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MAIN IDEA OF THE TALK

Let {X, : n=0,1,...} be an irreducible discrete-time birth-death chain with
space state S C Z and P its one-step transition probability tridiagonal matrix.

We will study stochastic factorizations of P of the form
P=PF

where P; and P, are also stochastic matrices.

The natural choice is looking for P; and P> as upper or lower bidiagonal matrices
or viceversa (UL or LU factorizations) but we will see that we can consider
different factorizations if S = Z.

Main motivation: divide the probabilistic model for P into two simpler proba-
bilistic models and consider the combination of both as a model for P.

We will be focused on answering the following two questions:

1. Under what conditions can we guarantee a stochastic factorization of the
form P = P Py?

2. If 1 is the spectral measure (scalar or matrix-valued) associated with

P, what is the spectral measure of the discrete Darboux transformation
P =P,P7



OUTLINE

1. State space S ={0,1,...,N}.

2. State space S =Ny ={0,1,2,...}.

3. State space S=7Z={...,—-2,-1,0,1,2...}.



1. State space S = {0,1,...,N}.



UL FACTORIZATION

Let {X, : n=0,1,...} be an irreducible discrete-time birth-death chain with

space state {0,1,..., N} and P its one-step transition probability matrix. Con-
sider a UL factorization of P in the following way
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with the condition that P and Py, are also stochastic matrices.

We obviously must have so = yy = 1. A direct computation shows that

Qp = TpSp+1, Nn=0,...,N—1,
bn:$nrn+l+yn3na n:Ow")N_]-a by = sn

Cn = YnTn, n=1,...,N.

Since P, Py and Py, are stochastic we must have a,, + b, + ¢, =1, y, + x, =1
and s, + r, = 1 and the only relevant relations are the first and the third one.






EXAMPLES

For instance, the symmetric random walk with transition probability matrix
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does not have a UL stochastic factorization since the eigenvalues are not inside

the interval [0, 1].

But nevertheless we have
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Darboux transformation: if Pv = Av then Py = AU, where P = P; Py and
v = Ppv, i.e. the eigenvalues of P and P are the same (then only thing that

changes are the eigenvectors).



LU FACTORIZATION

If we consider now a LU factorization of P
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with }NDU and }NDL stochastic matrices, then we have again s = yy = 1 but now

An = SpZTn, N =,...,N —1,
bn:rnxn—1+3nyn7 TLZO,...,N,

Cn =TnUn, n=1...,N.

Now it is possible to see, performing the same computation, that the LU stochas-
tic factorization is always possible as long as the eigenvalues of P are contained
in the interval [0,1]. Same considerations for the Darboux transformation.




2. State space S =Ny ={0,1,2,...}.



UL AND LU FACTORIZATIONS

Now the space state is S = Ny and P is a semi-infinite matrix. We can consider
as before
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with the condition that Py and Py, are also stochastic matrices.

A direct computation shows that

Ap = TpSn+1, N >0
bn = TnTn+1 + YnSn, N >0

Cn = YnTn, N =1

As before, it is possible to compute all the coefficients xz,,, yn, 7, s, of Py and
P;, in terms of a free parameter yy using the previous relations.

The same can be applied for the LU stochastic factorization but now there is
no free parameter.



CONDITIONS FOR STOCHASTICITY

For that we will need that the following continued fraction

ao ) ao‘ C1 ai C2

i R

is convergent and 0 < H < 1.

Theorem. Let H the continued fraction given before and the corresponding convergents

h, = A,/B,. Assume that
0<A,<B,, n>1

Then H is convergent. Moreover, if P = Py Py, then both Py and Pr, are stochastic
matrices if and only if we choose yg in the following range
ao C1 ai C9o
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O<yo< H=1-

The stochastic LU factorization is possible if and only if H is convergent and
0< H<1.

Moreover, let ¢ be the spectral measure associated with P. Then 0 < H < 1 if
and only if supp(y) C [0, 1].



DARBOUX TRANSFORMATIONS

UL case: Let 9 be the spectral measure associated with P. The Darboux
transformation gives a family of discrete-time birth-death chains P = PrPy.

Let us call ¢ the spectral matrix associated with P. If p_; = f_ll dip(x)/x is
well defined, then the family of spectral measures is given by

Ia) = o "2

+ Mdp(x), M=1-—you_1

where dg(x) is the Dirac delta located at £ = 0 and yq is the free parameter
from the UL factorization. This transformation of the spectral measure 1 is
also known as a Geronimus transformation.

LU case: the corresponding Darboux transformation P = IBU?L gives rise to
a tridiagonal stochastic matrix and a spectral measure 9. In this case, it is
possible to see that this new spectral measure is given by

or, in other words, a Christoffel transformation of .



EXAMPLE: JACOBI POLYNOMIALS

(5)()

Consider the family of Jacobi polynomials , which are orthogonal with respect

to the weight

I'(oe + 8+ 2)
MNa+1DI(B+1)

w(x) = (1 -2)°, z€[0,1], «,B>—1

normalized by the condition

Q1) = 1
Then the Jacobi polynomials satisfy the three-term recursion relation

2Q\P) (@) = 0, Q7 (2) + 5@ (@) + @i (@), 20
where the coefficients a,,, b,,, ¢,, are defined by
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UL FACTORIZATION

Let us call a,,, n > 1, the sequence of alternating coefficients ag, c1, a1, ca, . . ., respectively.
Then the sequence «,, is a chain sequence, i.e. o, = (1 — my_1)m, where 0 < mg < 1
and 0 < m,, <1 forn > 1. In this case we have

Mo, = " m = ntf+1 n >0
2n_2’l’l,—|—04—|—6—|—17 2n+1_2n+a+5+27 -

Then the continued fraction H with partial numerators given by «, is convergent to (1+L) ™1
where L is given by (see book of Chihara)

io: mameo - - My
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It is possible to see (hypergeometric series) that

B+1
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Using the main theorem we have that the stochastic UL factorization is always possible if we choose
the free parameter yg in the range

0 <y < a>00>-1

e
a+B+1’
So for every 1o in that range we can always have a stochastic UL factorization.

Since 0 < H < 1 the stochastic LU factorization is always possible.



DARBOUX TRANSFORMATIONS

The spectral measure associated with the Darboux transformation P = Pp Py is the
Geronimus transformation of the Jacobi weight w. In this case it is easy to see that
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Therefore we have
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This measure is integrable as long as a > 0 and 8 > —1. We see that if yq is in the range

of a stochastic UL factorization, then the mass at 0 is always nonnegative, and vanishes
if

B Qo
yo—&+ﬁ+1

For the LU decomposition, the spectral measure associated with the Darboux transtor-
mation P = Py Py is the Christoffel transformation of the Jacobi weight, i.e.

I'(a+ 5+ 3)
Da+2)I'(B8+1)

w(x) = 2t (1 - 2)f, ze]0,1]



3. State space S=Z=1{...,-2,-1,0,1,2...}.



UL AND LU FACTORIZATIONS

Now the space state is S = Z and P is the doubly infinite stochastic matrix
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A direct computation shows that

Ap = TpSn+1, N E L
b, = TpTni1 + YnSn, N EZ

Cn = YnTn, N E L



CONDITIONS FOR STOCHASTICITY

Now we will have to consider two continued fractions, the same H as before and
a new one corresponding to the negative states

H=1— 20 H = 0
] — o ] — a-1
P P
P R
1 — 1 —

We assume that both H, H' are convergent and 0 < H' < H < 1.

Theorem.

e UL case: The stochastic UL factorization is possible if and only if the
free parameter yo satisfies the following condition

H <y <H

e LU case: The stochastic LU factorization is possible if and only if the
free parameter 7o satisfies the following condition

H <7y <H



SPECTRAL ANALYSIS OF P

(Nikishin, 1986 or Masson-Repka, 1991). If we consider the eigenvalue equation zq®(x) = Pq®(x) where ¢*(x) =

(-, Q% (2),Q%(x), Q% (x), -+ )T, = 1,2, then, for each x real or complex there exist two polynomial familie
of linearly independent solutions Q%(z),a = 1,2,n € Z, given by
Qo(z) =1, Qj(z) =0,
QLi(z)=0, Q°,(x)=1,
£Q2(2) = 4nQ%41(¢) + beQ2(2) + aQ3_y (), nEZ, a=1,2

P is self-adjoint in ¢2(Z) where (7,)ncz is given by

apay * - Ap—1 CoC—1 " C—_n+1
=1, m, = , Ty = , n>1
ClCQ"'Cn a_la_2...a_n

It is possible to see that Q! (P)e(® + Q?(P)el~Y = e i € Z, where e() = (ey))jez is defined by €§~i) = 0;,5/m

Therefore we need to apply the Spectral Theorem 4 times and obtain 3 measures ¥, g,a,8 = 1,2 (sinc
Y12 = 91 by the symmetry) such that

[ 5
a%; /_1 Q2 (2)Q’ (z)das(z) = ;_;]’ ien

These 3 measures can be written in matrix form as the 2 X 2 matrix

vor- (0 V)

which it is called the spectral matrix associated with P.



RELATION WITH MATRIX-VALUED OPS

If we define the matrix-valued polynomials

= (o8l otn) 20

then we have

rQo(r) = AoQ1(z) + BoQo(r), Qo(r) = I2x2,

where I5, o denotes the 2 X 2 identity matrix and

(b o (b, O
BO — (a—l b—l) ) Bn — (0 b—n—l) y N > ]-7

A, = n 0 , n>0 C,= cn 0 , n>1.
0 C_n—1 0 Q_n—1

The matrix orthogonality is defined in terms of the (matrix-valued) inner prod-
uct

[ @wv@en@a= ("7 0 Yo

The matrix P “folds” into a semi-infinite 2 X 2 block tridiagonal matrix P.



UL DARBOUX TRANSFORMATION

Theorem.
UL case: Let V(x) the spectral matrixz associated with P = Py Py, and consider

the Darbouz transformation P = PpPy. Assume that M_; = f_ll U(z)ztdx is

well-defined. Then the spectral matriz associated with P is given by

~

U(z) = So(z)¥s(z)Sy(2)

where So(x) is defined by

and




LU DARBOUX TRANSFORMATION

Theorem.
LU case: Let U(x) the spectml matrix associated with P = PLPU and consider
the Darboux transformation P = PUPL Assume that M_1 = f U(x r~ldx is

well-defined. Then the spectral matrix associated with P is given by
U(z) = To(x) U1 (z) T (x)

where Ty(x) is defined by

and




AN EXAMPLE: RANDOM WALK ON Z

We have that the transition probabilities are constant. Then, if a < (1 — +/c)?, we have

1 1
H=§(1—|—c—a—l—\/(1—|—c—a)2—4c), H’=§(1—|—c—a—\/(l—|—c—a)2—4c)

Therefore for every parameter yo such that H' < yy < H we have a stochastic UL factorization.

The spectral matrix associated with P is given by

r—0b

= L 1 2c x E|0_,0 or =1— (Va c)’
\Ij(x)_ﬂ_\/(x_a_)(a_l__m) agz_cb a/c ) 6[ — -I-]a =+ 1 (\/_:F\/f) .

A straightforward computation gives that the spectral matrix for the Darboux transformation is
given by

- 1 -~ __
U(x) = A+ Bz + Cz?| + M&y(z),
) = e =0 =) | | ole)
where
i ' —y)(H — y) ( 1 —33_1/y_1>
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1 _ byo
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I (yob—c(l —c))z2y | ~ 2cy_1 \1 0/’
2¢cy_1 acy?
M_ (yO_HI)(H_yO) ( 1 —$_1/y_1>
— ).
S0Yo/0 -0+ —33—1/3/—1 (x—l/y—1)



REFLECTING-ABSORBING FACTORIZATION

Now, instead of considering a UL or LU factorization (where the upper bidiagonal matrix represents
a pure-birth chain and the lower bidiagonal matrix represents a pure-death chain) we consider a
different factorization, given by a reflecting birth-death chain from the state 0 and an absorbing
birth-death chain to the state O.

Then, consider P = Pr P4 where

| 517—.2 y—.2 0 0 s_o r_o
rT—1 Y-11| 0 B 0 s_1|7_
Pr = 1 al Yo o A= 01 11 0
0 y1 = rr s1 O
Y-3 h 3 Y-1 Yo 34 Y2 Y3 \
(3 A (O Ay 200 &
-3 -2 -1 0 1 2 3




REFLECTING-ABSORBING FACTORIZATION

Remarks.

1. If the state space is S = Ny then the reflecting-absorbing factorization is just an UL stochastic
factorization.

2. We need to introduce a new parameter o to connect the reflecting birth-death chain from the
state 0 to the state —1.

3. P = PrP,4 does not preserve the UL or LU structure, but, after the “folding trick”, if we write
P = PrP,, then we have

( v o |z O \ ( 1 0 \
0 y—1| 0 x4 r_1 S_1
Pp = v 0 |z O CPy=| m 0 ]s 0
0 Yy—o 0 r_9 0 r—9o 0 S_9

\

which preserves the block UL structure.

Theorem. We have now TWO free parameters a and xqg. Assuming that the previous continued

fractions H, H' are convergent and H + H' < 1, then the reflecting-absorbing factorization is
possible if and only if

a>H'., and zo> H



DARBOUX TRANSFORMATION

The Darboux transformation P = P4 Pr is not a birth-death chain since now we have extra
transitions between states —1 and 1, given by

~

Cil = ]P)(Xl = —].|5(:0 = 1) = 1o, Ci_l = ]P)()’Zl = 1|X0 = —1) =Tr_12p.

The diagram of Pis given by




DARBOUX TRANSFORMATION

Using the UL block factorization of P after the “folding”, we can compute the spectral matrix
associated with P.

Theorem. Let V(x) the spectral matriz associated with P = PrP4 and consider the Darboux
transformation P = PoPgr. Assume that M_1 = f_ll U(z)z 1dz is well-defined. Then the spectral

matriz associated with P is given by

~

U(z) = SoUy(z)SE

where the constant matriz Sy is defined by

10
o= (il )

Uy () = D) 4 [ = ( : o1/ ) _ M_1] 50 ()

yo \—T—1/5-1 (r—1/s-1)% +yor—1/as*,

and

Similar considerations can be obtained if we consider absorbing-reflecting factorizations, but now
we have to start with an “almost” birth-death chain with extra transitions between states —1 and
1.



AN EXAMPLE: RANDOM WALK ON Z

Again, if a < (1 —+/c)? then we have

1 1
H=§(1—|—c—a—|—\/(1—|—c—a)2—4c), H’=§(1+c—a—\/(1—|—c—a)2—4c)

and the reflecting-absorbing factorization will be possible if and only if « > H' and z¢o > H.

Recall that the spectral matrix associated with P is given by

x—Db
_ 1 : 2c €T O_.0 o+ =1-— a C ?
v(@) = T/ (z —0o_)(o4 — T) x2—cb a/c | Slomodl, ox=1-(VaF Vo),

A straightforward computation gives that the spectral matrix for the Darboux transformation P
(with transitions between the states —1 and 1) is given by

- 1 ~ - —
U(z) = A+ Bx|+ M_19
(@) m\/(x—a_)(a+—a;)[ | 0
where
20+ H—-H' —1
- 1 > /0 1
A= , B=— 2(a —
oS0+ H-H -1 (a—H)H+a-1) 2a \ 1 (O‘a ‘)
2 a?
xo— H+a—H H —«
~ yo(l — H — H') a(l—H— H')
M_,= / /
H —« (e —H)(1-H - «a)

a(l—H— H') a?(l1— H— H')






