Stochastic factorizations of birth-death chains and Darboux transformations*

Manuel Domínguez de la Iglesia

 Instituto de Matemáticas, UNAM, MéxicoMathematical Congress of the Americas Buenos Aires, July 13th, 2021
*Joint work with F. Alberto Grünbaum and C. Juarez

MAIN IDEA OF THE TALK

Let $\left\{X_{n}: n=0,1, \ldots\right\}$ be an irreducible discrete-time birth-death chain with space state $\mathcal{S} \subseteq \mathbb{Z}$ and P its one-step transition probability tridiagonal matrix.
We will study stochastic factorizations of P of the form

$$
P=P_{1} P_{2}
$$

where P_{1} and P_{2} are also stochastic matrices.
The natural choice is looking for P_{1} and P_{2} as upper or lower bidiagonal matrices or viceversa (UL or LU factorizations) but we will see that we can consider different factorizations if $\mathcal{S}=\mathbb{Z}$.

Main motivation: divide the probabilistic model for P into two simpler probabilistic models and consider the combination of both as a model for P.

We will be focused on answering the following two questions:

1. Under what conditions can we guarantee a stochastic factorization of the form $P=P_{1} P_{2}$?
2. If ψ is the spectral measure (scalar or matrix-valued) associated with $\underset{\sim}{P}$, what is the spectral measure of the discrete Darboux transformation $\widetilde{P}=P_{2} P_{1}$?

OUTLINE

1. State space $\mathcal{S}=\{0,1, \ldots, N\}$.
2. State space $\mathcal{S}=\mathbb{N}_{0}=\{0,1,2, \ldots\}$.
3. State space $\mathcal{S}=\mathbb{Z}=\{\ldots,-2,-1,0,1,2 \ldots\}$.

1. State space $\mathcal{S}=\{0,1, \ldots, N\}$.

UL FACTORIZATION

Let $\left\{X_{n}: n=0,1, \ldots\right\}$ be an irreducible discrete-time birth-death chain with space state $\{0,1, \ldots, N\}$ and P its one-step transition probability matrix. Consider a UL factorization of P in the following way

with the condition that P_{U} and P_{L} are also stochastic matrices.
We obviously must have $s_{0}=y_{N}=1$. A direct computation shows that

$$
\begin{aligned}
& a_{n}=x_{n} s_{n+1}, \quad n=0, \ldots, N-1, \\
& b_{n}=x_{n} r_{n+1}+y_{n} s_{n}, \quad n=0, \ldots, N-1, \quad b_{N}=s_{N} \\
& c_{n}=y_{n} r_{n}, \quad n=1, \ldots, N .
\end{aligned}
$$

Since P, P_{U} and P_{L} are stochastic we must have $a_{n}+b_{n}+c_{n}=1, y_{n}+x_{n}=1$ and $s_{n}+r_{n}=1$ and the only relevant relations are the first and the third one.

EXAMPLES

For instance, the symmetric random walk with transition probability matrix

$$
P=\left(\begin{array}{ccccc}
0 & 1 & & & \\
q & 0 & p & & \\
& \ddots & \ddots & \ddots & \\
& & q & 0 & p \\
& & & 1 & 0
\end{array}\right), \quad p+q=1
$$

does not have a UL stochastic factorization since the eigenvalues are not inside the interval $[0,1]$.

But nevertheless we have
$\left(\begin{array}{ccccc}3 / 4 & 1 / 4 & & & \\ 1 / 4 & 1 / 2 & 1 / 4 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 / 4 & 1 / 2 & 1 / 4 \\ & & & 1 / 2 & 1 / 2\end{array}\right)=\left(\begin{array}{ccccc}1 / 2 & 1 / 2 & & & \\ 0 & 1 / 2 & 1 / 2 & & \\ & \ddots & \ddots & \ddots & \\ & & 0 & 1 / 2 & 1 / 2 \\ & & & 0 & 1\end{array}\right)\left(\begin{array}{ccccc}1 & 0 & & & \\ 1 / 2 & 1 / 2 & 0 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 / 2 & 1 / 2 & 0 \\ & & & 1 / 2 & 1 / 2\end{array}\right)$

Darboux transformation: if $P v=\lambda v$ then $\widetilde{P} \widetilde{v}=\lambda \widetilde{v}$, where $\widetilde{P}=P_{L} P_{U}$ and $\widetilde{v}=P_{L} v$, i.e. the eigenvalues of P and \widetilde{P} are the same (then only thing that changes are the eigenvectors).

LU FACTORIZATION

If we consider now a LU factorization of P

with \widetilde{P}_{U} and \widetilde{P}_{L} stochastic matrices, then we have again $\tilde{s}_{0}=\tilde{y}_{N}=1$ but now

$$
\begin{aligned}
& a_{n}=\tilde{s}_{n} \tilde{x}_{n}, \quad n=, \ldots, N-1, \\
& b_{n}=\tilde{r}_{n} \tilde{x}_{n-1}+\tilde{s}_{n} \tilde{y}_{n}, \quad n=0, \ldots, N, \\
& c_{n}=\tilde{r}_{n} \tilde{y}_{n}, \quad n=1, \ldots, N .
\end{aligned}
$$

Now it is possible to see, performing the same computation, that the LU stochastic factorization is always possible as long as the eigenvalues of P are contained in the interval $[0,1]$. Same considerations for the Darboux transformation.
2. State space $\mathcal{S}=\mathbb{N}_{0}=\{0,1,2, \ldots\}$.

UL AND LU FACTORIZATIONS

Now the space state is $\mathcal{S}=\mathbb{N}_{0}$ and P is a semi-infinite matrix. We can consider as before
$\underbrace{\left(\begin{array}{ccccc}b_{0} & a_{0} & & \\ c_{1} & b_{1} & a_{1} & \\ & c_{2} & b_{2} & a_{2} & \\ & & \ddots & \ddots & \ddots\end{array}\right)}_{P}=\underbrace{\left(\begin{array}{ccccc}y_{0} & x_{0} & & & \\ 0 & y_{1} & x_{1} & & \\ & 0 & y_{2} & x_{2} & \\ & & \ddots & \ddots & \ddots\end{array}\right)}_{P_{U}} \underbrace{\left(\begin{array}{lllll}s_{0} & 0 & & & \\ r_{1} & s_{1} & 0 & & \\ & r_{2} & s_{2} & 0 & \\ & & \ddots & \ddots & \ddots\end{array}\right)}_{P_{L}}$
with the condition that P_{U} and P_{L} are also stochastic matrices.
A direct computation shows that

$$
\begin{aligned}
a_{n} & =x_{n} s_{n+1}, \quad n \geq 0 \\
b_{n} & =x_{n} r_{n+1}+y_{n} s_{n}, \quad n \geq 0 \\
c_{n} & =y_{n} r_{n}, \quad n \geq 1
\end{aligned}
$$

As before, it is possible to compute all the coefficients $x_{n}, y_{n}, r_{n}, s_{n}$ of P_{U} and P_{L} in terms of a free parameter y_{0} using the previous relations.

The same can be applied for the LU stochastic factorization but now there is no free parameter.

CONDITIONS FOR STOCHASTICITY

For that we will need that the following continued fraction

$$
H=1-\frac{a_{0}}{1-\frac{c_{1}}{1-\frac{a_{1}}{1-\frac{c_{2}}{1-\cdots}}}} \doteq 1-\stackrel{a_{0}}{\square 1}-\begin{array}{c|c|c}
c_{1} & a_{1} & c_{-} \\
-\quad c_{2} \\
\hline \ldots
\end{array}
$$

is convergent and $0<H<1$.
Theorem. Let H the continued fraction given before and the corresponding convergents $h_{n}=A_{n} / B_{n}$. Assume that

$$
0<A_{n}<B_{n}, \quad n \geq 1
$$

Then H is convergent. Moreover, if $P=P_{U} P_{L}$, then both P_{U} and P_{L} are stochastic matrices if and only if we choose y_{0} in the following range

The stochastic $L U$ factorization is possible if and only if H is convergent and $0<H<1$.
Moreover, let ψ be the spectral measure associated with P. Then $0<H<1$ if and only if $\operatorname{supp}(\psi) \subset[0,1]$.

DARBOUX TRANSFORMATIONS

UL case: Let ψ be the spectral measure associated with P. The Darboux transformation gives a family of discrete-time birth-death chains $\widetilde{P}=P_{L} P_{U}$. Let us call $\widetilde{\psi}$ the spectral matrix associated with \widetilde{P}. If $\mu_{-1}=\int_{-1}^{1} d \psi(x) / x$ is well defined, then the family of spectral measures is given by

$$
\widetilde{\psi}(x)=y_{0} \frac{\psi(x)}{x}+M \delta_{0}(x), \quad M=1-y_{0} \mu_{-1}
$$

where $\delta_{0}(x)$ is the Dirac delta located at $x=0$ and y_{0} is the free parameter from the UL factorization. This transformation of the spectral measure ψ is also known as a Geronimus transformation.

LU case: the corresponding Darboux transformation $\widehat{P}=\widetilde{P}_{U} \widetilde{P}_{L}$ gives rise to a tridiagonal stochastic matrix and a spectral measure $\hat{\psi}$. In this case, it is possible to see that this new spectral measure is given by

$$
\widehat{\psi}(x)=x \psi(x)
$$

or, in other words, a Christoffel transformation of ψ.

EXAMPLE: JACOBI POLYNOMIALS

Consider the family of Jacobi polynomials $Q_{n}^{(\alpha, \beta)}(x)$, which are orthogonal with respect to the weight

$$
w(x)=\frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} x^{\alpha}(1-x)^{\beta}, \quad x \in[0,1], \quad \alpha, \beta>-1
$$

normalized by the condition

$$
Q_{n}^{(\alpha, \beta)}(1)=1
$$

Then the Jacobi polynomials satisfy the three-term recursion relation

$$
x Q_{n}^{(\alpha, \beta)}(x)=a_{n} Q_{n+1}^{(\alpha, \beta)}(x)+b_{n} Q_{n}^{(\alpha, \beta)}(x)+c_{n} Q_{n-1}^{(\alpha, \beta)}(x), \quad n \geq 0
$$

where the coefficients a_{n}, b_{n}, c_{n} are defined by

$$
\begin{aligned}
& a_{n}=\frac{(n+\beta+1)(n+1+\alpha+\beta)}{(2 n+\alpha+\beta+1)(2 n+2+\alpha+\beta)}, \quad n \geq 0 \\
& b_{n}=\frac{(n+\beta+1)(n+1)}{(2 n+\alpha+\beta+1)(2 n+2+\alpha+\beta)}+\frac{(n+\alpha)(n+\alpha+\beta)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta)}, \quad n \geq 0 \\
& c_{n}=\frac{n(n+\alpha)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta)}, \quad n \geq 1
\end{aligned}
$$

UL FACTORIZATION

Let us call $\alpha_{n}, n \geq 1$, the sequence of alternating coefficients $a_{0}, c_{1}, a_{1}, c_{2}, \ldots$, respectively. Then the sequence α_{n} is a chain sequence, i.e. $\alpha_{n}=\left(1-m_{n-1}\right) m_{n}$ where $0 \leq m_{0}<1$ and $0<m_{n}<1$ for $n \geq 1$. In this case we have

$$
m_{2 n}=\frac{n}{2 n+\alpha+\beta+1}, \quad m_{2 n+1}=\frac{n+\beta+1}{2 n+\alpha+\beta+2}, \quad n \geq 0
$$

Then the continued fraction H with partial numerators given by α_{n} is convergent to $(1+L)^{-1}$ where L is given by (see book of Chihara)

$$
L=\sum_{n=1}^{\infty} \frac{m_{1} m_{2} \cdots m_{n}}{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{n}\right)}
$$

It is possible to see (hypergeometric series) that

$$
L=\frac{\beta+1}{\alpha}
$$

Using the main theorem we have that the stochastic UL factorization is always possible if we choose the free parameter y_{0} in the range

$$
0<y_{0} \leq \frac{\alpha}{\alpha+\beta+1}, \quad \alpha>0, \beta>-1
$$

So for every y_{0} in that range we can always have a stochastic UL factorization.
Since $0<H<1$ the stochastic LU factorization is always possible.

DARBOUX TRANSFORMATIONS

The spectral measure associated with the Darboux transformation $\widetilde{P}=P_{L} P_{U}$ is the Geronimus transformation of the Jacobi weight w. In this case it is easy to see that

$$
\mu_{-1}=\int_{0}^{1} \frac{w(x)}{x} d x=\frac{\alpha+\beta+1}{\alpha}
$$

Therefore we have

$$
\widetilde{w}(x)=y_{0} \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} x^{\alpha-1}(1-x)^{\beta}+\left(1-y_{0} \frac{\alpha+\beta+1}{\alpha}\right) \delta_{0}(x), \quad x \in[0,1]
$$

This measure is integrable as long as $\alpha>0$ and $\beta>-1$. We see that if y_{0} is in the range of a stochastic UL factorization, then the mass at 0 is always nonnegative, and vanishes if

$$
y_{0}=\frac{\alpha}{\alpha+\beta+1}
$$

For the LU decomposition, the spectral measure associated with the Darboux transformation $\widehat{P}=\widetilde{P}_{U} \widetilde{P}_{U}$ is the Christoffel transformation of the Jacobi weight, i.e.

$$
\widehat{w}(x)=\frac{\Gamma(\alpha+\beta+3)}{\Gamma(\alpha+2) \Gamma(\beta+1)} x^{\alpha+1}(1-x)^{\beta}, \quad x \in[0,1]
$$

3. State space $\mathcal{S}=\mathbb{Z}=\{\ldots,-2,-1,0,1,2 \ldots\}$.

UL AND LU FACTORIZATIONS

Now the space state is $\mathcal{S}=\mathbb{Z}$ and P is the doubly infinite stochastic matrix

$$
P=\left(\begin{array}{ccc|cccc}
\ddots & \ddots & \ddots & & & & \\
& c_{-1} & b_{-1} & a_{-1} & & & \\
\hline & & c_{0} & b_{0} & a_{0} & & \\
& & & c_{1} & b_{1} & a_{1} & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right)
$$

Again, we look for stochastic UL (or LU) factorizations of P of the form

A direct computation shows that

$$
\begin{aligned}
a_{n} & =x_{n} s_{n+1}, \quad n \in \mathbb{Z} \\
b_{n} & =x_{n} r_{n+1}+y_{n} s_{n}, \quad n \in \mathbb{Z} \\
c_{n} & =y_{n} r_{n}, \quad n \in \mathbb{Z}
\end{aligned}
$$

CONDITIONS FOR STOCHASTICITY

Now we will have to consider two continued fractions, the same H as before and a new one corresponding to the negative states

$$
H=1-\frac{a_{0}}{1-\frac{c_{1}}{1-\frac{a_{1}}{1-\frac{c_{2}}{1-\cdots}}}}, \quad H^{\prime}=\frac{c_{0}}{1-\frac{a_{-1}}{1-\frac{c_{-1}}{1-\frac{a_{-2}}{1-\cdots}}}} .
$$

We assume that both H, H^{\prime} are convergent and $0<H^{\prime} \leq H<1$.

Theorem.

- UL case: The stochastic UL factorization is possible if and only if the free parameter y_{0} satisfies the following condition

$$
H^{\prime} \leq y_{0} \leq H
$$

- LU case: The stochastic $L U$ factorization is possible if and only if the free parameter \tilde{r}_{0} satisfies the following condition

$$
H^{\prime} \leq \tilde{r}_{0} \leq H
$$

SPECTRAL ANALYSIS OF P

(Nikishin, 1986 or Masson-Repka, 1991). If we consider the eigenvalue equation $x q^{\alpha}(x)=P q^{\alpha}(x)$ where $q^{\alpha}(x)=$ $\left(\cdots, Q_{-1}^{\alpha}(x), Q_{0}^{\alpha}(x), Q_{1}^{\alpha}(x), \cdots\right)^{T}, \alpha=1,2$, then, for each x real or complex there exist two polynomial familie of linearly independent solutions $Q_{n}^{\alpha}(x), \alpha=1,2, n \in \mathbb{Z}$, given by

$$
\begin{aligned}
Q_{0}^{1}(x) & =1, \quad Q_{0}^{2}(x)=0 \\
Q_{-1}^{1}(x) & =0, \quad Q_{-1}^{2}(x)=1 \\
x Q_{n}^{\alpha}(x) & =a_{n} Q_{n+1}^{\alpha}(x)+b_{n} Q_{n}^{\alpha}(x)+c_{n} Q_{n-1}^{\alpha}(x), \quad n \in \mathbb{Z}, \quad \alpha=1,2 .
\end{aligned}
$$

P is self-adjoint in $\ell_{\pi}^{2}(\mathbb{Z})$ where $\left(\pi_{n}\right)_{n \in \mathbb{Z}}$ is given by

$$
\pi_{0}=1, \quad \pi_{n}=\frac{a_{0} a_{1} \cdots a_{n-1}}{c_{1} c_{2} \cdots c_{n}}, \quad \pi_{-n}=\frac{c_{0} c_{-1} \cdots c_{-n+1}}{a_{-1} a_{-2} \cdots a_{-n}}, \quad n \geq 1
$$

It is possible to see that $Q_{i}^{1}(P) e^{(0)}+Q_{i}^{2}(P) e^{(-1)}=e^{(i)}, i \in \mathbb{Z}$, where $e^{(i)}=\left(e_{j}^{(i)}\right)_{j \in \mathbb{Z}}$ is defined by $e_{j}^{(i)}=\delta_{i, j} / \pi_{i}$
Therefore we need to apply the Spectral Theorem 4 times and obtain 3 measures $\psi_{\alpha, \beta}, \alpha, \beta=1,2$ (sinc $\psi_{12}=\psi_{21}$ by the symmetry) such that

$$
\sum_{\alpha, \beta=1}^{2} \int_{-1}^{1} Q_{i}^{\alpha}(x) Q_{j}^{\beta}(x) d \psi_{\alpha \beta}(x)=\frac{\delta_{i, j}}{\pi_{j}}, \quad i, j \in \mathbb{Z}
$$

These 3 measures can be written in matrix form as the 2×2 matrix

$$
\Psi(x)=\left(\begin{array}{ll}
\psi_{11}(x) & \psi_{12}(x) \\
\psi_{12}(x) & \psi_{22}(x)
\end{array}\right)
$$

which it is called the spectral matrix associated with P.

RELATION WITH MATRIX-VALUED OPS

If we define the matrix-valued polynomials

$$
\boldsymbol{Q}_{n}(x)=\left(\begin{array}{cc}
Q_{n}^{1}(x) & Q_{n}^{2}(x) \\
Q_{-n-1}^{1}(x) & Q_{-n-1}^{2}(x)
\end{array}\right), \quad n \geq 0
$$

then we have

$$
\begin{aligned}
& x \boldsymbol{Q}_{0}(x)=A_{0} \boldsymbol{Q}_{1}(x)+B_{0} \boldsymbol{Q}_{0}(x), \quad \boldsymbol{Q}_{0}(x)=I_{2 \times 2} \\
& x \boldsymbol{Q}_{n}(x)=A_{n} \boldsymbol{Q}_{n+1}(x)+B_{n} \boldsymbol{Q}_{n}(x)+C_{n} \boldsymbol{Q}_{n-1}(x), \quad n \geq 1
\end{aligned}
$$

where $I_{2 \times 2}$ denotes the 2×2 identity matrix and

$$
\begin{aligned}
& B_{0}=\left(\begin{array}{cc}
b_{0} & c_{0} \\
a_{-1} & b_{-1}
\end{array}\right), \quad B_{n}=\left(\begin{array}{cc}
b_{n} & 0 \\
0 & b_{-n-1}
\end{array}\right), \quad n \geq 1 \\
& A_{n}=\left(\begin{array}{cc}
a_{n} & 0 \\
0 & c_{-n-1}
\end{array}\right), \quad n \geq 0, \quad C_{n}=\left(\begin{array}{cc}
c_{n} & 0 \\
0 & a_{-n-1}
\end{array}\right), \quad n \geq 1
\end{aligned}
$$

The matrix orthogonality is defined in terms of the (matrix-valued) inner product

$$
\int_{-1}^{1} \boldsymbol{Q}_{n}(x) \Psi(x) \boldsymbol{Q}_{m}^{T}(x) d x=\left(\begin{array}{cc}
1 / \pi_{n} & 0 \\
0 & 1 / \pi_{-n-1}
\end{array}\right) \delta_{n m}
$$

The matrix P "folds" into a semi-infinite 2×2 block tridiagonal matrix \boldsymbol{P}.

UL DARBOUX TRANSFORMATION

Theorem.

UL case: Let $\Psi(x)$ the spectral matrix associated with $P=P_{U} P_{L}$ and consider the Darboux transformation $\widetilde{P}=P_{L} P_{U}$. Assume that $M_{-1}=\int_{-1}^{1} \Psi(x) x^{-1} d x$ is well-defined. Then the spectral matrix associated with \widetilde{P} is given by

$$
\widetilde{\Psi}(x)=\boldsymbol{S}_{0}(x) \Psi_{S}(x) \boldsymbol{S}_{0}^{*}(x)
$$

where $\boldsymbol{S}_{0}(x)$ is defined by

$$
\boldsymbol{S}_{0}(x)=\left(\begin{array}{cc}
s_{0} & r_{0} \\
-\frac{x_{-1} s_{0}}{y_{-1}} & \frac{x-x_{-1} r_{0}}{y_{-1}}
\end{array}\right)
$$

and

$$
\Psi_{S}(x)=\frac{y_{0}}{s_{0}} \frac{\Psi(x)}{x}+\left[\left(\begin{array}{cc}
1 / s_{0} & 0 \\
0 & 1 / r_{0}
\end{array}\right)-\frac{y_{0}}{s_{0}} M_{-1}\right] \delta_{0}(x)
$$

LU DARBOUX TRANSFORMATION

Theorem.

$\boldsymbol{L} \boldsymbol{U}$ case: Let $\Psi(x)$ the spectral matrix associated with $P=\widetilde{P}_{L} \widetilde{P}_{U}$ and consider the Darboux transformation $\widehat{P}=\widetilde{P}_{U} \widetilde{P}_{L}$. Assume that $M_{-1}=\int_{-1}^{1} \Psi(x) x^{-1} d x$ is well-defined. Then the spectral matrix associated with \widehat{P} is given by

$$
\widehat{\Psi}(x)=\boldsymbol{T}_{0}(x) \Psi_{T}(x) \boldsymbol{T}_{0}^{*}(x)
$$

where $\boldsymbol{T}_{0}(x)$ is defined by

$$
\boldsymbol{T}_{0}(x)=\left(\begin{array}{cc}
\frac{x-\tilde{r}_{0} \tilde{x}_{-1}}{\tilde{s}_{0}} & -\frac{\tilde{r}_{0} \tilde{y}_{-1}}{\tilde{x}_{0}} \\
\tilde{x}_{-1} & \tilde{y}_{-1}
\end{array}\right)
$$

and

$$
\Psi_{T}(x)=\frac{\tilde{s}_{0}}{\tilde{y}_{0}} \frac{\Psi(x)}{x}+\left[\frac{\hat{a}_{-1}}{\hat{c}_{0}}\left(\begin{array}{cc}
1 / \tilde{x}_{-1} & 0 \\
0 & 1 / \tilde{y}_{-1}
\end{array}\right)-\frac{\tilde{s}_{0}}{\tilde{y}_{0}} M_{-1}\right] \delta_{0}(x)
$$

AN EXAMPLE: RANDOM WALK ON Z

We have that the transition probabilities are constant. Then, if $a \leq(1-\sqrt{c})^{2}$, we have

$$
H=\frac{1}{2}\left(1+c-a+\sqrt{(1+c-a)^{2}-4 c}\right), \quad H^{\prime}=\frac{1}{2}\left(1+c-a-\sqrt{(1+c-a)^{2}-4 c}\right)
$$

Therefore for every parameter y_{0} such that $H^{\prime} \leq y_{0} \leq H$ we have a stochastic UL factorization. The spectral matrix associated with P is given by

$$
\Psi(x)=\frac{1}{\pi \sqrt{\left(x-\sigma_{-}\right)\left(\sigma_{+}-x\right)}}\left(\begin{array}{cc}
1 & \frac{x-b}{2 c} \\
\frac{x-b}{2 c} & a / c
\end{array}\right), \quad x \in\left[\sigma_{-}, \sigma_{+}\right], \quad \sigma_{ \pm}=1-(\sqrt{a} \mp \sqrt{c})^{2} .
$$

A straightforward computation gives that the spectral matrix for the Darboux transformation is given by

$$
\widetilde{\Psi}(x)=\frac{1}{\pi x \sqrt{\left(x-\sigma_{-}\right)\left(\sigma_{+}-x\right)}}\left[\widetilde{A}+\widetilde{B} x+\widetilde{C} x^{2}\right]+\widetilde{\boldsymbol{M}} \delta_{0}(x),
$$

where

$$
\begin{aligned}
& \widetilde{A}=\frac{\left(H^{\prime}-y_{0}\right)\left(H-y_{0}\right)}{s_{0} y_{0}}\left(\begin{array}{cc}
1 & -x_{-1} / y_{-1} \\
-x_{-1} / y_{-1} & \left(x_{-1} / y_{-1}\right)^{2}
\end{array}\right), \\
& \widetilde{B}=\left(\begin{array}{cc}
1 & -\frac{b y_{0}}{2 c y_{-1}} \\
-\frac{b y_{0}}{2 c y_{-1}} & \frac{\left(y_{0} b-c(1-c)\right) x_{-1}^{2}}{a c y_{-1}^{2}}
\end{array}\right), \quad \widetilde{C}=\frac{y_{0}}{2 c y_{-1}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
& \widetilde{\boldsymbol{M}}=\frac{\left(y_{0}-H^{\prime}\right)\left(H-y_{0}\right)}{s_{0} y_{0} \sqrt{\sigma_{-} \sigma_{+}}}\left(\begin{array}{cc}
1 & -x_{-1} / y_{-1} \\
-x_{-1} / y_{-1} & \left(x_{-1} / y_{-1}\right)^{2}
\end{array}\right) .
\end{aligned}
$$

REFLECTING-ABSORBING FACTORIZATION

Now, instead of considering a UL or LU factorization (where the upper bidiagonal matrix represents a pure-birth chain and the lower bidiagonal matrix represents a pure-death chain) we consider a different factorization, given by a reflecting birth-death chain from the state 0 and an absorbing birth-death chain to the state 0 .

Then, consider $P=P_{R} P_{A}$ where

REFLECTING-ABSORBING FACTORIZATION

Remarks.

1. If the state space is $\mathcal{S}=\mathbb{N}_{0}$ then the reflecting-absorbing factorization is just an UL stochastic factorization.
2. We need to introduce a new parameter α to connect the reflecting birth-death chain from the state 0 to the state -1 .
3. $P=P_{R} P_{A}$ does not preserve the UL or LU structure, but, after the "folding trick", if we write $\boldsymbol{P}=\boldsymbol{P}_{R} \boldsymbol{P}_{A}$, then we have

$$
\boldsymbol{P}_{R}=\left(\begin{array}{cc|cc|cc|c}
y_{0} & \alpha & x_{0} & 0 & & & \\
0 & y_{-1} & 0 & x_{-1} & & & \\
\hline & & y_{1} & 0 & x_{1} & 0 \\
0 & y_{-2} & 0 & x_{-2} & \\
& & & \ddots & \ddots
\end{array}\right), \quad \boldsymbol{P}_{A}=\left(\begin{array}{cc|cc}
1 & 0 & & \\
& & &
\end{array}\right.
$$

which preserves the block UL structure.

Theorem. We have now TWO free parameters α and x_{0}. Assuming that the previous continued fractions H, H^{\prime} are convergent and $H+H^{\prime} \leq 1$, then the reflecting-absorbing factorization is possible if and only if

$$
\alpha \geq H^{\prime}, \quad \text { and } \quad x_{0} \geq H
$$

DARBOUX TRANSFORMATION

The Darboux transformation $\widetilde{P}=P_{A} P_{R}$ is not a birth-death chain since now we have extra transitions between states -1 and 1 , given by

$$
\tilde{d}_{1}=\mathbb{P}\left(\widetilde{X}_{1}=-1 \mid \widetilde{X}_{0}=1\right)=r_{1} \alpha, \quad \tilde{d}_{-1}=\mathbb{P}\left(\widetilde{X}_{1}=1 \mid \widetilde{X}_{0}=-1\right)=r_{-1} x_{0} .
$$

The diagram of \widetilde{P} is given by

DARBOUX TRANSFORMATION

Using the UL block factorization of $\widetilde{\boldsymbol{P}}$ after the "folding", we can compute the spectral matrix associated with \widetilde{P}.

Theorem. Let $\Psi(x)$ the spectral matrix associated with $P=P_{R} P_{A}$ and consider the Darboux transformation $\widehat{P}=P_{A} P_{R}$. Assume that $M_{-1}=\int_{-1}^{1} \Psi(x) x^{-1} d x$ is well-defined. Then the spectral matrix associated with \widehat{P} is given by

$$
\widetilde{\Psi}(x)=S_{0} \Psi_{U}(x) S_{0}^{T}
$$

where the constant matrix S_{0} is defined by

$$
S_{0}=\left(\begin{array}{cc}
1 & 0 \\
r_{-1} & s_{-1}
\end{array}\right)
$$

and

$$
\Psi_{U}(x)=\frac{\Psi(x)}{x}+\left[\frac{1}{y_{0}}\left(\begin{array}{cc}
1 & -r_{-1} / s_{-1} \\
-r_{-1} / s_{-1} & \left(r_{-1} / s_{-1}\right)^{2}+y_{0} r_{-1} / \alpha s_{-1}^{2}
\end{array}\right)-M_{-1}\right] \delta_{0}(x)
$$

Similar considerations can be obtained if we consider absorbing-reflecting factorizations, but now we have to start with an "almost" birth-death chain with extra transitions between states -1 and 1.

AN EXAMPLE: RANDOM WALK ON Z

Again, if $\quad a \leq(1-\sqrt{c})^{2}$ then we have

$$
H=\frac{1}{2}\left(1+c-a+\sqrt{(1+c-a)^{2}-4 c}\right), \quad H^{\prime}=\frac{1}{2}\left(1+c-a-\sqrt{(1+c-a)^{2}-4 c}\right)
$$

and the reflecting-absorbing factorization will be possible if and only if $\alpha \geq H^{\prime}$ and $x_{0} \geq H$.
Recall that the spectral matrix associated with P is given by

$$
\Psi(x)=\frac{1}{\pi \sqrt{\left(x-\sigma_{-}\right)\left(\sigma_{+}-x\right)}}\left(\begin{array}{cc}
1 & \frac{x-b}{2 c} \\
\frac{x-b}{2 c} & a / c
\end{array}\right), \quad x \in\left[\sigma_{-}, \sigma_{+}\right], \quad \sigma_{ \pm}=1-(\sqrt{a} \mp \sqrt{c})^{2}
$$

A straightforward computation gives that the spectral matrix for the Darboux transformation \widetilde{P} (with transitions between the states -1 and 1) is given by

$$
\widetilde{\Psi}(x)=\frac{1}{\pi x \sqrt{\left(x-\sigma_{-}\right)\left(\sigma_{+}-x\right)}}[\widetilde{A}+\widetilde{B} x]+\widetilde{M}_{-1} \delta_{0}
$$

where

$$
\begin{gathered}
\widetilde{A}=\left(\begin{array}{cc}
1 & \frac{2 \alpha+H-H^{\prime}-1}{2 \alpha} \\
\frac{2 \alpha+H-H^{\prime}-1}{2 \alpha} & \frac{\left(\alpha-H^{\prime}\right)(H+\alpha-1)}{\alpha^{2}}
\end{array}\right), \quad \widetilde{B}=\frac{1}{2 \alpha}\left(\begin{array}{cc}
0 & 1 \\
1 & \frac{2(\alpha-c)}{\alpha}
\end{array}\right) \\
\widetilde{M}_{-1}=\left(\begin{array}{cc}
\frac{x_{0}-H+\alpha-H^{\prime}}{y_{0}\left(1-H-H^{\prime}\right)} & \frac{H^{\prime}-\alpha}{\alpha\left(1-H-H^{\prime}\right)} \\
\frac{H^{\prime}-\alpha}{\alpha\left(1-H-H^{\prime}\right)} & -\frac{\left(\alpha-H^{\prime}\right)(1-H-\alpha)}{\alpha^{2}\left(1-H-H^{\prime}\right)}
\end{array}\right)
\end{gathered}
$$

Elvieio Plemacén

