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Scalar orthogonality

Let ω be a positive measure on R with
∫

R
xndω(x) < ∞, n ≥ 0.

A function f ∈ L2
ω(R) if

∫

R

|f (x)|2dω(x) < ∞

Applying Gram-Schmidt to the set {1, x , x2, · · · } it is possible to
construct a family of orthonormal polynomials (pn)n of the form

pn(x) = κnx
n + κn−1x

n−1 + · · ·

such that

〈pn, pm〉ω =

∫

R

pn(x)pm(x)dω(x) = δnm, n,m ≥ 0
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TTRR and SODE

This is equivalent to a three term recurrence relation

xpn(x) = an+1pn+1(x)+bnpn(x)+anpn−1(x), an+1 6= 0, bn ∈ R

Jacobi operator (tridiagonal):

x




p0(x)
p1(x)
p2(x)

...


 =




b0 a1

a1 b1 a2

a2 b2 a3

. . .
. . .

. . .







p0(x)
p1(x)
p2(x)

...




Bochner (1929): characterize (pn)n satisfying second-order
differential equations of Sturm-Liouville type:

Apn ≡ (α2x
2 + α1x + α0)︸ ︷︷ ︸

σ(x)

p′′
n(x) + (β1x + β0)︸ ︷︷ ︸

τ(x)

p′
n(x) = λnpn(x)

⇒ Hermite, Laguerre and Jacobi (Bessel) polynomials
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Classical families

Hermite: σ(x) = 1, ω(x) = e−x2

, x ∈ (−∞,∞):

H ′′

n (x) − 2xH ′

n(x) = −2nHn(x), Hn+1(x) − 2xHn(x) = −2nHn−1(x)

Laguerre: σ(x) = x , ω(x) = xαe−x , α > −1, x ∈ (0,∞):

xLα
n (x)′′ + (α + 1 − x)Lα

n (x)′ = −nLα
n (x)

(n + 1)Lα
n+1(x) − (2n + α + 1 − x)Lα

n (x) = −(n + α)Lα
n−1(x)

Jacobi: σ(x) = x(1 − x), ω(x) = xα(1 − x)β , α, β > −1, x ∈ (0, 1):

x(1 − x)P(α,β)
n (x)′′ + (α + 1 − (α + β + 2)x)P(α,β)

n (x)′ =

−n(n + α + β + 1)P(α,β)
n (x)

xP(α,β)
n (x) =

(n + β + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
P

(α,β)
n+1 (x)

+

(
1 +

n(n + β)

2n + α + β
−

(n + 1)(n + β + 1)

2n + α + β + 2

)
P(α,β)

n (x)

+
n(n + α)

(2n + α + β)(2n + α + β + 1)
P

(α,β)
n−1 (x)
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1-D Markov processes

Let (Ω,F ,Pr) a probability space, a (1-D) Markov process with
state space S ⊂ R is a collection of S-valued random variables
{Xt : t ∈ T } indexed by a parameter set T (time) such that

Pr(Xt0+t1 ≤ y |Xt0 = x ,Xτ , 0 ≤ τ < t0) = Pr(Xt0+t1 ≤ y |Xt0 = x)

for all t0, t1 > 0. This is what is called the Markov property.
The main goal is to find a description of the transition density

p(t; x , y) ≡
∂

∂y
Pr(Xt ≤ y |X0 = x)

if S is continuous or transition probabilities

p(t; x , y) ≡ Pr(Xt = y |X0 = x)

if S is discrete.
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1-D Markov processes

On the set B(S) of all real-valued, bounded, Borel measurable
functions define the transition operator

(Tt f )(x) = E [f (Xt)|X0 = x ], t ≥ 0

The family {Tt , t > 0} has the semigroup property Ts+t = TsTt

The infinitesimal operator A of the family {Tt , t > 0} is

(Af )(x) = lim
s↓0

(Ts f )(x) − f (x)

s

and A determines all {Tt , t > 0}.
There are 3 important cases related to orthogonal polynomials

1 Random walks: S = {0, 1, 2, . . .}, T = {0, 1, 2, . . .}.

2 Birth and death processes: S = {0, 1, 2, . . .}, T = [0,∞).

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞).
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Random walks

We have S = {0, 1, 2, . . .}, T = {0, 1, 2, . . .} and

Pr(Xn+1 = j |Xn = i) = 0 for |i − j | > 1

i.e. a tridiagonal transition probability matrix (stochastic)

P =




b0 a0

c1 b1 a1

c2 b2 a2

. . .
. . .

. . .


 , bi ≥ 0, ai , ci > 0, ai+bi+ci = 1

⇒ Af (i) = ai f (i + 1) + bi f (i) + ci f (i − 1), f ∈ B(S)
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Introducing the polynomials (qi )i by the conditions q−1(x) = 0,
q0(x) = 1 and the recursion relation

xqi(x) = aiqi+1(x) + biqi(x) + ciqi−1(x), i = 0, 1, . . .

there exists a unique measure dω(x) supported in [−1, 1] such that
(qi )i are orthogonal w.r.t dω(x).

Karlin-McGregor formula

Pr(Xn = j |X0 = i) = Pn
ij =

1

‖qi‖2

∫ 1

−1
xnqi (x)qj(x)dω(x)

Invariant measure or distribution

A non-null vector π = (π0, π1, π2, . . . ) ≥ 0 such that

πP = π

⇒ πi =
a0a1 · · · ai−1

c1c2 · · · ci

=
1

‖qi‖2
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Birth and death processes

We have S = {0, 1, 2, . . .}, T = [0,∞) and
Pij(t) = Pr(Xt+s = j |Xs = i) independent of s with the properties

Pi ,i+1(h) = λih + o(h), as h ↓ 0, λi > 0, i ∈ S;

Pi ,i−1(h) = µih + o(h) as h ↓ 0, µi > 0, i ∈ S;

Pi ,i(h) = 1 − (λi + µi)h + o(h) as h ↓ 0, i ∈ S;

Pi ,j(h) = o(h) for |i − j | > 1.

P(t) satisfies the backward and forward equation P ′(t) = AP(t)
and P ′(t) = P(t)A with initial condition P(0) = I where A is the
tridiagonal infinitesimal operator matrix

A =




−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . .
. . .

. . .


 , λi , µi > 0

⇒ Af (i) = λi f (i + 1) − (λi + µi)bi f (i) + µi f (i − 1), f ∈ B(S)
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Pij(t) = Pr(Xt+s = j |Xs = i) independent of s with the properties

Pi ,i+1(h) = λih + o(h), as h ↓ 0, λi > 0, i ∈ S;

Pi ,i−1(h) = µih + o(h) as h ↓ 0, µi > 0, i ∈ S;

Pi ,i(h) = 1 − (λi + µi)h + o(h) as h ↓ 0, i ∈ S;

Pi ,j(h) = o(h) for |i − j | > 1.

P(t) satisfies the backward and forward equation P ′(t) = AP(t)
and P ′(t) = P(t)A with initial condition P(0) = I where A is the
tridiagonal infinitesimal operator matrix

A =




−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . .
. . .

. . .


 , λi , µi > 0

⇒ Af (i) = λi f (i + 1) − (λi + µi)bi f (i) + µi f (i − 1), f ∈ B(S)



Scalar orthogonality Matrix orthogonality

Introducing the polynomials (qi )i by the conditions q−1(x) = 0,
q0(x) = 1 and the recursion relation

−xqi (x) = λiqi+1(x) − (λi + µi)qi (x) + µiqi−1(x), i = 0, 1, . . .

there exists a unique measure dω(x) supported in [0,∞) such that
(qi )i are orthogonal w.r.t dω(x).

Karlin-McGregor formula

Pr(Xt = j |X0 = i) = Pij(t) =
1

‖qi‖2

∫ ∞

0
e−xtqi (x)qj (x)dω(x)

Invariant measure or distribution

A non-null vector π = (π0, π1, π2, . . . ) ≥ 0 such that

πA = 0

⇒ πi =
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

=
1

‖qi‖2
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Scalar orthogonality Matrix orthogonality

Diffusion processes

We have S = (a, b),−∞ ≤ a < b ≤ ∞, T = [0,∞).
Suppose that as t ↓ 0

E [Xs+t − Xs |Xs = x ] = tµ(x) + o(t);
E [(Xs+t − Xs)

2|Xs = x ] = tσ2(x) + o(t);
E [|Xs+t − Xs |

3|Xs = x ] = o(t).

µ(x) is the drift coefficient and σ2(x) > 0 the diffusion coefficient.

Infinitesimal generator

A =
1

2
σ2(x)

d2

dx2
+ µ(x)

d

dx

Suppose we have a set of eigenfunctions (φn)n of A, i.e.
Aφn = αnφn and (φn)n are normalized w.r.t a weight ρ(x).

p(t; x , y) =

∞∑

n=0

eαntφn(x)φn(y)ρ(y)
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Scalar orthogonality Matrix orthogonality

Matrix orthogonality

Matrix valued polynomials on R:

Knx
n + Kn−1x

n−1 + · · · + K0, x ∈ R, Ki ∈ C
N×N

Orthogonality: weight matrix W with
∫

R
xndW (x) < ∞, n ≥ 0.

A matrix valued function F ∈ L2
W (R; CN×N) if

∫

R

F (x)dW (x)F ∗(x) < ∞

Applying Gram-Schmidt to the set {I , xI , x2I , · · · } it is possible to
construct a family of orthonormal matrix polynomials (Pn)n (OMP) with
nonsingular leading coefficient such that

〈Pn, Pm〉W =

∫

R

Pn(x)dW (x)P∗

m(x) = δnmI

Other inner products

(P , Q)W =

∫

R

Q∗(x)dW (x)P(x) ∈ C
N×N , P , Q ∈ C

N×N [x ]
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Scalar orthogonality Matrix orthogonality

TTRR and SODE

This is equivalent to a three term recurrence relation

xPn(x) = An+1Pn+1(x) + BnPn(x) + A
∗

nPn−1(x), |An| 6= 0, Bn = B
∗

n

Jacobi operator (block tridiagonal)

x




P0(x)
P1(x)
P2(x)

...


 =




B0 A1

A
∗

1 B1 A2

A
∗

2 B2 A3

. . .
. . .

. . .







P0(x)
P1(x)
P2(x)

...




Durán (1997): characterize orthonormal (Pn)n satisfying matrix
second-order differential equations of Sturm-Liouville type:

P
′′

n (x)F2(x) + P
′

n(x)F1(x) + Pn(x)F0(x) = ΛnPn(x), n ≥ 0

grad Fi ≤ i , Λn Hermitian

It has not been until very recently when the first examples appeared:
Grünbaum-Pacharoni-Tirao (2003) and Durán-Grünbaum (2004)
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Methods and new phenomena

Methods

Matrix spherical functions associated with
Pn(C) = SU(n + 1)/U(n)
Grünbaum-Pacharoni-Tirao (2003)

Durán-Grünbaum (2004): Symmetry equations

New phenomena

For a fixed family of OMP there exist several linearly
independent second-order differential operators having them
as eigenfunctions

OMP satisfying odd-order differential equations

For a fixed second-order differential operator, there can be
more than one family of lin. ind. OMP having them as
eigenfunctions
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2-D Markov processes

Now we have a bivariate or 2-component Markov process of the
form {Zt = (Xt ,Yt) : t ∈ T } indexed by a parameter set
T ⊂ [0,∞) (time) and with state space C = S × {1, 2, . . . ,N},
where S ⊂ R. The first component is called the level while the
second component is the phase.
The transition or density probabilities, as well as the infinitesimal
operator A are going to be matrix-valued.

There are 3 important cases related to OMP

1 Discrete time quasi-birth-and-death processes:
C = {0, 1, 2, . . .} × {1, 2, . . . ,N}, T = {0, 1, 2, . . .}.

2 Continuous time quasi-birth-and-death processes:
C = {0, 1, 2, . . .} × {1, 2, . . . ,N}, T = [0,∞).

3 Bivariate processes with diffusion and discrete components:
C = (a, b) × {1, 2, . . . ,N}, T = [0,∞).
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Discrete time quasi-birth-and-death processes

Now we have C = {0, 1, 2, . . .} × {1, 2, . . . , N}, T = {0, 1, 2, . . .} and

(Pii ′)jj′ = Pr(Xn+1 = i , Yn+1 = j |Xn = i ′, Yn = j ′) = 0 for |i − i ′| > 1

i.e. a N × N block tridiagonal transition probability matrix

P =




B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .




(An)ij , (Bn)ij , (Cn)ij ≥ 0, det(An), det(Cn) 6= 0
∑

j

(An)ij + (Bn)ij + (Cn)ij = 1, i = 1, . . . , N
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OMP: Grünbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials (Qi )i by the conditions Q−1(x) = 0,
Q0(x) = I and the recursion relation

xQi (x) = AiQi+1(x) + BiQi (x) + CiQi−1(x), i = 0, 1, . . .

and under certain technical conditions over Ai , Bi , Ci , there exists an
unique weight matrix dW (x) supported in [−1, 1] such that (Qi )i are
orthogonal w.r.t dW (x).

Karlin-McGregor formula

Pn
ij =

(∫ 1

−1

xnQi (x)dW (x)Q∗

j (x)

)(∫ 1

−1

Qj(x)dW (x)Q∗

j (x)

)
−1

Invariant measure or distribution (MdI, 2010)

Non-null vector with non-negative components

π = (π0; π1; · · · ) ≡ (Π0eN ; Π1eN ; · · · )

such that πP = π where eN = (1, . . . , 1)T and

Πn = (CT
1 · · ·CT

n )−1Π0(A0 · · ·An−1) =
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Continuous time quasi-birth-and-death

For the continuous time is similar. Now the matrix polynomials (Qi )i are
orthogonal w.r.t a weight matrix dW (x) supported in [0,∞).

Karlin-McGregor formula (Dette-Reuther, 2010)

Pij(t) =

(∫
∞

0

e−xtQi (x)dW (x)Q∗

j (x)

)(∫
∞

0

Qj(x)dW (x)Q∗

j (x)

)
−1

Invariant measure or distribution (MdI, 2010)

Non-null vector with non-negative components

π = (π0; π1; · · · ) ≡ (Π0eN ; Π1eN ; · · · )

such that πA = 0 where eN = (1, . . . , 1)T and

Πn = (CT
1 · · ·CT

n )−1Π0(A0 · · ·An−1) =
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2-D diffusion processes

We have C = (a, b) × {1, 2, . . . ,N}, T = [0,∞). The transition
probability density is now a matrix which entry (i , j) gives

Pij(t; x ,A) = Pr(Xt ∈ A,Yt = j |X0 = x ,Y0 = i)

for any t > 0, x ∈ (a, b) and A any Borel set.
Suppose that for any ǫ > 0

limt↓0
1
t

∫
{y :|y−x |≤ǫ}(y − x)P(t; x , dy) = B(x);

limt↓0
1
t

∫
{y :|y−x |≤ǫ}(y − x)2P(t; x , dy) = A(x);

limt↓0
1
t
(P(t; x , (a, b)) − I ) = C (x);

limt↓0
1
t
P(t; x , {y : |y − x | > ǫ}) = o(0 − matrix).
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Under these conditions we have (Berman, 1994) that A(x) and
B(x) are diagonal matrices and C (x) satisfies

Cii(x) ≤ 0, Cij(x) ≥ 0, i 6= j , −Cii(x) =
∑

j 6=i

Cij(x)

Infinitesimal generator (Berman, 1994)

A =
1

2
A(x)

d2

dx2
+ B(x)

d1

dx1
+ C (x)

d0

dx0

If we are able to find a set of matrix-valued eigenfunctions (Φn)n
of A, i.e. AΦn = ΦnΓn and (Φn)n are normalized w.r.t a weight
matrix W (x), then we find

Transition probability density matrix (MdI, 2010)

P(t; x , y) =

∞∑

n=0

Φn(x)eΓntΦ∗
n(y)W (y)
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An example

Conjugation

W (x) = T ∗W̃ (x)T

where

T =




1 1

0 −
α + β − k + 2

β − k + 1




Grünbaum-MdI (2008)

W̃ (x) = xα(1 − x)β
(

kx + β − k + 1 (1 − x)(β − k + 1)
(1 − x)(β − k + 1) (1 − x)2(β − k + 1)

)

x ∈ (0, 1), α, β > −1, 0 < k < β + 1
Pacharoni-Tirao (2006)
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We consider the family of OMP (Qn(x))n such that

Three term recurrence relation

xQn(x) = AnQn+1(x) + BnQn(x) + CnQn−1(x), n = 0, 1, . . .

where the Jacobi matrix is stochastic

Choosing Q0(x) = I the leading coefficient of Qn is

Γ(β + 2)Γ(α + β + 2n + 2)

Γ(α + β + n + 2)Γ(β + n + 2)

(
k+n
k

− n(α+β+2n+2)
(α+β+n+2)(α+β−k+2)

0 (n+α+β−k+2)(α+β+2n+2)
(α+β+n+2)(α+β−k+2)

)

Moreover, the corresponding norms are diagonal matrices:

‖Qn‖
2
W =

Γ(n + α + 1)Γ(n + 1)Γ(β + 2)2(n + α + β − k + 2)

Γ(n + α + β + 2)Γ(n + β + 2)
×

(
n+k

k(2n+α+β+2) 0

0 (n+α+1)(n+k+1)
(β−k+1)(2n+α+β+3)(n+α+β+2)

)
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Pentadiagonal Jacobi matrix

Particular case α = β = 0, k = 1/2:

P =




5

9

2

9

2

9
2

9

7

18

4

45

3

10
5

36

1

18

107

225

3

50

27

50
1

6

4

75

23

50

6

175

2

7
14

75

2

75

597

1225

4

147

40

147
1

5

6

245

47

98

8

441

5

18
81

392

3

196

1955

3969

5

324

175

648
. . .

. . .
. . .

. . .
. . .




⇒ Discrete time quasi-birth-and-death process with 2 phases
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Invariant measure

Invariant measure

The row vector
π = (π0;π1; · · · )

π
n =

(
1(

‖Qn‖
2
W

)
1,1

,
1(

‖Qn‖
2
W

)
2,2

, · · · ,
1(

‖Qn‖
2
W

)
N,N

)
, n ≥ 0

is an invariant measure of P

Particular case N = 2, α = β = 0, k = 1/2:

π
n =

(
2(n + 1)3

(2n + 3)(2n + 1)
,
(n + 1)(n + 2)

2n + 3

)
, n ≥ 0

π =

(
2

3
,
2

3
;
16

15
,
6

5
;
54

35
,
12

7
;
128

63
,
20

9
;
250

99
,
30

11
;
432

143
,
42

13
;
686

195
,
56

15
; · · ·

)
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2-D diffusion process

Now, with the same notation as before, consider the matrix

Ψ(x) =

(
1 1

1 x(α+β−k+2)−α−1
β−k+1

)

Then, the family of polynomials Φn(x) = Ψ(x)Q∗

n (x) is orthogonal w.r.t
the weight matrix

Ŵ (x) = xα(1 − x)β

(
kx 0
0 β − k + 1

)

The family (Φn)n is eigenfunction of the following second order
differential operator (Grünbaum, Pacharoni, Tirao, 2002)

A = x(1 − x)
d2

dx2
+

(
α + 2 − x(α + β + 3) 0

0 α + 1 − x(α + β + 2)

)
d1

dx1

+




β − k + 1

x − 1

β − k + 1

1 − x
kx

1 − x

kx

x − 1




d0

dx0
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And diagonal eigenvalue

Γn =

(
−n(n + α + β + 2)

0 −n2 − n(α + β + 3) − (α + β − k + 2)

)

Therefore we have a bivariate process with diffusion and discrete
components on the state space C = (0, 1) × {1, 2} such that

Transition probability density matrix (MdI, 2010)

P(t; x , y) =

∞∑

n=0

Φn(x)eΓntΦ∗

n(y)Ŵ (y)

= Ψ(x)

( ∞∑

n=0

Q∗

n (x)eΓntQn(y)W (y)

)
Ψ−1(y)
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Other applications

Quantum mechanics

[Durán–Grünbaum] P A M Dirac meets M G Krein: matrix

orthogonal polynomials and Dirac´s equation, J. Phys. A: Math.
Gen. (2006)

Time-and-band limiting

[Durán–Grünbaum] A survey on orthogonal matrix polynomials

satisfying second order differential equations, J. Comput. Appl.
Math. (2005)
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