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MAIN RESULTS

Let G = {g1,..-,9m,} and H = {hq,...,hn,} be finite sets of positive integers ordered in
increasing size and monic polynomials Rg4,9 € G, with deg’ Ry, = g and Sp,,h € H, with
deg S, = h and call m = mq1 + ma.
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1. Using the D-operator method we already proved that there exists a higher-order differential
operator D, with polynomial coefficients such that D,(q,) = Angn. We will prove that
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For real numbers o and 8 such that « — maxH # 0,—1,—2,..., and 8 — maxG #
0,—1,—2,..., we consider

(p,q) = (P, @)1+ (0, @)2 + (P, )3

= / D(2)6() Horrag sy (%)

—1

my—1 (z) 1 mo—1 ) 1
+ Z zmgl, / p(2)Ui(2) o p(z)dz + ) (_ql)nfﬂl“/ p(2)Vi(2) o, 5 () de

—1 1=0

where pq g = (1 — 2)%(1 + 2)” denotes the Jacobi weight.
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0 [ [m1A(ma+i)]—1 ( mo 91+1 _
; Cn,iPn,j [—i+1 o -
Ot =G |5 G > 202 (B = s)ela — o+ Duu(n =)
l=i—1

where ¢, ; = (—1)™T 22T (B + DI'(n +a —m + 1)/T(a+ B8+ 1)I'(n + B)) and for
t=m1+1,...,m, we have

d, . [ [maAi]—1 ( m1 f)l+1

(=l R0 = iy | 22 oy 22’“ 0 (= s)els — b + 14— 5

l=i—m1 1

where d,, ; = (—1)"1120H (B + 1) /T(a + B+ 1). Here b; are defined by

(14 2)*1(1 — z)™, for s=1,...,mq,
bs(x) =< (1 4+ )™ (1 —g)s—m1 1 fors=my+1,...,m,
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%), is characterized by the algebra of polynomials from the corresponding eigenvalues

9D, = {Q € R[z] : there exists D,, € ®,, such that D,(q,) = Q(x)q,}
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Let A,, be the algebra formed by all higher-order difference operators of the form D, =
> i Yn.i9i, where §;(f(n)) = f(n+1). Then we would like to study
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%), is characterized by the algebra of polynomials from the corresponding eigenvalues
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In general it is difficult to study this algebra @n, but in some situations we can characterize
completely this algebra of difference operators.



ALGEBRA OF DIFFERENCE OPERATORS

Theorem. Let a, 8 be real numbers satisfying o —max H # 0,—1,—2,..., and f—max G #
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If G or H are not segments the algebra D,, can have a more complicated structure, as the
following example shows. Take G = {1,3}, H = {1}, a =1/2,8=1/3, and

Ri(z)=z+1, R3(z)=2°+2*/34+22/3 +1, Si(z)=x+1/2

Using Maple one can see that the polynomials (g, ). satisfy recurrence relations for

Qo(z) = 1%(135:1;3 + 24432 — 270z — 732)

and @} is not divisible by (1 + z)?(1 — z). Computational evidence suggests that

Dp = {Q(x) + coQo(z) : (1 + z)3(1 — z) divides Q" and ¢ € R}.
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e Orthogonality properties and recurrence relations
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ORTHOGONALITY PROPERTIES

We have to change (p, q)2 and (p, ¢)3 in the previous bilinear form by transforming a portion

of the integral in a discrete Sobolev inner product. More precisely, we define the bilinear
form

(P,@)s = (0, @)1 + (P, @)2 + (P, @)2s + (P, @)3 + (P, Q)35

where
a0 NS0 () §R (B )

; = 2% (o +1 K d P J" gi+1
(P, q)2s ( ) ; T ]Z:(:) il e F(oz—l—ﬁ—s—l—j—l—l)ys
and
(p, q) 2081 (8 4+ 1) mil ¢ (1) hlia 29pl9) (1) 2L (o —s);8! b,
P,q4)35 = o + Tl ~— : W, +1

’ Lo (Al 2 (<1)ijl 2= T(a+B—s+j+1)

The discrete part of this bilinear form can not be represented in general as the discrete
Jacobi-Sobolev bilinear form.
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Theorem. Let a and [ be positive integers satistying ¢ = mo,...,maxH and § =
mi,...,max G and assume that Ag g(n) # 0. Then, for n > m, the polynomials (g, )n
defined satisfy the following orthogonality properties with respect to the previous bilinear
from:
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<Qn7QH>S % 0.
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Theorem. Let o, 8 be positive integers satisfying o« = ms, ... ,max H, and 8 = mq,...,maxG,
and assume that Ag g(n) # 0. Write

p1 = max{maxG — f+ 1,8}, p2 =max{maxH —a+ 1,a}
Let @ € R|x] be a polynomial of degree s satisfying that (1+x)P* (1 —x)*? divides )’. Then

the sequence of polynomials (g, )., satisfies the recurrence relation of the form

Q(x)Q’n(w) — Z ’Vn,an—i—j(w)a Tn,ss Tn,—s 7& 0

j=-—s

where s = deg Q).



THREE-TERM RECURRENCE RELATION

Theorem. Let a,0 be two positive integers satisfying @ = mg,...,max H, and 8 =
mi,...,max G, and assume that Ag g(n) # 0. Then the sequence (g,), only satisfies
a three-term recurrence relation when G and H are segments of the form G = {3,8 +
l,....,6+mqy—1},and H ={a,a+1,...,a+ my — 1}, respectively, and the polynomials
R4(x) and Sp(x) have the form

LB+ k=0 " Nak_;_1 )
Z( (—Dzl((ﬁl—?)lk —uf(@), k=1
~(a+k—=01(*7 ) beoi o
(=D = 1)

Ry (0z) = U,%‘M_l(m) +

where
uj(z) = (@ +a—-A+1)(z+B+A—j+1);
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