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SCALAR ORTHOGONALITY

Let w be a positive measure on R with finite moments. We can
construct a family of orthonormal polynomials (p,)n

(P ) = /R ()P ()d(x) = B, 1 > 0 J
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SCALAR ORTHOGONALITY

Let w be a positive measure on R with finite moments. We can
construct a family of orthonormal polynomials (p,)n

(P ) = /R ()P ()d(x) = B, 1 > 0 ’

This is equivalent to a three term recurrence relation

Xpn(X) = an+1Pn+1(X)+bnpn(x)+anpn-1(x), ant1 #0, by € RJ
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SCALAR ORTHOGONALITY

Let w be a positive measure on R with finite moments. We can
construct a family of orthonormal polynomials (p,)n

<pn7pm> = / pn(X)pm(X)dw(X) =0pm, n,m=>0 J
R
This is equivalent to a three term recurrence relation

xpn(x) = apt1Pnt1(X)+bnpn(x)+anpn-1(x), apny1 #0, by € RJ

Jacobi operator (tridiagonal):

Po(x) by a1 po(x)
p1(x) air b1 a p1(x)
| p2 - )

x)|= a by a3 p2(x
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BOCHNER PROBLEM

Bochner (1929): characterize (pp), satisfying

Apn = (a2x® + a1x + ag) pj(x) + (B1x + Bo) pa(x) = Anpa(x)
———

v

o(x) 7(x)
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BOCHNER PROBLEM

Bochner (1929): characterize (pp), satisfying

v

o(x) 7(x)

Apn = (a2x® + a1x + ag) pj(x) + (B1x + Bo) pa(x) = Anpa(x)
———

This is equivalent to the symmetry of A with respect to (-, -),i.e.

<~Apn7 pm> = <pn7 Apm>
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BOCHNER PROBLEM

Bochner (1929): characterize (pp), satisfying

v

o(x) 7(x)

Apn = (a2x® + a1x + ag) pj(x) + (B1x + Bo) pa(x) = Anpa(x)
———

This is equivalent to the symmetry of A with respect to (-, -),i.e.

<~Apn7 pm> = <pn7 Apm>

o Hermite: o(x) = 1,w(x) = e, x € (—00, )
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BOCHNER PROBLEM

Bochner (1929): characterize (pp), satisfying

v

o(x) 7(x)

Apn = (a2x® + a1x + ag) pj(x) + (B1x + Bo) pa(x) = Anpa(x)
———

This is equivalent to the symmetry of A with respect to (-, -),i.e.

<~Apn7 pm> = <pn7 Apm>

o Hermite: o(x) = 1,w(x) = e, x € (—00, )

o Laguerre: o(x) = x,w(x) = x%e™, a > —1, x € (0,00)
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BOCHNER PROBLEM

Bochner (1929): characterize (pp), satisfying

Apn = (a2x® + a1x + ag) pj(x) + (B1x + Bo) pa(x) = Anpa(x)
———

v

o(x) 7(x)

This is equivalent to the symmetry of A with respect to (-, -),i.e.

<-Apm pm> = <pn7 Apm>

o Hermite: o(x) = 1,w(x) = e, x € (—00, )

o Laguerre: o(x) = x,w(x) = x%e™, a > —1, x € (0,00)

o Jacobi: o(x) = x(1 — x),w(x) = x*(1 — x)?, a, 3 > —1,
x €(0,1)
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RANDOM WALKS

A random walk is a Markov chain {X, : n=0,1,2,...} with state
space S = {0,1,2,...} where

Pr(Xpi1 = j| X = i) =0 for |i—jl>1, ijeS
i.e. a tridiagonal transition probability matrix (stochastic)
bo dao

a b1 a

P = o by a , b,>0,a,,¢ch >0, ap+by+c,=1
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RANDOM WALKS

A random walk is a Markov chain {X, : n=0,1,2,...} with state
space S = {0,1,2,...} where

Pr(Xpp1 = j|Xa=i)=0 for |i—j|>1, ij€S

i.e. a tridiagonal transition probability matrix (stochastic)

bo a0
C1 b1 al
P= o by a , bp>0,ap,¢, >0, apt+bytc,=1
b by
. .0

O
—_— /a—l\). — > .
SO —

5]



Scalar orthogonality Matrix orthogonality
cooe 0000000000

Introducing the polynomials (g,), by the conditions g_1(x) =0,
go(x) = 1 and the recursion relation

an(x) = an‘]n—f—l(x) + bnqn(x) + qun—l(X)7 n=0,1,...

there exists a unique measure dw(x) supported in [—1,1] such that
(gn)n are orthogonal w.r.t dw(x).
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Introducing the polynomials (g,), by the conditions g_1(x) =0,
go(x) = 1 and the recursion relation

an(X) = an‘]n—f—l(x) + bnqn(X) + qun—l(X)a n=0,1,...

there exists a unique measure dw(x) supported in [—1,1] such that
(gn)n are orthogonal w.r.t dw(x).

KARLIN-MCGREGOR FORMULA (1959)

NV T L
Pr(X, =jlXo =)= P} = W/ x"qi(x)qj(x)dw(x)

-1
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Introducing the polynomials (g,), by the conditions g_1(x) =0,
go(x) = 1 and the recursion relation

an(X) = an‘]n—f—l(x) + bnqn(X) + qun—l(X)a n=0,1,...

there exists a unique measure dw(x) supported in [—1,1] such that
(gn)n are orthogonal w.r.t dw(x).

KARLIN-MCGREGOR FORMULA (1959)

NV T L
Pr(X, =jlXo =)= P} = W/ x"qi(x)qj(x)dw(x)

-1

INVARIANT MEASURE OR DISTRIBUTION

A non-null vector w = (mg, 71, m2,...) > 0 such that

nP=m
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Introducing the polynomials (g,), by the conditions g_1(x) =0,
go(x) = 1 and the recursion relation

an(X) = an‘]n—f—l(x) + bnqn(X) + qun—l(X)a n=0,1,...

there exists a unique measure dw(x) supported in [—1,1] such that
(gn)n are orthogonal w.r.t dw(x).

KARLIN-MCGREGOR FORMULA (1959)

NV T L
Pr(X, =jlXo =)= P} = W/ x"qi(x)qj(x)dw(x)

-1

INVARIANT MEASURE OR DISTRIBUTION

A non-null vector w = (mg, 71, m2,...) > 0 such that
TP=m
anat - --ai_ 1
- = 041 i—1

ac ¢ gl




Orthogonality:

Krein (1949): orthogonal matrix polynomials on R (OMP)

W. Matrix valued inner product:

(P,Q)w = / P(x)dW(x)Q*(x) € CN*N P Q e CN*N[x]
R

This is equivalent to a

X'Dn(X) o An+1'anl(X) + Bn'Dn(X) + Az'anl( )*,

det(Anpt1) #0, B, =B,

Jacobi operator (block tridiagonal)
:Do(X) Bo

P1(x) Al

X PAx) | T

n>0
A1

By A

A;

Po(
B, As

Pl(X)
PQ(X)

x
~—

AEF > « >

DA™
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MATRIX CASE

Krein (1949): orthogonal matrix polynomials on R (OMP)
Orthogonality: weight matrix W. Matrix valued inner product:

<P7 Q>W = /]R P(X)dW(x)Q*(X) c (CNXN’ P,Qc (CNXN[X] J
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MATRIX CASE

Krein (1949): orthogonal matrix polynomials on R (OMP)
Orthogonality: weight matrix W. Matrix valued inner product:

<P7 Q>W = /]R P(X)dW(x)Q*(X) c (CNXN’ P,Qc (CNXN[X] J

This is equivalent to a three term recurrence relation

XPp(x) = Angt1Pni1(x) + BaPn(x) + ArPa—1(x), n>0
det(Ant1) #0, B, =B,
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MATRIX CASE

Krein (1949): orthogonal matrix polynomials on R (OMP)
Orthogonality: weight matrix W. Matrix valued inner product:

<P7 Q>W = /]R P(X)dW(x)Q*(X) c (CNXN’ P, Qc (CNXN[X] ’

This is equivalent to a three term recurrence relation

XPp(x) = Angt1Pni1(x) + BaPn(x) + ArPa—1(x), n>0
det(An+1) #0, B,= B}

Jacobi operator (block tridiagonal)

Po (X) Bo A1 Po(
Pl (X) AI Bl A2 Pl(
X P2 (X) = A; 82 A3 P2(

X X X
~— — —



Durdn (1997): characterize orthonormal (P,), satisfying
grad F; < i,

PR (x)Fa(x) + Pa(x)F1(x) + Pa(x)Fo(x) = AnPn(x),

A, Hermitian

n>0 }

DA™
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Durédn (1997): characterize orthonormal (Pp,), satisfying

Py (x)Fa(x) + Pp(x)Fi(x) + Pa(x)Fo(x) = AyPa(x), n>0
grad F; < i, A, Hermitian

Equivalent to the symmetry of

A= d F2(X)+ dFl(x)—i- Gl Fo(x) with P, A= A,P, J

A es symmetric with respect to W if (PA, Q)w = (P, QA)w
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Durédn (1997): characterize orthonormal (Pp,), satisfying

P! (x)Fa(x) + PL(x)F1(x) + Pa(x)Fo(x) = ApPn(x), n>0
grad F; < i, A, Hermitian

Equivalent to the symmetry of

d? d d° , B
A= ) Fa(x) + Fi(x) + ng(X), with P, A = A\,P,

A es symmetric with respect to W if (PA, Q)w = (P, QA)w
It has not been until very recently when the first examples

appeared: Griinbaum-Pacharoni-Tirao (2003) and
Durdn-Griinbaum (2004)
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Durédn (1997): characterize orthonormal (Pp,), satisfying

P! (x)Fa(x) + PL(x)F1(x) + Pa(x)Fo(x) = ApPn(x), n>0
grad F; < i, A, Hermitian

Equivalent to the symmetry of

d? d d°®
A= ) Fa(x) + Fl(x) + 2% Fo(x) with P, A= A,P, ’

A es symmetric with respect to W if (PA, Q)w = (P, QA)w

It has not been until very recently when the first examples
appeared: Griinbaum-Pacharoni-Tirao (2003) and
Durdn-Griinbaum (2004)= W(x) = p(x) T (x) T*(x)
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METHODS AND NEW PHENOMENA

METHODS

@ Matrix spherical functions associated with
P,(C) =SU(n+1)/U(n)
Griinbaum-Pacharoni-Tirao (2003)

NEW PHENOMENA
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METHODS

@ Matrix spherical functions associated with
P,(C) =SU(n+1)/U(n)
Griinbaum-Pacharoni-Tirao (2003)

@ Durdn-Griinbaum (2004): Symmetry equations

NEW PHENOMENA
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METHODS AND NEW PHENOMENA

METHODS

@ Matrix spherical functions associated with
P,(C) =SU(n+1)/U(n)
Griinbaum-Pacharoni-Tirao (2003)

@ Durdn-Griinbaum (2004): Symmetry equations

NEW PHENOMENA

@ For a fixed family of OMP there exist several linearly
independent second-order differential operators having them
as eigenfunctions
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METHODS AND NEW PHENOMENA

METHODS

@ Matrix spherical functions associated with
P,(C) =SU(n+1)/U(n)
Griinbaum-Pacharoni-Tirao (2003)

@ Durdn-Griinbaum (2004): Symmetry equations

NEW PHENOMENA

@ For a fixed family of OMP there exist several linearly
independent second-order differential operators having them
as eigenfunctions

@ OMP satisfying odd-order differential equations
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METHODS AND NEW PHENOMENA

METHODS

@ Matrix spherical functions associated with
P,(C) =SU(n+1)/U(n)
Griinbaum-Pacharoni-Tirao (2003)

@ Durdn-Griinbaum (2004): Symmetry equations

i
NEW PHENOMENA

@ For a fixed family of OMP there exist several linearly
independent second-order differential operators having them
as eigenfunctions

@ OMP satisfying odd-order differential equations

@ For a fixed second-order differential operator, there can be
more than one family of lin. ind. OMP having them as
eigenfunctions
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QUASI—BIRTH—AND—DEATH PROCESSES

A discrete time quasi-birth-and-death process is a 2-dimensional
Markov chain {Z, = (Xp, Y») : n=0,1,2,...} with state space
C=1{0,1,2,...} x{1,2,..., N} where

(Pii’)jj’ = Pr(X,,H =1, Yn+1 :_]|Xn = i/, Y, :_j,) =0 for |I*I,| >1
i.e. a N x N block tridiagonal transition probability matrix

By Ao
G By A (An)ij’(Bn)ij’(Cn)ij >0, |An|,|Cn| #0

P= G B A P D (An)i + (Ba)i + (Ca)j = 1
: S ;i

The first component is called the level while the second component
is the phase.
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OMP: Griinbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials (Q,), by the conditions Q_1(x) =0,
Qo(x) = I and the recursion relation

XQn(X) = AnQn+l(X) + BnQn(X) + CnQn—l(X); n= 0; 17 s

and under certain technical conditions over A,, B,,, C,, there exists an
unique weight matrix dW/(x) supported in [—1, 1] such that (Q,), are
orthogonal w.r.t dW(x).
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OMP: Griinbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials (Q,), by the conditions Q_1(x) =0,
Qo(x) = I and the recursion relation

XQn(X) = AnQn+l(X) + BnQn(X) + CnQn—l(X); n= O; 17 s

and under certain technical conditions over A,, B,,, C,, there exists an
unique weight matrix dW/(x) supported in [—1, 1] such that (Q,), are
orthogonal w.r.t dW(x).

KARLIN-MCGREGOR FORMULA

-1

5= (] otommio o) . atoamos)
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OMP: Griinbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials (Q,), by the conditions Q_1(x) =0,
Qo(x) = I and the recursion relation

XQn(X) = AnQn+l(X) + BnQn(X) + CnQn—l(X); n= O; 17 s

and under certain technical conditions over A,, B,,, C,, there exists an
unique weight matrix dW/(x) supported in [—1, 1] such that (Q,), are
orthogonal w.r.t dW(x).

KARLIN-MCGREGOR FORMULA

INVARIANT MEASURE OR DISTRIBUTION (MDI, 2010)

Non-null vector with non-negative components

T = (7r0;7r1;~~~) = (Moew; Myen; - - -)

such that wP = 7 where ey = (1, . T and

M= (G- ) Mo(Ap--- A (/ Qn(x)dW(x)Qp (x ))

-1
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AN EXAMPLE

CONJUGATION

W(x)=T"W(x)T

where
1 1
T = 0 a+B—-k+2
6—k+1

Griinbaum-Mdl (2008)

— kx +6—k+1 (1-x)(B—k+1)
W == (50 4 kD)

x€(0,1), a,>-1,0<k<fB+1
Pacharoni-Tirao (2006)
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We consider the family of OMP (Qp(x))n such that

@ Three term recurrence relation
XQn(x) = ApQns1(x) + BrQn(x) + ChQn-1(x), n=0,1,...

where the Jacobi matrix is stochastic



Scalar orthogonality Matrix orthogonality
feleTele) 000000®000

We consider the family of OMP (Qp(x))n such that
@ Three term recurrence relation
XQn(x) = AnQni1(x) + BaQn(x) + C,Qn-1(x), n=0,1,...
where the Jacobi matrix is stochastic

@ Choosing Qo(x) = I the leading coefficient of Qj, is

(n+o+B—k+2)(a+B+2n+2)
Ma+B+n+2)(6+n+2) \ 0 (ot B+n+2)(atF—k+2)

n n(a+68+2n+2
(8 +2)M(a + 5+ 2n+2) (kt _ (a+ﬁ+(n+§;§a+ﬂ_)k+2) ) |
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We consider the family of OMP (Qp(x))n such that
@ Three term recurrence relation
XQn(x) = AnQni1(x) + BaQn(x) + C,Qn-1(x), n=0,1,...
where the Jacobi matrix is stochastic

@ Choosing Qo(x) = I the leading coefficient of Qj, is

k (a+B+2n+2)
n—+—o — (o7 n

Ma+B+n+2)(6+n+2) \ 0 (ot B+n+2)(atF—k+2)

@ Moreover, the corresponding norms are diagonal matrices:

(n+at DI+ HIE+2)°(n+a+f-k+2)
Mn+a+p+2)[(n+5+2)

n+k 0
k(2n+a+3+2)
0 (n+a+1)(n+k+1)
(B—k+1)(2n+a+543)(n+a+5+2)

.
1Qullfy =
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PENTADIAGONAL JACOBI MATRIX

Particular case a = 3 =0, k =1/2:

2
9
4
45
107
225

Kl ooinvolo
ol ~Noin

10

50
23
50

GGl

27

50

o 2
175 7
597 i
1225 147
A4
245 8
IR
392 196

40

147

8 5

441 18

1955 5 175

3969 324 648

= Discrete time quasi-birth-and-death process with 2 phases

Matrix orthogonality
0000000800
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INVARIANT MEASURE

INVARIANT MEASURE

The row vector

7,‘,n_( 1 1 71 > n>0
(R (TN AR

is an invariant measure of P
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INVARIANT MEASURE

INVARIANT MEASURE

The row vector

7,‘,n_( 1 1 71 > n>0
(Qnllf)1 1" (IQnlliw)sn™ (IQullf)yn/

is an invariant measure of P

Particular case N =2, a =03=0, k=1/2:

w”:( 2(n+1)3 (n+1)(n+2)>7 .

>0
(2n+3)(2n+1)" 2n+3

/2216 6 54 12 128 20 250 30 432 42 686 56
T=\3315°5'35° 7 63 9 99 11'143'13' 195" 15’
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OTHER APPLICATIONS

[Durdn—Griinbaum] P A M Dirac meets M G Krein: matrix
orthogonal polynomials and Dirac ‘s equation, J. Phys. A: Math.
Gen. (2006)
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OTHER APPLICATIONS

[Durdn—Griinbaum] P A M Dirac meets M G Krein: matrix
orthogonal polynomials and Dirac ‘s equation, J. Phys. A: Math.
Gen. (2006)

TIME-AND-BAND LIMITING

[Durdn—Griinbaum] A survey on orthogonal matrix polynomials
satisfying second order differential equations, J. Comput. Appl.
Math. (2005)
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