagonally embedded and \(K = \text{SU}(2)\).

More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with \(\text{MVOP}\).

For \(\ell \in \mathbb{N}\) and \(N = 2\ell + 1\) they produced a one-parameter family of \(N \times N\) \(\text{MVOP}\) where the weight matrix is

\[
\mathcal{W}(y) = [y(1-y)]^{\nu-1/2} \psi_0(y) T(\psi_0(y))^*, \quad T_{ij} = \delta_{ij} \frac{2\ell}{(\nu)_i} \frac{(\nu)_i}{(\nu + 2\ell - i)_i}
\]

where \(\psi_0(y)\) is certain matrix-valued function containing spherical functions.

The corresponding symmetric second-order differential operator is given by

\[
D = y(1-y) \partial_y^2 + (C + \nu - y(2\ell + 2\nu + 1)) \partial_y - (V - (\nu - 1)(2\ell + \nu + 1))
\]

where \(C\) is tridiagonal and \(V\) diagonal with eigenvalue

\[
\Lambda_n = -n(n-1) - n(2\ell + 2\nu + 1) - (V - (\nu - 1)(2\ell + \nu + 1))
\]
Two Important Facts

1. The structure of the group induces the existence of a constant matrix Y such that we can decompose by blocks the weight matrix W in the form

$$
\tilde{W}(y) = YW(y)Y^* = \begin{pmatrix} W_1(y) & 0 \\ 0 & W_2(y) \end{pmatrix}
$$

where W_1 is $(\ell + 1) \times (\ell + 1)$ and W_2 is $\ell \times \ell$. So we will study the probabilistic aspects of these two independent processes ($\ell = 1$).

2. We look for certain family of MVOP such that the corresponding block tridiagonal Jacobi matrix A has a “stochastic” interpretation, meaning that the sum of each row of A is ≤ 0 and the off-diagonal entries of A are ≥ 0 (therefore the infinitesimal operator of a continuous-time Markov chain).
TWO IMPORTANT FACTS

1. The structure of the group induces the existence of a constant matrix Y such that we can decompose by blocks the weight matrix W in the form

\[
\tilde{W}(y) = YW(y)Y^* = \begin{pmatrix}
W_1(y) & 0 \\
0 & W_2(y)
\end{pmatrix}
\]

where W_1 is $(\ell + 1) \times (\ell + 1)$ and W_2 is $\ell \times \ell$. So we will study the probabilistic aspects of these two independent processes ($\ell = 1$).

2. We look for certain family of MVOP such that the corresponding block tridiagonal Jacobi matrix A has a "stochastic" interpretation, meaning that the sum of each row of A is ≤ 0 and the off-diagonal entries of A are ≥ 0 (therefore the infinitesimal operator of a continuous-time Markov chain).
TWO BIRTH-AND-DEATH MODELS \((\ell = 1)\)

Let \(W_1(y) (2 \times 2)\) and \(w_2(y)\) (scalar) be the corresponding block weight matrices and denote by \(Q_{n,1}\) and \(q_{n,2}\) the corresponding families of MVOP satisfying \(Q_{n,1}(0)e_2 = e_2, e_2 = (1, 1)^T\) and \(q_{n,2}(0) = 1\).

1. A birth-and-death process: The polynomials \(q_{n,2}\) satisfy the three-term recurrence relation

\[-yq_{n,2}(y) = a_n q_{n+1,2}(y) - (a_n + c_n)q_{n,2}(y) + c_n q_{n-1,2}(y)\]

where the coefficients are given by

\[a_n = \frac{2\nu + n + 2}{4(\nu + n + 1)}, \quad c_n = \frac{n}{4(\nu + n + 1)}\]

Therefore the Jacobi matrix is

\[A_2 = \begin{pmatrix}
-\frac{1}{2} & \frac{1}{4(\nu+2)} & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & \frac{2\nu+3}{4(\nu+2)} & 0 & 0 \\
0 & \frac{1}{2(\nu+3)} & -\frac{1}{2} & \frac{\nu+2}{2(\nu+3)} & 0 \\
0 & 0 & \frac{1}{2(\nu+3)} & -\frac{1}{2} & \frac{\nu+2}{2(\nu+3)} \\
& & & & \\
\end{pmatrix}, \quad \nu > -3/2\]

and it is the infinitesimal operator of a birth-and-death process.
Let $W_1(y)$ (2×2) and $w_2(y)$ (scalar) be the corresponding block weight matrices and denote by $Q_{n,1}$ and $q_{n,2}$ the corresponding families of MVOP satisfying $Q_{n,1}(0)e_2 = e_2$, $e_2 = (1, 1)^T$ and $q_{n,2}(0) = 1$.

1. **A birth-and-death process**: The polynomials $q_{n,2}$ satisfy the three-term recurrence relation

$$-yq_{n,2}(y) = a_n q_{n+1,2}(y) - (a_n + c_n) q_{n,2}(y) + c_n q_{n-1,2}(y)$$

where the coefficients are given by

$$a_n = \frac{2\nu + n + 2}{4(\nu + n + 1)}$$

$$c_n = \frac{n}{4(\nu + n + 1)}$$

Therefore the Jacobi matrix is

$$A_2 = \begin{pmatrix}
-\frac{1}{2} & \frac{1}{4(\nu+2)} & 0 & 0 \\
\frac{1}{2} & -\frac{1}{2} & \frac{2\nu+3}{4(\nu+2)} & 0 \\
0 & \frac{1}{2(\nu+3)} & -\frac{1}{2} & \frac{\nu+2}{2(\nu+3)} \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad \nu > -\frac{3}{2}$$

and it is the infinitesimal operator of a birth-and-death process.
The potential coefficients (inverse of the norms of $q_{n,2}$) are

$$
\pi_0 = 1, \quad \pi_n = \frac{2(\nu + n + 1)(2\nu + 3)n^{-1}}{n!}, \quad n \geq 1
$$

while the (normalized) weight is given by

$$
 w_2(y) = \frac{4^{\nu+1}\Gamma(\nu + 2)}{\sqrt{\pi}\Gamma(\nu + 3/2)} [y(1 - y)]^{\nu + 1/2}, \quad y \in (0, 1), \quad \nu > -3/2
$$

Therefore we have the Karlin-McGregor representation

$$
P^{(2)}_{ij}(t) = \mathbb{P}(X_t = j | X_0 = i) = \pi_j \int_0^1 e^{-yt} q_{i,2}(y) q_{j,2}(y) w_2(y) dy
$$

Since we have the explicit expression of the weight $w_2(y)$ we can study the recurrence of the process. For $-3/2 < \nu \leq -1/2$ the process is null recurrent (since $\sum \pi_n = \infty$), while if $\nu > -1/2$ then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.
The potential coefficients (inverse of the norms of $q_{n,2}$) are

$$
\pi_0 = 1, \quad \pi_n = \frac{2(\nu + n + 1)(2\nu + 3)n^{-1}}{n!}, \quad n \geq 1
$$

while the (normalized) weight is given by

$$
w_2(y) = \frac{4^{\nu+1}\Gamma(\nu + 2)}{\sqrt{\pi}\Gamma(\nu + 3/2)} \left[y(1 - y) \right]^{\nu+1/2}, \quad y \in (0, 1), \quad \nu > -3/2
$$

Therefore we have the Karlin-McGregor representation

$$
P_{ij}^{(2)}(t) = \mathbb{P}(X_t = j | X_0 = i) = \pi_j \int_0^1 e^{-yt} q_{i,2}(y) q_{j,2}(y) w_2(y) dy
$$

Since we have the explicit expression of the weight $w_2(y)$ we can study the recurrence of the process. For $-3/2 < \nu \leq -1/2$ the process is null recurrent (since $\sum \pi_n = \infty$), while if $\nu > -1/2$ then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.
The potential coefficients (inverse of the norms of \(q_{n,2} \)) are

\[\pi_0 = 1, \quad \pi_n = \frac{2(\nu + n + 1)(2\nu + 3)n^{-1}}{n!}, \quad n \geq 1 \]

while the (normalized) weight is given by

\[w_2(y) = \frac{4^{\nu+1} \Gamma(\nu + 2)}{\sqrt{\pi} \Gamma(\nu + 3/2)} [y(1 - y)]^{\nu+1/2}, \quad y \in (0, 1), \quad \nu > -3/2 \]

Therefore we have the Karlin-McGregor representation

\[
P_{ij}^{(2)}(t) = \mathbb{P}(X_t = j|X_0 = i) = \pi_j \int_0^1 e^{-yt} q_{i,2}(y) q_{j,2}(y) w_2(y) dy
\]

\[
= \frac{2(\nu + j + 1)(2\nu + 3)_{j-1} 4^{\nu+1} \Gamma(\nu + 2)}{j! \sqrt{\pi} \Gamma(\nu + 3/2)} \int_0^1 e^{-yt} q_{i,2} q_{j,2} [y(1 - y)]^{\nu+1/2} dy
\]

Since we have the explicit expression of the weight \(w_2(y) \) we can study the recurrence of the process. For \(-3/2 < \nu \leq -1/2\) the process is null recurrent (since \(\sum \pi_n = \infty \)), while if \(\nu > -1/2 \) then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.
The potential coefficients (inverse of the norms of $q_{n,2}$) are

$$\pi_0 = 1, \quad \pi_n = \frac{2(\nu + n + 1)(2\nu + 3)n^{-1}}{n!}, \quad n \geq 1$$

while the (normalized) weight is given by

$$w_2(y) = \frac{4^{\nu+1}\Gamma(\nu + 2)}{\sqrt{\pi}\Gamma(\nu + 3/2)} [y(1-y)]^{\nu+1/2}, \quad y \in (0,1), \quad \nu > -3/2$$

Therefore we have the Karlin-McGregor representation

$$P_{ij}^{(2)}(t) = \mathbb{P}(X_t = j | X_0 = i) = \pi_j \int_0^1 e^{-yt} q_{i,2}(y)q_{j,2}(y)w_2(y)dy$$

Since we have the explicit expression of the weight $w_2(y)$ we can study the recurrence of the process. For $-3/2 < \nu \leq -1/2$ the process is null recurrent (since $\sum \pi_n = \infty$), while if $\nu > -1/2$ then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.
2. A quasi-birth-and-death process: The polynomials $Q_{n,1}(y)$ satisfy the three-term recurrence relation

$$-yQ_{n,1}(y) = A_n Q_{n+1,1}(y) + B_n Q_{n,1}(y) + C_n Q_{n-1,1}(y)$$

where the coefficients are given by

$$A_n = \begin{pmatrix} \frac{2\nu+n+2}{4(\nu+n+2)} & 0 & 0 & \cdots \\ 0 & \frac{1+\nu}{2(\nu+n+1)^2} & 0 & \cdots \\ 0 & 0 & \frac{2(\nu+n)(\nu+n+2)}{4(\nu+n+1)^2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad B_n = \begin{pmatrix} -\frac{1}{2} & 0 & \cdots \\ 0 & \frac{2(\nu+n)(\nu+n+2)}{4(\nu+n+1)^2} & \cdots \\ \nu+1 & 0 & \cdots \\ \frac{1+\nu}{2(\nu+n+1)^2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad C_n = \begin{pmatrix} \frac{1}{2} & 0 & \cdots \\ 0 & \frac{1}{2} & \cdots \\ \frac{\nu+3}{4(\nu+2)^2} & 0 & \cdots \\ \frac{\nu}{2(\nu+2)^2} & 0 & \cdots \\ \cdots & \cdots & \cdots & \ddots \end{pmatrix}$$

Therefore the Jacobi matrix (pentadiagonal) is

$$A_1 = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2(\nu+2)} & \frac{\nu+1}{2(\nu+2)} & 0 & \cdots \\ \frac{1}{2(\nu+1)} & 0 & 0 & 0 & \cdots \\ \frac{1}{4(\nu+1)} & \frac{\nu+3}{4(\nu+2)^2} & 0 & 0 & \cdots \\ 0 & \frac{1+\nu}{2(\nu+2)^2} & 0 & 0 & \cdots \\ 0 & 0 & \frac{\nu+4}{2(\nu+3)^2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

and it is the infinitesimal operator of a quasi-birth-and-death process ($\nu \geq 0$).
The (normalized) weight matrix is given by

\[
W_1(y) = \frac{4^{\nu+1/2} \Gamma(\nu + 1)}{\sqrt{\pi} \Gamma(\nu + 1/2)} [y(1 - y)]^{\nu-1/2} \left(1 - \frac{2(1+\nu)}{\nu+1/2} y(1 - y) \right) \frac{\nu+1}{\nu+2} \left(1 - 2y \right) \frac{\nu+1}{\nu+2} \left(1 - 2\frac{\nu}{\nu+1/2} y(1 - y) \right), \quad \nu \geq 0
\]

Each block entry \((i, j)\) of \(P^{(1)}(t)\) admits a Karlin-McGregor representation

\[
P_{ij}^{(1)}(t) = \left(\int_0^1 e^{-yt} Q_{i,1}(y) W_1(y) Q_{j,1}^*(y) dx \right) \Pi_j
\]

\[
\Pi_0 = I, \quad \Pi_n = \left(\|Q_{n,1}\|_{W_1}^2 \right)^{-1} = \frac{2(2\nu + 3)n^{-1}}{n!} \begin{pmatrix} \frac{(\nu+1)^2}{\nu+n+1} & 0 \\ 0 & \frac{\nu(\nu+2)(\nu+n+1)}{(\nu+n)(\nu+n+2)} \end{pmatrix}
\]

We can also compute explicitly the invariant measure of the process

\[
\pi = \left((\Pi_0 e_2)^T; (\Pi_1 e_2)^T; (\Pi_2 e_2)^T; \cdots \right), \quad e_2^T = (1, 1),
\]

\[
= \left(1, 1; \frac{2(\nu+1)^2}{\nu+2}, \frac{2\nu(\nu+2)^2}{(\nu+1)(\nu+3)}; \frac{(2\nu+3)(\nu+1)^2}{\nu+3}, \frac{(2\nu+3)\nu(\nu+3)}{\nu+4}; \cdots \right)
\]

In a similar way studied in the scalar case, the process is null recurrent for \(0 \leq \nu \leq 1/2\), while if \(\nu > 1/2\) then the process will be transient.
The (normalized) weight matrix is given by

\[
W_1(y) = \frac{4^{\nu+1/2}\Gamma(\nu + 1)}{\sqrt{\pi}\Gamma(\nu + 1/2)} [y(1 - y)]^{\nu-1/2} \left(1 - \frac{2(1+\nu)}{\nu+1/2} y(1 - y) \right) \left(\frac{\nu+1}{\nu+2} \frac{1}{(1 - 2y)} \right) \left(1 - \frac{2\nu}{\nu+1/2} y(1 - y) \right), \quad \nu \geq 0
\]

Each block entry \((i, j)\) of \(P^{(1)}(t)\) admits a Karlin-McGregor representation

\[
P_{ij}^{(1)}(t) = \left(\int_0^1 e^{-yt} Q_{i,1}(y) W_1(y) Q_{j,1}^*(y) dx \right) \Pi_j
\]

\[
\Pi_0 = I, \quad \Pi_n = \left(\|Q_{n,1}\|_{W_1}^2 \right)^{-1} = \frac{2(2\nu + 3)n-1}{n!} \left(\begin{array}{ccc} \frac{(\nu+1)^2}{\nu+n+1} & 0 \\ \nu(\nu+2)(\nu+n+1) & (\nu+n)(\nu+n+2) \end{array} \right)
\]

We can also compute explicitly the invariant measure of the process

\[
\pi = \left((\Pi_0 e_2)^T ; (\Pi_1 e_2)^T ; (\Pi_2 e_2)^T ; \cdots \right), \quad e_2^T = (1, 1),
\]

\[
= \left(1, \frac{2(\nu + 1)^2}{\nu + 2}, \frac{2\nu(\nu + 2)^2}{(\nu + 1)(\nu + 3)} ; \frac{(2\nu + 3)(\nu + 1)^2}{\nu + 3}, \frac{(2\nu + 3)\nu(\nu + 3)}{\nu + 4} ; \cdots \right)
\]

In a similar way studied in the scalar case, the process is null recurrent for \(0 \leq \nu \leq 1/2\), while if \(\nu > 1/2\) then the process will be transient.
The (normalized) weight matrix is given by

\[W_1(y) = \frac{4^{\nu+1/2} \Gamma(\nu + 1)}{\sqrt{\pi} \Gamma(\nu + 1/2)} [y(1 - y)]^{\nu-1/2} \left(1 - \frac{2(1+\nu)}{\nu+1/2} y(1 - y) \right) \left(\frac{\nu+1}{\nu+2} (1 - 2y) \right) \left(1 - \frac{2\nu}{\nu+1/2} y(1 - y) \right), \quad \nu \geq 0 \]

Each block entry \((i, j)\) of \(P^{(1)}(t)\) admits a Karlin-McGregor representation

\[P_{ij}^{(1)}(t) = \left(\int_0^1 e^{-yt} Q_{i,1}(y) W_1(y) Q_{j,1}^*(y) dx \right) \Pi_j \]

\[\Pi_0 = I, \quad \Pi_n = \left(\|Q_{n,1}\|_{W_1}^2 \right)^{-1} = \frac{2(2\nu + 3)n - 1}{n!} \left(\begin{array}{c} \frac{(\nu+1)^2}{\nu+n+1} \\ 0 \\ \frac{\nu(\nu+2)(\nu+n+1)}{(\nu+n)(\nu+n+2)} \end{array} \right) \]

We can also compute explicitly the invariant measure of the process

\[\pi = \left((\Pi_0 e_2)^T; (\Pi_1 e_2)^T; (\Pi_2 e_2)^T; \cdots \right), \quad e_2^T = (1, 1), \]

\[= \left(1, 1; \frac{2(\nu + 1)^2}{\nu + 2}, \frac{2\nu(\nu + 2)^2}{(\nu + 1)(\nu + 3)}; \frac{(2\nu + 3)(\nu + 1)^2}{\nu + 3}, \frac{(2\nu + 3)\nu(\nu + 3)}{\nu + 4}; \cdots \right) \]

In a similar way studied in the scalar case, the process is null recurrent for \(0 \leq \nu \leq 1/2\), while if \(\nu > 1/2\) then the process will be transient.
The (normalized) weight matrix is given by

\[W_1(y) = \frac{4^{\nu+1/2}\Gamma(\nu + 1)}{\sqrt{\pi}\Gamma(\nu + 1/2)} [y(1 - y)]^{\nu - 1/2} \left(1 - \frac{2(1+\nu)}{\nu+1/2} y(1 - y) \frac{\nu+1}{\nu+2} (1 - 2y) \frac{\nu+1}{\nu+2} (1 - y) \right), \quad \nu \geq 0 \]

Each block entry \((i, j)\) of \(P^{(1)}(t)\) admits a Karlin-McGregor representation

\[P_{ij}^{(1)}(t) = \left(\int_0^1 e^{-yt} Q_{i,1}(y) W_1(y) Q_{j,1}^*(y) dx \right) \Pi_j \]

\[\Pi_0 = I, \quad \Pi_n = \left(\|Q_{n,1}\|_{W_1}^2 \right)^{-1} = \frac{2(2\nu + 3)_{n-1}}{n!} \begin{pmatrix} (\nu+1)^2 & 0 \\ \nu(n+1) & (n+\nu)(n+\nu+1) \end{pmatrix} \]

We can also compute explicitly the invariant measure of the process

\[\pi = \left((\Pi_0 e_2)^T; (\Pi_1 e_2)^T; (\Pi_2 e_2)^T; \cdots \right), \quad e_2^T = (1, 1), \]

\[= \left(1, 1; \frac{2(\nu + 1)^2}{\nu + 2}, \frac{2\nu(\nu + 2)^2}{(\nu + 1)(\nu + 3)}; \frac{(2\nu + 3)(\nu + 1)^2}{\nu + 3}, \frac{(2\nu + 3)\nu(\nu + 3)}{\nu + 4}; \cdots \right) \]

In a similar way studied in the scalar case, the process is null recurrent for \(0 \leq \nu \leq 1/2\), while if \(\nu > 1/2\) then the process will be transient.
Interpretation: We have a 2 phases quasi-birth-and-death process. If the process moves along any of the phases, then the process can add (or remove) 2 elements to the queue. On the contrary, if the process moves from one phase to another, then the process add (or remove) 1 element to the queue. As the length of the queue increases, it is very unlikely that a transition between phases occurs. Therefore this quasi-birth-and-death process may be viewed as a *rational variation of a couple of one-server queues where the interaction between them is significant in the first states of the queue.*