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MAIN MOTIVATION
Let {Xn : n = 0, 1, . . .} be an irreducible random walk with space state Z�0 and P its

one-step transition probability matrix given by

P =
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A diagram of the possible transitions are given by
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MAIN GOAL: find simple ways to describe certain random walks in terms of urn models,
where the coe�cients an, bn, cn are complicated rational functions.

HOW?: we will try to describe the urn model as the composition of two easier urn models
factorizing the matrix P .

A diagram of the possible transitions are given by

· · ·
a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5
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OUTLINE

1. Stochastic LU and UL factorizations

2. Stochastic Darboux transformations

3. An urn model for the Jacobi polynomials



1. Stochastic LU and UL factorizations



UL FACTORIZATION
Let {Xn : n = 0, 1, . . .} be an irreducible random walk with space state Z�0 and P its

one-step transition probability matrix. We would like to perform a UL decomposition of

the matrix P in the following way

P =
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. . .
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1

CCCA
= PUPL

with the condition that PU and PL are also stochastic matrices.
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The only relevant equations in these relations are going to be the first and third ones, i.e.

an = (1� yn)sn+1, cn+1 = yn+1(1� sn+1), n � 0
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will focus on the UL factorization case.
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in which case we have a LU factorization with relations

an = s̃nx̃n, n � 0

bn = r̃nx̃n�1 + s̃nỹn, n � 0

cn = r̃nỹn�1, n � 1

The important di↵erence between both cases is that in the UL factorization

case there will be a free parameter y0 while in the LU factorization case the

decomposition will be unique. The computation in both cases is similar so we

will focus on the UL factorization case.

UL and LU decompositions of stochastic matrices have been considered earlier
in the literature (W.K. Grassmann, D.P. Heyman, V. Vigon, etc.) in a di↵erent
context related with censored Markov chains and Wiener-Hopf factorizations.
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PROBABILISTIC INTERPRETATION
From the factorization P = PUPL, we observe that PU is a pure birth random walk on

Z�0 with diagram

· · ·
x0 x1 x2 x3 x4 x5y0

y1 y2 y3 y4 y5
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while PL is a pure death random walk on Z�0 with absorbing state at 0 with diagram

· · ·
r1 r2 r3 r4 r5 r6

1

s1 s2 s3 s4 s5

0 1 2 3 4 5

The random walk for P will be the combination of performing first the pure birth random

walk and immediately after the pure death random walk.



STOCHASTIC FACTORS (UL)
From the relations

an = (1� yn)sn+1, cn+1 = yn+1(1� sn+1), n � 0

it is possible to compute all the coe�cients xn, yn, rn, sn of PU and PL in terms of y0.
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STOCHASTIC FACTORS (UL)
From the relations

an = (1� yn)sn+1, cn+1 = yn+1(1� sn+1), n � 0

it is possible to compute all the coe�cients xn, yn, rn, sn of PU and PL in terms of y0.

This will give that the sum of each row of PU and PL is exactly 1, but this does not

mean that both factors are stochastic matrices, since all entries must be nonnegative.

For that we will need that the following continued fraction
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c1
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1�
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1� · · ·

.
= 1�

a0

1

�
c1

1

�
a1

1

�
c2

· · ·

is convergent and 0 < H < 1.

Indeed, if y0 is fixed and s0 = 1, then
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and for each yn and sn we have xn = 1� yn and rn = 1� sn.



MAIN THEOREM
Theorem. Let H the continued fraction given before and the corresponding convergents

hn = An/Bn. Assume that

0 < An < Bn, n � 1

Then H is convergent. Moreover, if P = PUPL, then both PU and PL are stochastic

matrices if and only if we choose y0 in the following range
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Sketch of the proof. Assume that both PU and PL are stochastic. That means that

0 < y0 < 1, 0 < xn, sn+1 < 1, n � 0 and 0 < yn, rn < 1, n � 1. Consider the sequence of

numbers ↵n, n � 0, given by ↵2n = yn,↵2n+1 = sn+1, n � 0. Then the condition ↵n < 1

implies that y0 < hn for every n.
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MAIN THEOREM
Theorem. Let H the continued fraction given before and the corresponding convergents

hn = An/Bn. Assume that

0 < An < Bn, n � 1
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matrices if and only if we choose y0 in the following range

0 < y0  H = 1�
a0

1
�

c1

1
�

a1

1
�

c2

· · ·

Sketch of the proof. Therefore y0 < hn for every n and since hn is a positive bounded and
decreasing sequence less than 1 (by properties of continued fractions) we get the result.

On the contrary, if we have the bound, in particular we have that 0  y0  H < hn for
every n � 0. Following the same steps as before, using an argument of strong induction
will lead us to the fact that both PU and PL are stochastic matrices. 2
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hn = An/Bn. Assume that
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For the LU decomposition there is no free parameter, so the positivity condition comes

in terms of an upper bound of the coe�cient ỹ0 = a0. Indeed, one must have

0 < a0  eH

where

eH = 1�
c1

1

�
a1

1

�
c2

1

�
a2

· · ·

as long as we have 0 < eAn < eBn, n � 1, where ˜hn =

eAn/ eBn are the convergents of

eH.
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This is called a discrete Darboux transformation. It appeared for the first time
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DARBOUX TRANSFORMATIONS

The matrix

eP is actually stochastic, since the multiplication of two stochastic matrices

is again a stochastic matrix. Therefore it gives a family of new random walks with
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ãn = snxn, n � 0

˜

bn = rnxn�1 + snyn, n � 0

c̃n = rnyn�1, n � 1

This is called a discrete Darboux transformation. It appeared for the first time
in [Matveev-Salle] in connection with Toda lattices. Later, many other authors
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SPECTRAL MEASURES
One important property of the Darboux transformation is how to transform the spectral
measure associated P . It is very well known that for every tridiagonal stochastic matrix
P (or Jacobi matrix) there exists an unique positive measure ! supported on the interval
�1  x  1 (Spectral or Favard’s Theorem).
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The Darboux transformation gives a family of random walks

e
P which is also a tridiagonal

stochastic matrix. If the moment µ�1 =

R 1
�1 d!(x)/x is well defined, then a candidate
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where �0(x) is the Dirac delta located at x = 0 and y0 is the free parameter from the

UL factorization. This transformation of the spectral measure ! is also known as a

Geronimus transformation.

Similarly, for the LU decomposition, the corresponding Darboux transformation

b
P gives

rise to a tridiagonal stochastic matrix and a spectral measure b!. In this case, it is possible

to see that this new spectral measure is given by

b!(x) = x!(x)

or, in other words, a Christo↵el transformation of !.

One important property of the Darboux transformation is how to transform the spectral
measure associated P . It is very well known that for every tridiagonal stochastic matrix
P (or Jacobi matrix) there exists an unique positive measure ! supported on the interval
�1  x  1 (Spectral or Favard’s Theorem).



3. An urn model for the Jacobi polynomials



JACOBI POLYNOMIALS
Consider the family of Jacobi polynomials Q

(↵,�)
n (x), which are orthogonal with respect

to the weight

w(x) =

�(↵+ � + 2)

�(↵+ 1)�(� + 1)

x

↵
(1� x)

�
, x 2 [0, 1], ↵,� > �1

normalized by the condition

Q

(↵,�)
n (1) = 1



JACOBI POLYNOMIALS
Consider the family of Jacobi polynomials Q

(↵,�)
n (x), which are orthogonal with respect

to the weight

w(x) =

�(↵+ � + 2)

�(↵+ 1)�(� + 1)

x

↵
(1� x)

�
, x 2 [0, 1], ↵,� > �1

normalized by the condition

Q

(↵,�)
n (1) = 1



JACOBI POLYNOMIALS
Consider the family of Jacobi polynomials Q

(↵,�)
n (x), which are orthogonal with respect

to the weight

w(x) =

�(↵+ � + 2)

�(↵+ 1)�(� + 1)

x

↵
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Then the Jacobi polynomials satisfy the three-term recursion relation
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where the coe�cients an, bn, cn are defined by

an =

(n+ � + 1)(n+ 1 + ↵+ �)

(2n+ ↵+ � + 1)(2n+ 2 + ↵+ �)

, n � 0

bn =

(n+ � + 1)(n+ 1)

(2n+ ↵+ � + 1)(2n+ 2 + ↵+ �)

+

(n+ ↵)(n+ ↵+ �)

(2n+ ↵+ � + 1)(2n+ ↵+ �)

, n � 0

cn =

n(n+ ↵)

(2n+ ↵+ � + 1)(2n+ ↵+ �)

, n � 1



JACOBI POLYNOMIALS
Consider the family of Jacobi polynomials Q

(↵,�)
n (x), which are orthogonal with respect

to the weight

w(x) =

�(↵+ � + 2)

�(↵+ 1)�(� + 1)

x

↵
(1� x)

�
, x 2 [0, 1], ↵,� > �1

normalized by the condition

Q

(↵,�)
n (1) = 1

Then the Jacobi polynomials satisfy the three-term recursion relation

xQ

(↵,�)
n (x) = anQ

(↵,�)
n+1 (x) + bnQ

(↵,�)
n (x) + cnQ

(↵,�)
n�1 (x), n � 0

where the coe�cients an, bn, cn are defined by

an =

(n+ � + 1)(n+ 1 + ↵+ �)

(2n+ ↵+ � + 1)(2n+ 2 + ↵+ �)

, n � 0

bn =

(n+ � + 1)(n+ 1)

(2n+ ↵+ � + 1)(2n+ 2 + ↵+ �)

+

(n+ ↵)(n+ ↵+ �)

(2n+ ↵+ � + 1)(2n+ ↵+ �)

, n � 0

cn =

n(n+ ↵)

(2n+ ↵+ � + 1)(2n+ ↵+ �)

, n � 1

We remark that all these coe�cients are nonnegative, a0 + b0 = 1 and an + bn + cn =

1, n � 1, so they are the coe�cients of a discrete time random walk on the nonnegative

integers and depend on the state of the system. The corresponding Jacobi matrix is then

stochastic.
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Let us call ↵n, n � 1, the sequence of alternating coe�cients a0, c1, a1, c2, . . ., respectively.
Then the sequence ↵n is a chain sequence, i.e. ↵n = (1 �mn�1)mn where 0  m0 < 1

and 0 < mn < 1 for n � 1. In this case we have

m2n =
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, m2n+1 =
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2n+ ↵+ � + 2
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From these formulas we clearly see that each coe�cient xn, yn, sn, rn is the multiplication

of two positive numbers less than 1. The simplest simplification is taking h0 = 1, in which
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We will use these coe�cients later to give a simplified urn model for the Jacobi polyno-

mials.
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SPECTRAL MEASURES
The spectral measure associated with the Darboux transformation

e
P = PLPU is the

Geronimus transformation of the Jacobi weight w. In this case it is easy to see that
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of a stochastic UL factorization, then the mass at 0 is always nonnegative, and vanishes

if

y0 =
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This measure is integrable as long as ↵ > 0 and � > �1. We see that if y0 is in the range

of a stochastic UL factorization, then the mass at 0 is always nonnegative, and vanishes

if

y0 =

↵

↵+ � + 1

For the LU decomposition, the spectral measure associated with the Darboux transfor-

mation

b
P =

e
PU

e
PU is the Christo↵el transformation of the Jacobi weight, i.e.
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AN URN MODEL
Fix ↵ = 2,� = 0 (for any ↵,� the model is similar as long as we take ↵ and � nonnegative

integers). Consider the random walk {Xn : n = 0, 1, . . .} with transition probability
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Let us call {XU
n : n = 0, 1, . . .} the Markov chain (pure birth random walk) generated by

the coe�cients xn, yn in PU . This model will be the Experiment 1.

Similarly, let us call {XL
n : n = 0, 1, . . .} the Markov chain (pure death random walk)

generated by the coe�cients sn, rn in PL. This model will be the Experiment 2.



AN URN MODEL
Fix ↵ = 2,� = 0 (for any ↵,� the model is similar as long as we take ↵ and � nonnegative

integers). Consider the random walk {Xn : n = 0, 1, . . .} with transition probability

matrix P with the coe�cients of the Jacobi polynomials, i.e.

an =

(n+ 1)(n+ 3)

(2n+ 3)(2n+ 4)

, n � 0

bn =

(n+ 1)

2

(2n+ 3)(2n+ 4)

+

(n+ 2)

2

(2n+ 2)(2n+ 3)

, n � 0

cn =

n(n+ 2)

(2n+ 2)(2n+ 3)

, n � 1

Consider the UL factorization P = PUPL for y0 =

↵
↵+�+1 , i.e.

xn =

n+ 1

2n+ 3

, yn =

n+ 2

2n+ 3

, n � 0

sn =

n+ 2

2n+ 2

, rn =

n

2n+ 2

, n � 1, s0 = 1

Let us call {XU
n : n = 0, 1, . . .} the Markov chain (pure birth random walk) generated by

the coe�cients xn, yn in PU . This model will be the Experiment 1.

Similarly, let us call {XL
n : n = 0, 1, . . .} the Markov chain (pure death random walk)

generated by the coe�cients sn, rn in PL. This model will be the Experiment 2.

The urn model for {Xn : n = 0, 1, . . .} will be the composition of the urn model for

{XU
n : n = 0, 1, . . .} (Experiment 1) and then the urn model for {XL

n : n = 0, 1, . . .}
(Experiment 2).



EXPERIMENT 1

n Blue



EXPERIMENT 1

n Blue
n+2 Red1 Blue



EXPERIMENT 1

n Blue
n+2 Red1 Blue

In total, there will be 2n+ 3 balls in the urn. Pick one ball at random (uniformly). The

probability of having a blue or a red ball is given by

P(B) =

n+ 1

2n+ 3

= xn, P(R) =

n+ 2

2n+ 3

= yn



EXPERIMENT 1

n Blue
n+2 Red1 Blue

We follow a strategy depending if we pick a blue or a red ball:

• If we get a blue ball: then the blue ball goes back to the urn and we remove all red

balls from the urn, and start over.

• If we get a red ball: then we remove 1 blue ball and all red balls from the urn and

start over.

In total, there will be 2n+ 3 balls in the urn. Pick one ball at random (uniformly). The

probability of having a blue or a red ball is given by

P(B) =

n+ 1

2n+ 3

= xn, P(R) =

n+ 2

2n+ 3

= yn



EXPERIMENT 2

n Blue



EXPERIMENT 2

n Blue
n+2 Red



EXPERIMENT 2

n Blue
n+2 Red

In total, there will be 2n+ 2 balls in the urn. Pick one ball at random (uniformly). The

probability of having a blue or a red ball is given by

P(B) =

n

2n+ 2

= rn, P(R) =

n+ 2

2n+ 2

= sn



EXPERIMENT 2

n Blue
n+2 Red

We follow a strategy depending if we pick a blue or a red ball:

• If we get a blue ball: then we remove that blue ball and all the red balls from the

urn, and start over.

• If we get a red ball: then we remove all red balls from the urn and start over.

In total, there will be 2n+ 2 balls in the urn. Pick one ball at random (uniformly). The

probability of having a blue or a red ball is given by

P(B) =

n

2n+ 2

= rn, P(R) =

n+ 2

2n+ 2

= sn



COMPOSITION OF BOTH EXPERIMENTS

B

R

R

B

R

B

n B
n+ 1 B

n+ 2 R

n+ 1 B

n B

n+ 1 B

n+ 3 R

n B

n+ 2 R

n+ 1 B

n B

n� 1 B

Experiment 1 Experiment 2
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