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describes the statistical properties of the eigenvalues of a random matrix M
in the space of (n⇥ n) Hermitian matrices with the measure
µ(M) = e�Tr(M2)dM (GUE, Mehta).
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The last particle distribution is given by the Fredholm determinant
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MOTIVATION
THEOREM (Tracy-Widom, 1994)
The log derivative of the Fredholm determinant

R(s) = @s log(det(Id� �sKn))

solves the sigma-form of the Painlevé IV equation

(R00)2 + 4(R0)2(R0 + 2n)� 4(sR0 �R)2 = 0
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• Relate the Fredholm determinant of this kernel to a Riemann-Hilbert
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• Non-commutative integrable systems

P. Etingof, I.Gelfand, V. Retakh, V. Rubtsov, V. Sokolov...
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