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1. Motivation and preliminaries

2. Integral representations

3. Non-commutative Painlevé IV equation
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n—1 5
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= Hy(z)Hi(y)e™ =
k=0

describes the statistical properties ot the eigenvalues of a random matrix M
in the space of (n x n) Hermitian matrices with the measure

(M) = e M) gM (GUE, Mehta).
The last particle distribution is given by the Fredholm determinant

F(s) =P [Apax < s] = det(Id — xsK,)

where Y, is the indicator function of the interval [s, co)
and K,, : L*(R) — L#(R) is the integral operator

/K x,y)f(y)dy VY f e L*R)
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The log derivative of the Fredholm determinant
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R(s) = 0slog(det(Id — xsK,))

solves the sigma-form of the Painlevé IV equation

(R + 4(R)*(R +2n) —4(sR' — R)*=0

GOAL OF THIS TALK

Extend these results to CD kernels associated to Hermite-type matrix-valued
orthogonal polynomials (MOP).

e Double integral representations of some Hermite-type MOP

= Matrix-valued CD kernels.

e Relate the Fredholm determinant of this kernel to a Riemann-Hilbert
problem (RHP) whose compatibility conditions lead to a derived ver-
sion of a non-commutative Painlevé IV equation.

e Non-commutative integrable systems

P. Etingot, I.Gelfand, V. Retakh, V. Rubtsov, V. Sokolov...
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Let W be a weight matrix (positive definite and finite moments).
Consider L%V(]R, (AR ) the weighted space with the inner product

(F. Gy — /R F(2)W (2)G* (2)dx

A sequence (P,), of matrix orthonormal polynomials (MOP) with respect

ey
(L5

to W is a sequence satisfying (Krein, 1949)

dean:n, <Pn7Pm>W:IN5nm

If (P,), is complete, the Christoffel-Darboux (CD) kernel is

n—1

K (z,y) :ZPI;k(y)Pk(x)v z,y € R
k=0
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THEOREM (Cafasso-MdlI, 2013)
There exist suitable constant matrices C,, and D,, such that T
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P, (z)e?® = e /IwJan_Jewz_%ww"dw




CASE N=2

For the family of MOP (P,), with respect to (N = 2)

2. 2
W =e = (110 ), aer

VX 1

we have that, if 72 =1 + 21



CASE N=2

For the family of MOP (P,), with respect to (N = 2)

2. 2
W =e = (110 ), aer

VX 1

we have that, if 72 =1 + 21

( 1 (n+ 1v\
1 vx n! 22 2 dz
Pn _ —z4+2zx
() (O ].) 2”+Lﬂijé 2V 1 ¢ Pilan
v2 2 )

2 ( 1 fwu)

e 2_ 92w n
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K, (z,y) =) ®}(y)®i(z)
k=0
where ®,,(x) = e_xQ/QHPnH‘_,‘}Pn(x)eAx can be written as

w? —2xw—2°+2zy+nlog(w/z)

2 22 —y? Jo —Jo  Jop—1 —Jze
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where
1 —v
B, = % |
In other words
2(~v2 —1)4+w v(iw—z
9 2242 / (an72)+ % \ ew2—2xw—22—|—2zy—l—nlog(w/z)
oA /dw%dz " "
(27TZ) T ~
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ITKS theory

4 x 4 RHP T(\) L(A) — ¥(N)

Ky, ~ Kn(z,y) on C\{yUZ} e (constant jumps)
v
o Lax pair
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condailitions
0,V =UW
u = —ul+2su—+4z —2nly + Vy
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where Vx = 2|Jo,yly™" (lz,y] = xy — yx) and

z=—T1)1, y=-2T1), u= )Ty +2sh
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ITKS theory

4 x 4 RHP T(\) L(A) — ¥(N)

Kpn ~ Kn(z,y) on C\{~UT} > (constant jumps)
v
Lax pair
Compatibility - HW = AP
conditions
0¥ =UW

Non-commutative version of the derived Painlevé IV equation

u+ [u u)—4(n + 1+ s?)u'— 2 ({u/, v’} + vu'u)
+6s{u’,u} +4u(u — slz) + (V4 —2(uVa)) + 25V, =0



NON-COMMUTATIVE PAINLEVE IV

Non-commutative version of the derived Painlevé IV equation
u’+ [u u)— 4(n + 1+ s%)u'— 2 ({uv/, u?} + uu'u)
+6s{u’,u} +4du(u — slz) + (V4 —2(uVa)) + 25V, =0

If we assume that all the variables commute, we get the equation
u" — Au' — 6utu’ + 120w — dnu + du? — dsu — 4s%u’ = 0
and this equation is the derivative of the Painlevé IV equation

2 2

3 2
u’ = (@) - —ud —dsu® +2(s° + 1+ n)u "
2u 2 U
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nomials should be related to some non-commutative version of the
Painlevé V equation.
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e M. D. de la Iglesia and M. Cafasso, Non-commutative Painlevé equa-
tions and Hermaite-type matrix orthogonal polynomaials, accepted in
Communications in Mathematical Physics.
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