
Manuel D. de la Iglesia*

Principal Dynamical Components

Departamento de Análisis Matemático, Universidad de Sevilla

Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Rio de Janeiro, May 14, 2013

*Joint work with Esteban G. Tabak, Courant Institute



OUTLINE



OUTLINE

1. Principal component analysis (PCA)

and Autorregresive models (AR(p))



OUTLINE

1. Principal component analysis (PCA)

and Autorregresive models (AR(p))

2. Principal dynamical components (PDC)



OUTLINE

1. Principal component analysis (PCA)

and Autorregresive models (AR(p))

2. Principal dynamical components (PDC)

3. Application to the Global Sea-Surface

Temperature Field



PRINCIPAL COMPONENT ANALYSIS (PCA)
Suppose that z 2 Rn

is a vector of random variables, and

that the variances of the n random variables and the structure

of the covariances between the n variables are of interest.



PRINCIPAL COMPONENT ANALYSIS (PCA)
Suppose that z 2 Rn

is a vector of random variables, and

that the variances of the n random variables and the structure

of the covariances between the n variables are of interest.

Given N independent observations z1, z2, . . . , zN 2 Rn
(n << N)

the main goal of PCA is to reduce the dimensionality of a data

set while retaining as much as possible of the variation present

in the data set.



PRINCIPAL COMPONENT ANALYSIS (PCA)
Suppose that z 2 Rn

is a vector of random variables, and

that the variances of the n random variables and the structure

of the covariances between the n variables are of interest.

Given N independent observations z1, z2, . . . , zN 2 Rn
(n << N)

the main goal of PCA is to reduce the dimensionality of a data

set while retaining as much as possible of the variation present

in the data set.

This is achieved by transforming

to a new set of variables (m < n),
the principal components (PCs),

which are uncorrelated, and which

are ordered so that the first few

retain most of the variation present

in all of the original variables.



PRINCIPAL COMPONENT ANALYSIS (PCA)
Suppose that z 2 Rn

is a vector of random variables, and

that the variances of the n random variables and the structure

of the covariances between the n variables are of interest.

Given N independent observations z1, z2, . . . , zN 2 Rn
(n << N)

the main goal of PCA is to reduce the dimensionality of a data

set while retaining as much as possible of the variation present

in the data set.

This is achieved by transforming

to a new set of variables (m < n),
the principal components (PCs),

which are uncorrelated, and which

are ordered so that the first few

retain most of the variation present

in all of the original variables.



A COUPLE OF EXAMPLES
• Certain analysis considered the grades of N = 15 students in n = 8

subjects. The first two PCs account for 82,1% of the total variation

in the data set. The first one was strongly correlated with humanity

subjects and the second one with science subjects.



A COUPLE OF EXAMPLES
• Certain analysis considered the grades of N = 15 students in n = 8

subjects. The first two PCs account for 82,1% of the total variation

in the data set. The first one was strongly correlated with humanity

subjects and the second one with science subjects.

• The analysis of n = 11 socio-economic indicators of N = 96 coun-

tries revealed that all the information could be explained by two only

PCs. The first one was related with the gross domestic product of the

country while the second was the rural condition.



A COUPLE OF EXAMPLES
• Certain analysis considered the grades of N = 15 students in n = 8

subjects. The first two PCs account for 82,1% of the total variation

in the data set. The first one was strongly correlated with humanity

subjects and the second one with science subjects.

• The analysis of n = 11 socio-economic indicators of N = 96 coun-

tries revealed that all the information could be explained by two only

PCs. The first one was related with the gross domestic product of the

country while the second was the rural condition.

1901



HOW TO OBTAIN THE PC’S
Singular value decomposition

Given a data set z1, z2, . . . , z
N

2 Rn

(already subtracted the mean value),

the first m PCs are given by x

j

= Q

0
x

z

j

where Q

x

2 Rn⇥m

has orthogonal

columns such that the predictive uncertainty

NX

j=1

kz
j

�Q

x

x

j

k2

is minimal.



HOW TO OBTAIN THE PC’S
Singular value decomposition

Given a data set z1, z2, . . . , z
N

2 Rn

(already subtracted the mean value),

the first m PCs are given by x

j

= Q

0
x

z

j

where Q

x

2 Rn⇥m

has orthogonal

columns such that the predictive uncertainty

NX

j=1

kz
j

�Q

x

x

j

k2

is minimal.

The matrix Q
x

consists of the first m columns of U in the singular value

decomposition

Z 0
= USV 0

where U 2 Rn⇥n

and V 2 RN⇥N

are orthogonal matrices and S 2 Rn⇥N

is diagonal with the eigenvalues of the covariance matrix Z 0Z sorted in

decreasing order (Z = [z1| · · · |z
N

]).
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Given a time series z

j

2 Rn

with transition probability T (z

j+1|zj)
(Markovian), PDC considers a dimensional reduction of T (z

j+1|zj)
in the following way

T (z

j+1|zj) = J(z

j+1)e(yj+1|xj+1)d(xj+1|xj),

where

• x = P

x

(z(x, y)) 2 Rm

, y = P

y

(z(x, y)) 2 Rn�m

(P

x

and P

y

are projec-

tion operators) and J(z) is the Jacobian determinant of the coordinate

map z ! (x, y).

• e(y|x) is a probabilistic embedding.

• d(x

j+1|xj) is a reduced dynamical model.
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where a = 0.6, j = 1, . . . , 999 and ⌘
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Then we rotated the data through the angle ✓ =
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3

Aj = xj cos(✓)� yj sin(✓)

Pj = xj sin(✓) + yj cos(✓)

and we perform descent over the variables a and ✓.
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Take n = 2, m = 1, and r = 3, the order of the Non-Markovian process. We

created data from the dynamical model

x

j+1 = a1xj + a2xj�1 + a3xj�2 + 0.3⌘

x

j

,

y

j+1 = 0.6⌘

y

j

,

for j = 3, . . . , 999 and we adopted the values a1 = 0.4979, a2 = �0.2846, a3 =

0.1569 for the dynamics

Then, as before, we define

Aj = xj cos(✓)� yj sin(✓),

Pj = xj sin(✓) + yj cos(✓),

with ✓ =

⇡
3 , and provide the Aj and Pj as data for the principal dynamical

component routine.



HIGHER-ORDER PROCESSES

−2 0 2
−1

0

1

A

P

0 10 20 30 40 50
0

0.5

1

θ

step
0 10 20 30 40 50

0.44

0.45

0.46

0.47
c

step

0 10 20 30 40 50
0

0.2

0.4
0.6

a 1

step

0 10 20 30 40 50

−0.2

−0.1
0

a 2

step
0 10 20 30 40 50
0

0.1

0.2

a 3
step



APPLICATION TO THE GLOBAL 
SEA-SURFACE TEMPERATURE FIELD



APPLICATION TO THE GLOBAL 
SEA-SURFACE TEMPERATURE FIELD

Preliminary considerations

Database: monthly averaged extended reconstructed global sea surface tem-
peratures based on COADS data (January 1854 to October 2009).



APPLICATION TO THE GLOBAL 
SEA-SURFACE TEMPERATURE FIELD

Preliminary considerations

Database: monthly averaged extended reconstructed global sea surface tem-
peratures based on COADS data (January 1854 to October 2009).

• The ocean is not an isolated player in climate dynamics: it interacts

with the atmosphere and the continents, and is also a↵ected by ex-

ternal conditions, like solar radiation or human-related release of CO2

into the atmosphere. The latter are examples of slowly varying exter-

nal trends that fit naturally into our non-autonomous setting.



APPLICATION TO THE GLOBAL 
SEA-SURFACE TEMPERATURE FIELD

Preliminary considerations

Database: monthly averaged extended reconstructed global sea surface tem-
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• Even within the ocean, the surface temperature does not evolve alone:
it is carried by currents, and it interacts through mixing with lower
layers of the ocean. One way to account for unobserved variables is to
make the model non-Markovian.
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Therefore, we pick r = 3 and m = 4.
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POINTS OF SIGNIFICANCE: 19, 24, 37, 41
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OBSERVED AND PREDICTED TEMPERATURES
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ANOMALIES
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We consider three-month mean SST anomaly in the following El Niño region:
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