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ONE DIMENSIONAL MARKOV CHAINS

Let (2, F,P) be a probability space. A (1-D) Markov chain with state space
S C N is a collection of S-valued random variables {X; : t € T} indexed by a
parameter set T (time) such that they have the Markov property, i.e. the
behavior of the future only depends on the present and not the past.
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ONE DIMENSIONAL MARKOV CHAINS

Let (Q2, F,P) be a probability space. A (1-D) Markov chain with state space
S C N is a collection of S-valued random variables {X; : t € T} indexed by a
parameter set T (time) such that they have the Markov property, i.e. the
behavior of the future only depends on the present and not the past.

The main goal is to find a description of the transition probabilities

Pj(t) =P(X: = j|Xo = i), i,jeSCN J
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Let (Q2, F,P) be a probability space. A (1-D) Markov chain with state space
S C N is a collection of S-valued random variables {X; : t € T} indexed by a
parameter set T (time) such that they have the Markov property, i.e. the
behavior of the future only depends on the present and not the past.

The main goal is to find a description of the transition probabilities

Pj(t) =P(X: = j|Xo = i), i,jeSCN J

@ Discrete time: the process is characterized in terms of the one-step
transition probability matrix P, which entries are given by

Pj=P(X =jlXo=i) = Py(n)=(P");
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ONE DIMENSIONAL MARKOV CHAINS

Let (Q2, F,P) be a probability space. A (1-D) Markov chain with state space
S C N is a collection of S-valued random variables {X; : t € T} indexed by a
parameter set T (time) such that they have the Markov property, i.e. the
behavior of the future only depends on the present and not the past.

The main goal is to find a description of the transition probabilities

Pj(t) =P(X: = j|Xo = i), i,jeSCN J

@ Discrete time: the process is characterized in terms of the one-step
transition probability matrix P, which entries are given by

Py =P(Xi =jlXo=1i) = Pj(n)=(P")

i
@ Continuous time: in this case the process is characterized (among other
properties) by the behavior near t — 0T, i.e.
Pj(t) =taj + o(t), t—0%, a;>0,
P,';(t) :lfta,'+0(t), t*>0+, a;:Zaij
J#i
If we denote by A = (a;), then we have P'(t) = AP(t) = P(t)A.
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EXAMPLES RELATED TO OP

1. Random walks: § ={0,1,2,...}, T ={0,1,2,...}.
Transitions are only allowed between adjacent states, i.e.

Pi,
ri,
qi,
0,

Py =

if j=i+1
if j=i
if j=i—1
elsewhere
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EXAMPLES RELATED TO OP

1. Random walks: § ={0,1,2,...}, T ={0,1,2,...}.
Transitions are only allowed between adjacent states, i.e.

pi, if j=i+1
p={f T
g, if j=i—-1

0, elsewhere
Therefore, P is a semi-infinite tridiagonal matrix (Jacobi matrix)
rn po O

g n p O
P=10 @ rn p , 1i>0,pi,qi>0, pitri+gqg=1
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EXAMPLES RELATED TO OP

1. Random walks: § ={0,1,2,...}, T ={0,1,2,...}.
Transitions are only allowed between adjacent states, i.e.

pi, if j=i+1
p={f T
g, if j=i—-1

0, elsewhere

Therefore, P is a semi-infinite tridiagonal matrix (Jacobi matrix)

rn po O
g n p O
P=10 @ n m , ri>0,p,q;>0, pi+r+aqg=1

The n-step transition probability matrix is then given by P(" = pP".
Some examples related to OP are the gambler’s ruin (Jacobi) and urn models
like the Ehrenfest model (Krawtchouk) or the Laplace-Bernoulli model (Hahn).
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EXAMPLES RELATED TO OP

2. Birth and death processes: S ={0,1,2,...}, T = [0, c0).
The infinitesimal transitions are only allowed between adjacent states, i.e.

tAi + o(t), if j=i+1
fim Py(t) = 1— (N + pi)t + o(t), ff J=i
t—0+ tpi + o(t), if j=i—1

o(t), elsewhere
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2. Birth and death processes: S ={0,1,2,...}, T = [0, c0).
The infinitesimal transitions are only allowed between adjacent states, i.e.

tAi + o(t), if j=i+1

1— (N i)t t), if j=1i
RO R S
t—0+ tpi + o(t), if j=i—1

o(t), elsewhere

Therefore we have a semi-infinite tridiagonal matrix A (also a Jacobi matrix)

—Xo Ao 0
o —(p1+ A1) A1 0
A= 0 2 _(/,LQ +>\2) A2 y )\,‘,,U,,' >0
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2. Birth and death processes: S ={0,1,2,...}, T = [0, c0).
The infinitesimal transitions are only allowed between adjacent states, i.e.

tAi + o(t), if j=i+1

1— (N i)t t), if j=1i
RO R S
t—0+ tpi + o(t), if j=i—1

o(t), elsewhere

Therefore we have a semi-infinite tridiagonal matrix A (also a Jacobi matrix)

—Xo Ao 0
o —(p1+ A1) A1 0
A= 0 2 _(/,LQ +>\2) A2 y )\,‘,,U,,' >0

The transition probability matrix P(t) satisfies the backward and forward
Kolmogorov equations P’(t) = AP(t) = P(t).A, P(0) = I.

Some examples of birth-and-death processes related to OP are the M/M/k
queue (Chebychev) or linear birth-and-death processes (Charlier, Meixner,
Krawtchouk, Laguerre).
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SPECTRAL METHODS

Spectral or Favard's Theorem: there exist a unique measure associated
with P or A. Therefore it is possible to find spectral representations of
the transition probabilities (Karlin-McGregor formulas):
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SPECTRAL METHODS

Spectral or Favard's Theorem: there exist a unique measure associated
with P or A. Therefore it is possible to find spectral representations of
the transition probabilities (Karlin-McGregor formulas):

1. Random walks: the measure w is supported on [—1,1]. If we denote
by (g;) the sequence of OP generated by P then we have

j *i*”:# lx”-x-x w(x
P(Xn:”XO_)_PU ||q’||2/71 ql( )qJ( )d() J
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SPECTRAL METHODS

Spectral or Favard's Theorem: there exist a unique measure associated
with P or A. Therefore it is possible to find spectral representations of
the transition probabilities (Karlin-McGregor formulas):

1. Random walks: the measure w is supported on [—1,1]. If we denote
by (g;) the sequence of OP generated by P then we have

, N pn Lot
P(X, = j|Xo = i) = P} = W/IX qi(x)g;(x)dw(x) ’

2. Birth-and-death processes: now the measure w is supported on [0, c0).
If we denote by (g;) the sequence of OP generated by A then we have

P0G = 1% = 1) = Py(t) = s | T e i) (x)dw(x) |

**The spectral measure can either be discrete (finite or infinite) or
continuous.
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BIVARIATE MARKOV CHAINS

Now consider a bivariate or 2-component Markov chain of the form
{Xe, Ye):teT}, XeeSCN, Yee{l,2,...,N}

The first component is the level and the second component is the phase.
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Now the transition probabilities can be written in terms of block matrix (each
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The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each
block of dimension N x N)

(Pfj(t))i/jl :P(Xt:j> Yt:j/|X0=i, YoZi/) J

@ Discrete time: as in one dimensional case the process is characterized by
its one-step transition probability block matrix P.
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BIVARIATE MARKOV CHAINS

Now consider a bivariate or 2-component Markov chain of the form
{Xe, Ye):teT}, XeeSCN, Yee{l,2,...,N}
The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each
block of dimension N x N)

(Pfj(t))i/jl :P(Xt:j> Yt:j/|X0=i, YoZi/) J

@ Discrete time: as in one dimensional case the process is characterized by
its one-step transition probability block matrix P.

@ Continuous time: as in one dimensional case the process is characterized
by the Kolmogorov equations P’(t) = AP(t) = P(t).A but now A is a
block matrix with same properties as before.
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BIVARIATE MARKOV CHAINS

Now consider a bivariate or 2-component Markov chain of the form
{Xe, Ye):teT}, XeeSCN, Yee{l,2,...,N}
The first component is the level and the second component is the phase.

Now the transition probabilities can be written in terms of block matrix (each
block of dimension N x N)

(Pfj(t))i/jl :P(Xt:j> Yt:j/|X0=i, YoZi/) J

@ Discrete time: as in one dimensional case the process is characterized by
its one-step transition probability block matrix P.

@ Continuous time: as in one dimensional case the process is characterized
by the Kolmogorov equations P’(t) = AP(t) = P(t).A but now A is a
block matrix with same properties as before.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).
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PROCESSES RELATED TO MATRIX-VALUED OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

By A
C: B, A
C, B, A
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PROCESSES RELATED TO MATRIX-VALUED OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

By A
C: B, A

C, B, A

Depending if time is discrete or continuous we will have special stochastic
properties for the block entries of P or A:
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PROCESSES RELATED TO MATRIX-VALUED OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

By, Ag
C, B A

C, B, A

Depending if time is discrete or continuous we will have special stochastic
properties for the block entries of P or A:

@ Discrete time: all entries of B,,, A,, C,;1 are nonnegative and
(Bo + Ag)eny = ey, (C,+ B,+ A,)ey = en,n > 1, where
ey Z(l,...,l)T.
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PROCESSES RELATED TO MATRIX-VALUED OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

By, Ag
C, B A

C, B, A

Depending if time is discrete or continuous we will have special stochastic
properties for the block entries of P or A:

@ Discrete time: all entries of B,,, A,, C,;1 are nonnegative and
(Bo + Ag)eny = ey, (C,+ B,+ A,)ey = en,n > 1, where
ey Z(l,...,l)T.

@ Continuous time: all off-diagonal entries of A are nonnegative and
(BO + AO)eN = 0N1 (Cn + Bn + An)eN = ONa n Z 1.
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PROCESSES RELATED TO MATRIX-VALUED OP

Quasi-birth-and-death processes:
P and A are now block-tridiagonal matrices of the form

By, Ag
C, B A

C, B, A

Depending if time is discrete or continuous we will have special stochastic
properties for the block entries of P or A:

@ Discrete time: all entries of B,,, A,, C,;1 are nonnegative and
(Bo + Ag)eny = ey, (C,+ B,+ A,)ey = en,n > 1, where
ey Z(l,...,l)T.

@ Continuous time: all off-diagonal entries of A are nonnegative and
(BO + AO)eN = 0N1 (Cn + Bn + An)eN = ONa n Z 1.

The main tool to study spectral methods will be the theory of
matrix-valued orthogonal polynomials.
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SPECTRAL METHODS

Spectral or Favard's Theorem: under certain symmetry conditions on the
coefficients of the block entries of P or A there exists a unique weight matrix
W. Therefore we will have again spectral representations of the transition
probabilities:



Markov chains and OP

The new example
000000e

00000000

SPECTRAL METHODS

Spectral or Favard's Theorem: under certain symmetry conditions on the
coefficients of the block entries of P or A there exists a unique weight matrix
W. Therefore we will have again spectral representations of the transition
probabilities:

1. Quasi-birth-and-death processes (discrete time): the weight matrix W is
supported on [—1,1]. If we denote by (Q;) the sequence of MVOP generated
by P then we have (Griinbaum and Dette-Reuther-Studden-Zygmunt, 2007).

PZ=([ Q)W) QL )(/ Q()dW(x)@; (x ))_1 J
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SPECTRAL METHODS

Spectral or Favard's Theorem: under certain symmetry conditions on the
coefficients of the block entries of P or A there exists a unique weight matrix
W. Therefore we will have again spectral representations of the transition
probabilities:

1. Quasi-birth-and-death processes (discrete time): the weight matrix W is
supported on [—1,1]. If we denote by (Q;) the sequence of MVOP generated
by P then we have (Griinbaum and Dette-Reuther-Studden-Zygmunt, 2007).

pr— ([ X" Qi(x)dW (x) @} )</ Q(dW()Qj (x ))_1 l

2. Quasi-birth-and-death processes (continuous time): now the weight matrix
W is supported on [0, c0). If we denote by (Q;) the sequence of MVOP
generated by A then we have (Dette-Reuther, 2010):

Py(t) = (/Ooo e Qy(x)dW() )(/ Q,(x)dW(x)Q; (x))_l l

**Again, the spectral weight matrix can either be discrete (finite or infinite) or

continuous.
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MATRIX-VALUED SPHERICAL FUNCTIONS

Spherical functions associated with groups of the form G/K where (G, K) is a
Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk).
They are eigenfunctions of the Casimir operator associated with the group.
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Spherical functions associated with groups of the form G/K where (G, K) is a
Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk).
They are eigenfunctions of the Casimir operator associated with the group.
The extension to the matrix-valued case was started by Tirao (1977). The
connection with MVOP was discovered by Griinbaum-Pacharoni-Tirao (2003).
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MATRIX-VALUED SPHERICAL FUNCTIONS

Spherical functions associated with groups of the form G/K where (G, K) is a
Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk).
They are eigenfunctions of the Casimir operator associated with the group.
The extension to the matrix-valued case was started by Tirao (1977). The
connection with MVOP was discovered by Griinbaum-Pacharoni-Tirao (2003).

1. Complex projective space: P,(C) = SU(n+ 1)/U(n).
Griinbaum-Pacharoni-Tirao (2002). Later it was found the relation with
stochastic processes by Griinbaum-Mdl (2008), Griinbaum-Pacharoni-Tirao
(2012) and Mdl (2012).

2. Complex hyperbolic plane: H»(C) = SU(2,1)/U(2). Pacharoni-Roman-Tirao
(2006). Dual to the complex projective plane P>(C) = SU(3)/U(2).

3. Real sphere: §" = SO(n+ 1)/0O(n). Tirao-Zurrian (2013). Also connected
with the real projective space P,(R) = SO(n+ 1)/0(n).
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MATRIX-VALUED SPHERICAL FUNCTIONS

Spherical functions associated with groups of the form G/K where (G, K) is a
Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk).
They are eigenfunctions of the Casimir operator associated with the group.
The extension to the matrix-valued case was started by Tirao (1977). The
connection with MVOP was discovered by Griinbaum-Pacharoni-Tirao (2003).

1. Complex projective space: P,(C) = SU(n+ 1)/U(n).
Griinbaum-Pacharoni-Tirao (2002). Later it was found the relation with
stochastic processes by Griinbaum-Mdl (2008), Griinbaum-Pacharoni-Tirao
(2012) and Mdl (2012).

2. Complex hyperbolic plane: H»(C) = SU(2,1)/U(2). Pacharoni-Roman-Tirao
(2006). Dual to the complex projective plane P>(C) = SU(3)/U(2).

3. Real sphere: §" = SO(n+ 1)/0O(n). Tirao-Zurrian (2013). Also connected
with the real projective space P,(R) = SO(n+ 1)/0(n).

In all cases (and others not mentioned) an explicit expression of the weight
matrix, the second-order differential operator, the three-term recurrence relation
and other structural formulas were derived for the matrix-valued spherical
functions. In most of the cases the relation with MVOP was also given.
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THE PAIR (SU(2) x SU(2),p1aG SU(2))

Koornwinder (1985) studied spherical functions associated with pairs of the
form (K x K, K), where the subgroup is diagonally embedded and K = SU(2).
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THE PAIR (SU(2) x SU(2),p1aG SU(2))
Koornwinder (1985) studied spherical functions associated with pairs of the
form (K x K, K), where the subgroup is diagonally embedded and K = SU(2).

More recently Koelink-van Pruijssen-Roman (2012) studied with a different
approach this example and give the relation with MVOP.
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THE PAIR (SU(2) x SU(2),p1aG SU(2))

Koornwinder (1985) studied spherical functions associated with pairs of the
form (K x K, K), where the subgroup is diagonally embedded and K = SU(2).

More recently Koelink-van Pruijssen-Roman (2012) studied with a different
approach this example and give the relation with MVOP.

For £ € N and N = 2¢ + 1 they produced a one-parameter family of N x N
MVOP where the weight matrix is

W) = /(2 =12 Vo) T(W()', Ty =4 (2,?) =T

where Wo(y) is certain matrix-valued function containing spherical functions.
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THE PAIR (SU(2) x SU(2),p1aG SU(2))
Koornwinder (1985) studied spherical functions associated with pairs of the
form (K x K, K), where the subgroup is diagonally embedded and K = SU(2).

More recently Koelink-van Pruijssen-Roman (2012) studied with a different
approach this example and give the relation with MVOP.

For £ € N and N = 2¢ + 1 they produced a one-parameter family of N x N
MVOP where the weight matrix is

W) = /(2 =12 Vo) T(W()', Ty =4 (2,?) =T

where Wo(y) is certain matrix-valued function containing spherical functions.

The corresponding symmetric second-order differential operator is given by

D=y(l-y)d+(C+v—y@l+2w+1))d — (V- (v-1)Q2+v+1) |

where C is tridiagonal and V diagonal with eigenvalue

A=—-n(n—1)—n(2l+2v+1)— (V- (v—-1)(20+v +1))
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TWwWO IMPORTANT FACTS

1. The structure of the group induces the existence of a constant
matrix Y such that we can decompose by blocks the weight matrix
W in the form

W(y) = i)y = (A S )

where Wy is (£+1) x (£ +1) and W is £ x £. So we will study the
probabilistic aspects of these two independent processes (¢ = 1).
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TWwWO IMPORTANT FACTS

1. The structure of the group induces the existence of a constant
matrix Y such that we can decompose by blocks the weight matrix
W in the form

W) = W)y = (A8

where Wy is (£+1) x (£ +1) and W is £ x £. So we will study the
probabilistic aspects of these two independent processes (¢ = 1).

2. We look for certain family of MVOP such that the
corresponding block tridiagonal Jacobi matrix A has a “stochastic”
interpretation, meaning that the sum of each row of A is < 0 and
the off-diagonal entries of A are > 0 (therefore the infinitesimal
operator of a continuous-time Markov chain).
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TWO BIRTH-AND-DEATH MODELS (¢ = 1)

Let Wa(y) (2 x 2) and wa(y) (scalar) be the corresponding block weight
matrices and denote by Q1 and g, > the corresponding families of MVOP
satisfying Qn1(0)e2 = ez, €2 = (1,1)7 and ga2(0) = 1.
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TWO BIRTH-AND-DEATH MODELS (¢ = 1)

Let Wa(y) (2 x 2) and wa(y) (scalar) be the corresponding block weight
matrices and denote by Q1 and g, > the corresponding families of MVOP
satisfying Qn1(0)e2 = ez, €2 = (1,1)7 and ga2(0) = 1.

1. A birth-and-death process: The polynomials g, > satisfy the three-term
recurrence relation

—¥qn.2(y) = anGni12(y) = (an + €n)qn2(y) + CnGn-1.2(y)
where the coefficients are given by

2v+n+2 . n
Av+n+1) 4(v+n+1)

an = Ch =

Therefore the Jacobi matrix is

1 1
32 2 0
1 _1 2v+3 0
4(v+2) 2 4(v+2)
= 1 1 v+2 —
Az 0 o 2 ay O V7 3/2

and it is the infinitesimal operator of a birth-and-death process.



The potential coefficients (inverse of the norms of g,2) are
m=1

2w+ n+1)2v+3)1
while the (normalized) weight is given by

ol n>1
_ 4"t (v + 2) vi1/2
wa(y) = VAT +3/2) @ -y, ye(o1), v>-3/2

DA
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The potential coefficients (inverse of the norms of gn>) are

_ 2(w+n+1)(2v + 3)n-1

o = 1, Tn n 2 1
n!
while the (normalized) weight is given by
471 (v +2) 4172
= —— 2 [y(1 -y 0,1 -3/2
wa(y) AT £3/2) (1 —y)] , ye(0,1), v>-3/

Therefore we have the Karlin-McGregor representation

1
PA(t) = P(X. = jIXo = i) = 7 / e qia(y)@ja(y)waly)dy
0

2w+ +1)(2v +3)14" T (v + 2)
- JIWml (v +3/2)

1
/ e " qingi2 [y(1 — y)]" " dy
0
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The potential coefficients (inverse of the norms of g,2) are

_ 2(w+n+1)(2v + 3)n-1

m =1 m, |
n!

n>1
while the (normalized) weight is given by

waly) = 4" (v + 2)

= T ey VAT ye@), v> 32

Therefore we have the Karlin-McGregor representation

1
PR =P = )Xo =) =7 | e™aa()as(y)ma(y)dy
0
_ 2w +j+1)(2v +3),14" T (v +2)
JWTT (v +3/2)
Since we have the explicit expression of the weight wx(y) we can study the

recurrence of the process. For —3/2 < v < —1/2 the process is null recurrent
(since 3wy = 00), while if v > —1/2 then the process is transient.

1
/ e " qingi2 [y(1 — y)]" " dy
0
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The potential coefficients (inverse of the norms of gn>) are

_ 2(w+n+1)(2v + 3)n-1

m =1 m, |
n!

n>1
while the (normalized) weight is given by

waly) = 4" (v + 2)

= T ey VAT ye@), v> 32

Therefore we have the Karlin-McGregor representation

1
PR =P = )Xo =) =7 | e™aa()as(y)ma(y)dy
0
_ 2w +j+1)(2v +3),14" T (v +2)
JWTT (v +3/2)
Since we have the explicit expression of the weight wx(y) we can study the

recurrence of the process. For —3/2 < v < —1/2 the process is null recurrent
(since 3wy = 00), while if v > —1/2 then the process is transient.

1
/ e " qingi2 [y(1 — y)]" " dy
0

This birth-and-death process can be seen as a rational variant of the one-server
queue as the length of the queue increases.
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2. A quasi-birth-and-death process: The polynomials Q,1(y) satisfy the

three-term recurrence relation

_an,l(y) - AnQn+1,1(y) + BnQn,l(y) + CnQn—l,l(y)

where the coefficients are given by

2v+n42 0 1

4(v+n+2) 2

Ap = (n+v)2v+nt2) | »Bn = v
0 A

v+n+1)2

4(v+n+1)

2(u+n)(ti+n+2)

Therefore the Jacobi matrix (pentadiagonal) is

n
Y
) , Cn = < (VJN)

0
n(v+n+2)
4(v+n+1)2

1 1 +1
*15 2(;/432) 2(Vu+2) 0 0 0 0 0
2(v+1) 2 0 2(VV+1) 0 0 0 0
1 I 013
4(v+1) 0 2 2(V+1L;(u+3) 4(Z+3) 0 0 0
0 v+3 14+v _1 0 (1+v)(2v+3) 0 0
Ay = 4(v+2)? 2(v+2)2 2 4(v+2)2
1 0 0 1 0 1 v U172 0
2(v+2) 2 2(v+2)(v+4) 2(v+4)
0 0 0 vih 1+v 1 0 (2+v)?
2(v+3)2 2(v+3)2 2 2(v+3)?

and it is the infinitesimal operator of a quasi-birth-and-death process (v > 0).



The (normalized) weight matrix is given by
4 t1/2r(, 4 1)
RN R

b y)]u—1/2 (1 _2014y)

u+1/2>’(1 =)

w1 - 2y)

(1 -2y)
Li-l(

v (- ﬁy(l—y)))’

vV
S)

DA
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The (normalized) weight matrix is given by

v 2(14+v v
Wi(y) = m v — y)]u—l/z 1- U(J:{/Z),V(l —-y) Tg(l —2y) e
VAr(v +1/2) w1 - 2y) pil (1 _ #T/ﬂ(l _ y)) >

Each block entry (i,j) of PM(t) admits a Karlin-McGregor representation

P = ( 1 & Q)W Qa(r)ok )

2
-1 202w 4 3), [l 0
rIO = I, nn = (”Qn,l“%/l/l) = % <V+8+1 v(v+2)(v+n+1)
’ (v+n)(v+n+2)
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The (normalized) weight matrix is given by

v 2(14+v v
Wi(y) = m v — y)]u—l/z 1-— U(J:{/Z),V(l —-y) Tg(l —2y) e
VAr(v +1/2) w1 - 2y) pil (1 _ #T/ﬂ(l _ y)) >

Each block entry (i,j) of PM(t) admits a Karlin-McGregor representation

P = ( 1 & Q)W Qa(r)ok )

2
1 2(2 4 3), (Wt 0
Mo = Ia M, = (||Q"v1H|2/V1) = % <U+8+1 v(v+2)(v+n+1)
: (v+n)(v+n+2)

We can also compute explicitly the invariant measure of the process

7= ((Moex)"s (Mea): (Moe2) s+ ) . ef = (1,1).

_<1 1_2(u+1)2 2u(v+2)2 (v +3)(r+1)? (2y+3)u(u+3)_m)
T\ v+2 T(w+1)(v+3) v+3 ' v+4

1
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The (normalized) weight matrix is given by

v 2(14+v v
Wi(y) = m v — y)]u—l/z 1-— U(J:{/Z),V(l —y) Tg(l —2y) e
VAr(v +1/2) w1 - 2y) pil (1 _ #T/ﬂ(l _ y)) >

Each block entry (i,j) of PM(t) admits a Karlin-McGregor representation

P = ( 1 & Q)W Qa(r)ok )

2
1 2(2 4 3), (Wt 0
Mo = Ia M, = (||Q"11H|2/Vl) = % <U+8+1 v(v+2)(v+n+1)
: (v+n)(v+n+2)

We can also compute explicitly the invariant measure of the process

7= ((Moex)"s (Mea): (Moe2) s+ ) . ef = (1,1).

_<1 1_2(u+1)2 2u(v+2)2 (v +3)(r+1)? (2y+3)u(u+3)_m)
T\ v+2 T(w+1)(v+3) v+3 ' v+4

1

In a similar way studied in the scalar case, the process is null recurrent for
0 < v <1/2, while if v > 1/2 then the process will be transient.
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Interpretation: We have a 2 phases quasi-birth-and-death process. If the process
moves along any of the phases, then the process can add (or remove) 2 elements to
the queue. On the contrary, if the process moves from one phase to another, then the
process add (or remove) 1 element to the queue. As the length of the queue increases,
it is very unlikely that a transition between phases occurs. Therefore this
quasi-birth-and-death process may be viewed as a rational variation of a couple of
one-server queues where the interaction between them is significant in the first states
of the queue.

v=1/4, 50 transitions
T T

10

v=1, 50 transitions
T T
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