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1-D MARKOV PROCESSES

Let (Q2, F,Pr) a probability space, a (1-D) Markov process with
state space § C R is a collection of S-valued random variables
{X:t : t € T} indexed by a parameter set 7 (time) such that

Pr(Xeo1n < y|Xep = x,X:,0 <7 < tg) = Pr(Xegyt, < y[Xg = X)

for all tg, t1 > 0. This is what is called the Markov property.
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1-D MARKOV PROCESSES

Let (Q2, F,Pr) a probability space, a (1-D) Markov process with
state space § C R is a collection of S-valued random variables
{X:t : t € T} indexed by a parameter set 7 (time) such that

Pr(Xeo1n < y|Xep = x,X:,0 <7 < tg) = Pr(Xegyt, < y[Xg = X)

for all tg, t1 > 0. This is what is called the Markov property.
The main goal is to find a description of the transition probabilities

P(t;Xv.y)EPr(Xt:yp(O:X)a XayES J

if S is discrete or the transition density

0
ptix.y) = P < yXo=x), xy €S J

if S is continuous.
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1-D MARKOV PROCESSES

On the set B(S) of all real-valued, bounded, Borel measurable
functions define the transition operator

(T:f)(x) = E[f(Xt)|Xo=x], t>0

The family {T;, t > 0} has the semigroup property Tsi+ = TsT:
The infinitesimal operator A of the family {T;,t > 0} is

_ i (TsF)(X) = ()
(AF)(x) = lim <

and A determines all {T;,t > 0}.
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1-D MARKOV PROCESSES

On the set B(S) of all real-valued, bounded, Borel measurable
functions define the transition operator

(T:f)(x) = E[f(Xt)|Xo=x], t>0

The family {T;, t > 0} has the semigroup property Tsi+ = TsT:
The infinitesimal operator A of the family {T;,t > 0} is

() — ()
(AF)(x) = lim k

and A determines all {T;,t > 0}.
There are 3 important cases related to orthogonal polynomials

@ Random walks: § ={0,1,2,...}, 7 ={0,1,2,...}.
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1-D MARKOV PROCESSES

On the set B(S) of all real-valued, bounded, Borel measurable
functions define the transition operator

(T:f)(x) = E[f(Xt)|Xo=x], t>0

The family {T;, t > 0} has the semigroup property Tsi+ = TsT:
The infinitesimal operator A of the family {T;,t > 0} is

_ i (TsF)(X) = ()
(AF)(x) = lim <

and A determines all {T;,t > 0}.

There are 3 important cases related to orthogonal polynomials
@ Random walks: § ={0,1,2,...}, 7 ={0,1,2,...}.
© Birth and death processes: § ={0,1,2,...}, 7 = [0, c0).
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1-D MARKOV PROCESSES

On the set B(S) of all real-valued, bounded, Borel measurable
functions define the transition operator

(T:f)(x) = E[f(Xt)|Xo=x], t>0

The family {T;, t > 0} has the semigroup property Tsi+ = TsT:
The infinitesimal operator A of the family {T;,t > 0} is

() — ()
(AF)(x) = lim k

and A determines all {T;,t > 0}.
There are 3 important cases related to orthogonal polynomials

@ Random walks: § ={0,1,2,...}, 7 ={0,1,2,...}.
© Birth and death processes: § ={0,1,2,...}, 7 = [0, c0).
@ Diffusion processes: S = (a,b) C R, 7 = [0, 00).
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RANDOM WALKS
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We have § ={0,1,2,...}, 7 ={0,1,2,...} and
Pr(Xpt1=j|Xn=1)=0 for |i—j|>1

i.e. a tridiagonal transition probability matrix (stochastic)

bo ao
a b oa
P = G b2 ar ) bi > 07 aj, ¢ > 07 3,‘+b,’+Ci =1

= AF(i) = aif (i + 1) + bif (i) + c:f (i — 1), f € B(S)
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BIRTH AND DEATH PROCESSES

We have § = {0,1,2,...}, 7 = [0,00) and
Pjj(t) = Pr(Xe+s = j|Xs = i) independent of s with the properties
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BIRTH AND DEATH PROCESSES

We have S ={0,1,2,...}, 7 =[0,00) and

Pii(t) = Pr(X¢+s = j|Xs = i) independent of s with the properties
® Pjiy1(h) =AXih+o(h),as h| 0,\; >0,i € S;
@ Pjj_1(h) =pijh+o(h)ash | 0,u >0,i €S;
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BIRTH AND DEATH PROCESSES

We have § = {0,1,2,...}, 7 = [0,00) and
Pii(t) = Pr(X¢+s = j|Xs = i) independent of s with the properties
® Pjiy1(h) =AXih+o(h),as h| 0,\; >0,i € S;
@ Pii_1(h)=pih+o(h)ash | 0,u >0,i€S,
@ Pii(h)y=1—(\i+pi)h+o(h)ash|0,ieS;
@ P;j(h) =o(h) for |i —j| > 1.
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BIRTH AND DEATH PROCESSES

We have S ={0,1,2,...}, 7 =[0,00) and
Pjj(t) = Pr(Xe+s = j|Xs = i) independent of s with the properties
® Pjiy1(h) =AXih+o(h),as h| 0,\; >0,i € S;
@ Pjj_1(h) =pijh+o(h)ash | 0,u >0,i €S;
@ Pii(h)y=1—(\i+pi)h+o(h)ash|0,ieS;
@ P;j(h) =o(h) for |i —j| > 1.
P(t) satisfies the backward and forward equation P’(t) = AP(t)
and P'(t) = P(t).A with initial condition P(0) = | where A is the
tridiagonal infinitesimal operator matrix

—Xo Ao
pr o —(Ar 4 ) A1
A= H2 —(A2+p2) A o A i >0

= Af(i) = Nif (i + 1) — (\i + pi) bif (i) + pif (i = 1), f € B(S)
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Ao AL Ay A3 W s
H1 H2 M3 Ha Hs He
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Ao A1 Ao A3 Aq A5
-~ -~ -~ -~ -~ -~
H1 H2 M3 Ha Hs He

do _. ,—. .................................................
' T

to t1 o t3
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We have S

) )
Suppose that as t | 0

(a,b),—0<a<b<oo T

= [0, 00).

9*p(t; x,y)
50°(x)

Ox?
and the forward or evolution differential equation
—plt; x
7"

u(x) is the drift coefficient and o?(x) > 0 the diffusion coefficient.
1 2 d? d
A= 5020055 + (0=
The transition density satisfies the backward differential equation
0 1
t
HPtix.y) =

ﬂ@wg;m
y) = 202[()waﬂ—g%()ﬁxml
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DIFFUSION PROCESSES

We have S = (a,b),—c0c < a< b< o0, 7 = [0,0).
Suppose that as t | 0

0 E[Xsit — Xs|Xs = x] = t7(x) + o(t);
@ E[(Xsyr — Xs)?|Xs = x] = to?(x) + o(t);
@ E[|Xssr — Xs|31Xs = x] = oft).
u(x) is the drift coefficient and o?(x) > 0 the diffusion coefficient.
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DIFFUSION PROCESSES

We have S = (a,b),—c0c < a< b< o0, 7 = [0,0).
Suppose that as t | 0

0 E[Xsit — Xs|Xs = x] = t7(x) + o(t);
@ E[(Xsyr — Xs)?|Xs = x] = to?(x) + o(t);
@ E[|Xssr — Xs|31Xs = x] = oft).
p(x) is the drift coefficient and o2(x) > 0 the diffusion coefficient.

INFINITESIMAL GENERATOR
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DIFFUSION PROCESSES

We have S = (a,b),—c0c < a< b< o0, 7 = [0,0).
Suppose that as t | 0

0 E[Xsit — Xs|Xs = x] = t7(x) + o(t);
o E[(Xere — X )21X = x] = t02(x) + (1)
@ E[|Xssr — Xs|31Xs = x] = oft).
u(x) is the drift coefficient and o?(x) > 0 the diffusion coefficient.

INFINITESIMAL GENERATOR

The transition density satisfies the backward differential equation

2 &p(t; x,y) op(t; x,y)
pePlixy) = 30— )
and the forward or evolution differential equation

L(t5.) = 3 1ot )]~ 2l el x )]
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Ornstein-Uhlenbeck diffusion process with S = R
and o2(x) = 1, 7(x) = —x.

Ornstein—-Uhlenbeck process
1 T T T

0.8 4

0.6 4

0.5 1 15 2 25 3 35 4 4.5 5
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SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure w(x)
associated with A, and a set of orthogonal eigenfunctions f(i, x)
such that

Af(i,x) = X, x)f (i, x),

then it is possible to find spectral representations of
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SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure w(x)
associated with A, and a set of orthogonal eigenfunctions f(i, x)
such that

Af(i,x) = X, x)f (i, x),
then it is possible to find spectral representations of

@ Transition probabilities Pj(t) (discrete case)
or densities p(t; x,y) (continuous case).
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SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure w(x)
associated with A, and a set of orthogonal eigenfunctions f(i, x)

such that
Af(i,x) = X, x)f (i, x),

then it is possible to find spectral representations of

@ Transition probabilities Pj(t) (discrete case)
or densities p(t; x,y) (continuous case).

@ Invariant measure or distribution 7 = (7;) (discrete case) with
mj = lim_Py(t)

or ¥(y) (continuous case) with

b(y) = Jim p(t;x,y)-
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TRANSITION PROBABILITIES
©® Random walks: S=7 ={0,1,2,...}
f(i,x) =qi(x), Ali,x)=x, €S, xe[-11]

. _-_n_# 1Xn'X'X wlx
Pr(Xn:J|X0_’)_Pi'_||qi||2/_1 ql( )qJ( )d() }
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TRANSITION PROBABILITIES

©® Random walks: S=7 ={0,1,2,...}
f(i,x) =qi(x), Ali,x)=x, €S, xe[-11]
1 1

P, = X0 = 1) = Pf = Tz | X"ai(x)qi()du()

© Birth and death processes: S ={0,1,2,...}, 7 = [0, 00)
f(i,x)=qi(x), Ai,x)=-x, €S8, xel0,00].

Pr(X, =11% = 1) = Pyt) = Tz [~ e ai()ay (el |
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TRANSITION PROBABILITIES

©® Random walks: S=7 ={0,1,2,...}
f(i,x) =qi(x), Ali,x)=x, €S, xe[-11]
1

1
PriX, =il = 1) = Pj = 1oz | x"ai()ai(x)du() J

© Birth and death processes: S ={0,1,2,...}, 7 = [0, 00)
f(i,x)=qi(x), Ai,x)=-x, €S8, xel0,00].

Pr(Xe =% = 1) = Py(t) = Ty [ e ail)a(x)d(x) |

qil1>

@ Diffusion processes: S = (a,b) CR, 7 = [0,00)
f(i,x) = ¢i(x), A, x):a,-, i€{0,1,2,...}, xe€S.

p(tix,y) = Ze%n(x Yén(y)w(y) J

n=0




INVARIANT MEASURE

@ Random walks: a non-null vector w = (7o, 71,...) >0

apdl - - adji—1 _ 1
ac--¢  |lqill?

nP=m ==

- L = = ae
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INVARIANT MEASURE

@ Random walks: a non-null vector 7 = (mg, 71,...) >0

mP=m =m= =

apdy * - dj—1 1
ac---¢ gl

@ Birth-death: a non-null vector = = (mg, 71,...) >0

TmTA=0 =7

. AOAL - A1 . 1
pape i lgill?
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INVARIANT MEASURE

@ Random walks: a non-null vector 7 = (mg, 71,...) >0

anat - aj_ 1
TP=mn =m= 071 =t J

ac-c gl

@ Birth-death: a non-null vector = = (mg, 71,...) >0

7TA=0 = T = = 5
papz-pi (gl

AOAL - A1 1 J

© Diffusion processes: 1(y) such that

A*p(y) =0 & §W[02(y)¢(y)1 — —[T(y)¢(y)]

= Y(y W)

fsw(
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(X¢, Yt) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(X¢, Yt) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (i,)) gives

P’J(trX’A) = Pr{Xt € A’ Yt :J|X0 =X, YO = I}
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(X¢, Yt) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (i,)) gives

P’J(trX’A) = Pr{Xt € A’ Yt :J|X0 =X, YO = I}

Every entry must be nonnegative and

P(t;x,A)eN < ey, eN:(l,l,...,l)T



Markov processes Bivariate Markov processes
00000000000 ©000000000000

2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(X¢, Yt) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (i,)) gives

P,'J'(t;X,A) = Pr{Xt €A Y;: :_j|Xo =x,Yy = i}.
Every entry must be nonnegative and
P(t;x,A)eN < ey, eN:(l,l,...,l)T

The infinitesimal operator A is now matrix-valued.



Markov processes Bivariate Markov processes
00000000000 ©000000000000

2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(X¢, Yt) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (i,)) gives

P,'J'(t;X,A) = Pr{Xt €A Y;: :_j|Xo =x,Yy = i}.
Every entry must be nonnegative and
P(t;x,A)eN < ey, eN:(l,l,...,l)T
The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).



Markov processes Bivariate Markov processes
00000000000 0®00000000000

DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES
Now we have C = {0,1,2,...} x {1,2,...,N}, T ={0,1,2,...} and
(Pir )y = Pr(Xosr = i, Yos1 = j|Xo = i/, Yo =) =0 for |i—i'|>1

i.e. a N x N block tridiagonal transition probability matrix

By Ao
G B A
P= G B A

(An)ija (Bn)fja (Cn)lj >0, det(An)vdet(Cn) 7& 0

S A+ (Ba)i+(Cj=1,i=1,...,N
j
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SWITCHING DIFFUSION PROCESSES

We have C = (a,b) x {1,2,...,N}, T = [0,00). The transition
probability density is now a matrix which entry (7, ) gives

Pij(t;x,A) =Pr(Xe € A, Yy = j|Xo = x, Yo = i)

forany t > 0, x € (a,b) and A any Borel set.
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SWITCHING DIFFUSION PROCESSES
We have C = (a,b) x {1,2,...,N}, T = [0,00). The transition
probability density is now a matrix which entry (7, ) gives
P,'j(t;X, A) = Pr(Xt eAY;: :j|X0 =x,Yy = i)

forany t > 0, x € (a,b) and A any Borel set.
The infinitesimal operator A is now a matrix-valued differential
operator (Berman, 1994)

1 d? d? d®
A= 3ANga T BMG + A0 J
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SWITCHING DIFFUSION PROCESSES
We have C = (a,b) x {1,2,...,N}, T = [0,00). The transition
probability density is now a matrix which entry (7, ) gives
P,'j(t;X, A) = Pr(Xt eAY;: :j|X0 =x,Yy = i)

forany t > 0, x € (a,b) and A any Borel set.
The infinitesimal operator A is now a matrix-valued differential
operator (Berman, 1994)

1 d? d? d®
A= 3ANga T BMG + A0 J

We have that A(x) and B(x) are diagonal matrices and Q(x) is
the infinitesimal operator of a continuous time Markov chain, i.e.

Qii(X) S 0, QIJ(X) Z Oa’ #Ja Q(X)EN = 0
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AN ILLUSTRATIVE EXAMPLE

N = 3 phases and § = R with
Ai(x)=i% Bji(x)=—ix, i=1,23.

Bivariate Ornstein-Uhlenbeck process
T T T T
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AN ILLUSTRATIVE EXAMPLE

N = 3 phases and § = R with
Ai(x)=i% Bji(x)=—ix, i=1,23.

Bivariate Ornstein-Uhlenbeck process
T T T T
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AN ILLUSTRATIVE EXAMPLE

N = 3 phases and § = R with
Ai(x)=i% Bji(x)=—ix, i=1,23.

Bivariate Ornstein-Uhlenbeck process
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AN ILLUSTRATIVE EXAMPLE

N = 3 phases and § = R with
Ai(x)=i% Bji(x)=—ix, i=1,23.

Bivariate Ornstein-Uhlenbeck process

4*

N
T

o

-6

-8k
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SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator A, if we can find
a weight matrix W(x) associated with A, and a set of orthogonal
matrix eigenfunctions F(i, x) such that

AF(i,x) = A(i, x)F(i, x),

then it is possible to find spectral representations of
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Now, given a matrix-valued infinitesimal operator A, if we can find
a weight matrix W(x) associated with A, and a set of orthogonal
matrix eigenfunctions F(i, x) such that

AF(i,x) = A(i, x)F(i, x),

then it is possible to find spectral representations of

@ Transition probabilities P(t; x, y).
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SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator A, if we can find
a weight matrix W(x) associated with A, and a set of orthogonal
matrix eigenfunctions F(i, x) such that

AF(i,x) = A(i, x)F(i, x),

then it is possible to find spectral representations of
@ Transition probabilities P(t; x, y).
@ Invariant measure or distribution 7 = (7r;) (discrete case)

with
m = lim P,(t) € RN

or ¥(y) = (¥1(y),¥2(y),...,¥n(y)) (continuous case) with
bi(y) = Jim P(tx,y)
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TRANSITION PROBABILITIES

© Discrete time quasi-birth-and-death processes:
c={0,1,2,...} x{1,2,...,N}, T ={0,1,2,...}
(Griinbaum and Dette-Reuther-Studden-Zygmunt, 2007)

F(i,x)=®i(x), A(i,x)=xl, i€{0,1,2,...}, xe[-1,1].

pr _ < /_11 o @,.(X)dW(x)@}*(X)) < / 11 @,-(x)dW(x)@j(x)) -1
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TRANSITION PROBABILITIES

© Discrete time quasi-birth-and-death processes:
c={0,1,2,...} x{1,2,...,N}, T ={0,1,2,...}
(Griinbaum and Dette-Reuther-Studden-Zygmunt, 2007)

F(i,x)=®i(x), A(i,x)=xl, i€{0,1,2,...}, xe[-1,1].

pr _ < /_11 o @,.(X)dW(x)@}*(X)) < / 11 @,-(x)dW(x)@j(x)) -1

© Switching diffusion processes: C = (a, b) x {1,2,..., N},
T = [0,00) (Mdl, 2011)

F(i,x) = ®;(x), A(i,x)=T; i€{0,1,2,...}, xe(a,b).

P(tix,y) =Y ®,(x)e™" @5 (y)W(y)
n=0
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INVARIANT MEASURE

@ Discrete time quasi-birth-and-death processes (Mdl, 2011)

Non-null vector with non-negative components

7w = (mwo; 715+ ) = (Moen; Mien; - - +)

such that 7P = 7 where ey = (1,...,1)7 and

My = (CT - CT) " o(Ao -+ A1) = (/1 <I>,,(x)dW(X)‘I’:;(X)> -1

-1
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INVARIANT MEASURE

@ Discrete time quasi-birth-and-death processes (Mdl, 2011)

Non-null vector with non-negative components

7w = (mwo; 715+ ) = (Moen; Mien; - - +)

such that 7P = 7 where ey = (1,...,1)7 and

Mo = (67 C) " Mo(Ao -+ Apa) = (/

-1

@n(x)dw<x)¢:<x>)_

© Switching diffusion processes (Mdl, 2011):

PY(y) = (V1(y), Y2(y), - -, ¥n(y))

A() =05 32 [0)AY) - 5 [BIBO)] + $(1)Q() =0

-1

b
= (y) = ( / eLW(x)eNdx> el W(y)
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AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let Ne{1,2,...}, o, >—1,0< k < +1 and E; will denote the
matrix with 1 at entry (/,) and 0 otherwise.

For x € (0,1), we have a symmetric pair {W, A}
(Griinbaum-Pacharoni-Tirao, 2002) where

N . )
W(x) = x*(1 - X)BZ (ﬁ - ij_ll - 1) (N +/\l; B : B 1) xNE;

i=1

1 d? d d®
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AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let Ne{1,2,...}, o, >—1,0< k < +1 and E; will denote the
matrix with 1 at entry (/,) and 0 otherwise.

For x € (0,1), we have a symmetric pair {W, A}
(Griinbaum-Pacharoni-Tirao, 2002) where

N . )
W(x) = x*(1 - X)BZ (ﬁ - ij_ll - 1) (N +/\l; B : B 1) xNE;

i=1
d? d d°®

1

N
A(x) =2x(1=x)I, B(x)=> [a+1+N—i-x(a+B+2+N—/)E;

i=1
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AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let Ne{1,2,...}, o, >—1,0< k < +1 and E; will denote the
matrix with 1 at entry (/,) and 0 otherwise.

For x € (0,1), we have a symmetric pair {W, A}
(Griinbaum-Pacharoni-Tirao, 2002) where

N . )
W(x) = x*(1 - X)BZ (ﬁ - ij_ll - 1) (N +/\l; B : B 1) xNE;

i=1

1 d? d d®
N

A(x) =2x(1=x)I, B(x)=> [a+1+N—i-x(a+B+2+N—/)E;
i=1
N N N—1

Q(x) = > pil)Eii1— > (Ni(x) + mi(x))Ei + > Ni(x)Ei i,

i=2 i=1 i=1

N(x) = === (N = )(i + B~ k), pi(x) = —— (i = )(N — i + k).

1—x 1—x
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@ The orthogonal eigenfunctions ®;(x) of A are called
matrix-valued spherical functions associated with the complex

projective space. There are many structural formulas available
studied in the last years

(Griinbaum-Pacharoni-Tirao-Roman-Mdl).
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@ The orthogonal eigenfunctions ®;(x) of A are called
matrix-valued spherical functions associated with the complex
projective space. There are many structural formulas available
studied in the last years
(Griinbaum-Pacharoni-Tirao-Roman-Mdl).

@ Bispectrality: ®;(x) satisfy a three-term recurrence relation
X‘I),'(X) = A,-<I>,-+1(x) + B,"I’,‘(X) + C,"I),'_l(X), i=0,1,...

whose Jacobi matrix describes a discrete-time
quasi-birth-and-death process (Griinbaum-Mdl, 2008).

It was recently connected with urn and Young diagram models
(Griinbaum-Pacharoni-Tirao, 2011).
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@ The orthogonal eigenfunctions ®;(x) of A are called
matrix-valued spherical functions associated with the complex
projective space. There are many structural formulas available
studied in the last years
(Griinbaum-Pacharoni-Tirao-Roman-Mdl).

@ Bispectrality: ®;(x) satisfy a three-term recurrence relation
X‘I),'(X) = A,-<I>,-+1(x) + B,"I’,‘(X) + C,"I),'_l(X), i=0,1,...

whose Jacobi matrix describes a discrete-time
quasi-birth-and-death process (Griinbaum-Mdl, 2008).

It was recently connected with urn and Young diagram models
(Griinbaum-Pacharoni-Tirao, 2011).

@ The infinitesimal operator A describes a nontrivial switching
diffusion process from which we can give a description of the
matrix-valued probability density P(t;x,y) and invariant
distribution 1)(y) in terms of the eigenfunctions ®;(x) ,
among other properties (Mdl, 2011).
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A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects
considers a big population of constant size M composed of two
types A and B.

1+8 l+a

A—25B, B-2 A af>-1
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A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects
considers a big population of constant size M composed of two
types A and B.

1+8 l+a

A—25B, B-2 A af>-1

As M — oo, this model can be described by a diffusion process
whose state space is S = [0, 1] with drift and diffusion coefficient

r(x)=a+1-x(a+p+2), o?(x)=2x(1-x), a,B>-1



Markov processes Bivariate Markov processes
00000000000 0000000000800

A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects
considers a big population of constant size M composed of two
types A and B.

1+8 l+a

A—25B, B-2 A af>-1

As M — oo, this model can be described by a diffusion process
whose state space is S = [0, 1] with drift and diffusion coefficient

r(x)=a+1-x(a+p+2), o?(x)=2x(1-x), a,B>-1

The N phases of our bivariate Markov process are variations of the
Wright-Fisher model in the drift coefficients:

Bi(x)=a+1+N—i—x(a+8+24+N—1i), Aj(x)=2x(1-x)

Now there is an extra parameter k € (0,3 + 1) in Q(x), which
measures how the process moves through all the phases.
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The parameters « and 3 generally describe if the boundaries 0 and
1 are either absorbing or reflecting.
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A VARIANT OF THE WRIGHT-FISHER MODEL

The parameters « and 3 generally describe if the boundaries 0 and
1 are either absorbing or reflecting.

The matrix Q(x) controls the waiting times at each phase and the
tendency of moving forward or backward in phases. These also
depend on the position x of the particle.
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A VARIANT OF THE WRIGHT-FISHER MODEL

The parameters « and 3 generally describe if the boundaries 0 and
1 are either absorbing or reflecting.

The matrix Q(x) controls the waiting times at each phase and the
tendency of moving forward or backward in phases. These also
depend on the position x of the particle.

MEANING OF k (MbI, 2011)

o If k < [+ 1= phase 1 is absorbing = Backward tendency
Meaning: The parameter k helps the population of A's to
survive against the population of B's.
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MEANING OF k (MbI, 2011)

o If k < [+ 1= phase 1 is absorbing = Backward tendency
Meaning: The parameter k helps the population of A's to
survive against the population of B's.

@ If k 2 0 = phase N is absorbing = Forward tendency

Meaning: Both populations A and B 'fight' in the same
conditions.




Markov processes Bivariate Markov processes
00000000000 000000000000

A VARIANT OF THE WRIGHT-FISHER MODEL

The parameters « and 3 generally describe if the boundaries 0 and
1 are either absorbing or reflecting.

The matrix Q(x) controls the waiting times at each phase and the
tendency of moving forward or backward in phases. These also
depend on the position x of the particle.

MEANING OF k (MbI, 2011)

o If k < [+ 1= phase 1 is absorbing = Backward tendency
Meaning: The parameter k helps the population of A's to
survive against the population of B's.

@ If k 2 0 = phase N is absorbing = Forward tendency
Meaning: Both populations A and B 'fight' in the same
conditions.

@ Middle values of k: Forward/backward tendency.

More information: arXiv:1107.3733.
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Feliz cumpleanos, Paco!
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