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Let du be a positive Borel measure supported on R.

We will assume dp(x) = w(x)dx, w > 0 and x'w, x¥w' € LY(R).
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Let du be a positive Borel measure supported on R.

We will assume dp(x) = w(x)dx, w > 0 and x'w, x¥w' € LY(R).

We can then construct a family of orthonormal polynomials (pp), s.t.

(Pns Pm)w :/]RPn(X)Pm(X)W(X)dX =0nm, n,m2>0

pn(X) = K/n(xn + an,n—lxn_:l qFooe ) = K‘n/ﬁn(x)
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Orthogonal polynomials

Let du be a positive Borel measure supported on R.
We will assume dji(x) = w(x)dx, w > 0 and x'w, X’ € L}(R).
We can then construct a family of orthonormal polynomials (pp), s.t.

(pmpm)w —/I;Pn(X)Pm(X)w(X)dX = 6n,m; n,m=0

pn(X) = Hn(Xn + an,n—lxn_:l + - ) = Knﬁn(x)

The monic polynomials p,(x) satisfy a three-term recurrence relation

Xﬁn(X) = /lsn—l—l(x) + O4nlﬁn(X) + Bnlﬁn—l(X)
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We try to find a 2 x 2 matrix-valued function Y” : C — C?*2 such that
@ Y’ is analytic in C\ R
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We try to find a 2 x 2 matrix-valued function Y” : C — C?*2 such that
@ Y’ is analytic in C\ R

@ Y (x)= Y"(x) (é “’(lx)) when x € R
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We try to find a 2 x 2 matrix-valued function Y” : C — C?*2 such that
@ Y’ is analytic in C\ R

@ Y (x)= Y"(x) (é “’(lx)) when x € R

Q Y'(z) = (I, + 0(1/2)) (ZO z(_)") 2s 2 = 00
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Solution of the RHP for orthogonal polynomials

We try to find a 2 x 2 matrix-valued function Y” : C — C?*2 such that
@ Y isanalyticin C\ R

@ Y (x) =Y (x) (é ‘”(lx)> when x € R

n

Q Y'(z2)=(+0(1/2)) (ZO ZO,,) as z — 00
For n > 1 the unique solution of the RHP above is given by
Fokas-Its-Kitaev, 1990

v B2 CBre)(2)
Y'(2) = (—2wi%_1ﬁn_1(z) —2ﬂi7n—1c(ﬁ"—1”)(z))

where C(f)(z) = 5% fR - zdt is the Cauchy transform and v, = K2.
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Solution of the RHP for orthogonal polynomials

We try to find a 2 x 2 matrix-valued function Y” : C — C?*2 such that
@ Y isanalyticin C\ R

@ Y (x) =Y (x) (é ‘”(lx)> when x € R

Zn

Q Y'(z2)=(+0(1/2)) (O ZO,,> as z — 00
For n > 1 the unique solution of the RHP above is given by
Fokas-Its-Kitaev, 1990

v B2 CBre)(2)
Y'(2) = (—2wi%_1ﬁn_1(z) —27Ti7n—1c(5"—1”)(2))

where C(f)(z) = 27” fR - zdt is the Cauchy transform and v, = x2.
The existence and unicity is a consequence of the Morera's theorem, Liouville's
theorem and detY"(z) = 1.

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP



We look for a pair of first-order difference/differential equations of the form

Y™(2) = E\(2)Y"(2), 2

dz

Y'(2) = Fa(2)Y"(2)
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We look for a pair of first-order difference/differential equations of the form

Y(2) = E(2)Y"(2), —

dz

Y'(2) = Fa(2)Y"(2)

J

Problem. Typically, the coefficient F,(z) is difficult to obtain. We can avoid that

by transforming the RHP in another RHP with constant jump.
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We look for a pair of first-order difference/differential equations of the form

Y (2) = Eq(2)Y"(2),

dz

Y'(2) = Fa(2)Y"(2)

Problem. Typically, the coefficient F,(z) is difficult to obtain. We can avoid that
by transforming the RHP in another RHP with constant jump.
Consider the transformation

X"(z) = Y"(2) (‘*’ /

0

1/2

0
w-1/2
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The Lax pair |

We look for a pair of first-order difference/differential equations of the form

d

Y™ (2) = E,(2)Y"(2), g

Y'(2) = Fo(2)Y"(2)

Problem. Typically, the coefficient F,(z) is difficult to obtain. We can avoid that
by transforming the RHP in another RHP with constant jump.
Consider the transformation

X"(2) = Y"(2) (“1/2 0)

0 w—1/2

J

We observe that X" is invertible and that

X" (x) = X" (x) (é })

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP
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The Lax pair |

We look for a pair of first-order difference/differential equations of the form

d

Y™ (2) = E,(2)Y"(2), g

Y'(2) = Fo(2)Y"(2)

Problem. Typically, the coefficient F,(z) is difficult to obtain. We can avoid that
by transforming the RHP in another RHP with constant jump.
Consider the transformation

i . w1/2 0
@)=y (%)
We observe that X" is invertible and that

X" (x) = X" (x) (é })

That means that X" has a constant jump
= Ep(z) and F,(z) are completely determined by their behayior at z = oo.

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP
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The Lax pair Il
(wl/Z)/

If we additionally assume that “=

The RHP for OPs
The Lax pair
Examples

is a polynomial of degree m, then

1 -1
n+1 Z — Qp ﬁ’yn n
TE) = ( 2Tivp 0 >X (2)
E,(z)
d —Bn(2)

dz

x(a) = (

2mi Ap—1(2)Yn-1

2’"zsn(z) (Z)> "(2)

Fn(2)

where A,(z) and B,(z) are polynomials of degree m — 1 and m respectively.
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The Lax pair Il

. /2y, .
If we additionally assume that (“:&7/2) is a polynomial of degree m, then

i (150 # e

2iy, 0
E,(z)
dyn _ _Bn(z) =) (Z)
X D= (27ri.A,,_1(z)'yn_1 "o Bn(z) X"(z)
Fn(2)

where A,(z) and B,(z) are polynomials of degree m — 1 and m respectively.
Cross-differentiating the Lax pair yield

Compatibility conditions

E;(Z) + En(2)Fi(2) = Fri1(2)En(2)

also known as string equations.
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Consider w(x) = e~ = Hermite polynomials (Hn)n-

z%/2
The transformation X"(z) = Y"(z) : 2,5 | gives the following Lax pair
o222
1,1 d N _ il il
n+1 o z 271 In n H yn - z il Xn
@) = (L5 T )X, ox@ = (0 T )X
The difference equation gives (using 8, = Yn/Vn+1) the

XHp(x) = Hns1(x) + BaHn_1(x),
while the differential equation gives the
H! (x) = 2BpHp-1(x),  H\(x) = 2xHn(x) = —2Hp11(x)-

The compatibility conditions are

y N o
))/1\1 — Pn P jﬂ



Consider w(x) = e™ = Hermite polynomials (Hp)n.
—z%/2

The transformation X"(z) = Y"(2) (e 0 29/2 gives the following Lax pair
e
1.1 d _
n+1 _ z 27ri7n n ~ yn — z 7,,7,7 n
X (2) = (—27ri'y,, 0 )X @, 7X@ (477/7,,_1 X (Z)J
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Example |: Hermite polynomials
Consider w(x) = e=* = Hermite polynomials (Hn)n.

—2%/2 0

The transformation X"(z) = Y"(z) <e 0 2/2
e

) gives the following Lax pair

1 -1 d _ N |
n+1 _ 4 271 In n ' wyn _ Zz i 'n n
X" (z) = (27”_% 2 )x (2), £X(2)= ( | )x (Z)J
The difference equation gives (using 8, = Yn/Vn+1) the TTRR
xHy(x) = Hos1(x) + BaHa-1(x).

while the differential equation gives the ladder operators

H (%) = 2BpHn-1(x),  H(x) — 2xHp(x) = —2Hp1(x).

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP
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Example |: Hermite polynomials

Consider w(x) = e=* = Hermite polynomials (Hn)n.

—2%/2
The transformation X"(z) = Y"(z) <e 0 29/2> gives the following Lax pair
e

1 -1 d _ N |
n+1 _ 4 271 In n ' wyn Zz i 'n n
X (Z) - <27”.’Yn IO )X (2)7 d X ( ) (47T1'Yn 1 Iz >X (Z)J
The difference equation gives (using 8, = Yn/Vn+1) the TTRR
xHu(x) = Hoi1(x) + BaHo-1(x),
while the differential equation gives the ladder operators
H!(x) = 2B8,Hn_1(x),  HA(x) = 2xHp(x) = —2Hn41(x).

The compatibility conditions are

Bn-‘rl /Bn - :> 6n - g

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP



Consider w(x) = e~ = Freud polynomials (Pn)n-

z/2
X"(z) =Y"(2) (e : 29 , | satisfies the following Lax pair
o' /2
1 -1
n+1 o z ﬁﬂ‘,; n
X = (L5, T )X

d —273 _ 48,7 — 27~ Z2 4 By + Bnt1)

7Xn o ' n i In ;7 n Xn

dz (Z) <8/_‘/An 1(22 aF /Bt A (O l) 223 + 45,2 (Z)
The are

'D/(X) +4 )‘nXiE)n(X) - 4(X2 t Bn + Bnt1)BnPn-1(x)

P/ (x) + 4x3Py(x) = —4(x* + B + Bps1)Pos1(x)

The compatibility conditions are

n=4 ;n( ;nfl + ‘))/7 + ;/771)



Consider w(x) = e~ = Freud polynomials (Pn)n-
" _yn e—z4/2 0
@=Y@ | e

satisfies the following Lax pair

1,1
nlo_y _ z i In n
) = <—27Ti’y,, 0 )X (2)

dyn \ —273 — 48,z — 247422 + Br+ Bnt1) yn
zX@)= (87rm_1(z2 + Bo+ Bos) 223 + 48,7 X'(z)
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Example Il: Freud orthogonal polynomials
Consider w(x) = e™" = Freud polynomials (P,),.

—z*/2

X"(z) =Y"(2) (e . e29/2> satisfies the following Lax pair

1 -1
n+1 4 207 In n
XTE) = ( 2T ivp 0 >X (2)

n _ =27 = 4an _;’Yn l(Z + /Bn aF /Bn ) n
7X ( ) (87ri')/n—1(22 T Bn aF Bn+1) 223 T 4Bn - ) X (Z)

The ladder operators are

PL(x) + 4B2xPy(x) = 4(x® + By + Brs1)BnPr1(x)
P(x) + 4x3Py(x) = —4(x% + B + Brs1) Pop1(x)
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Example Il: Freud orthogonal polynomials
Consider w(x) = e™" = Freud polynomials (P,),.

—z*/2

X"(z) =Y"(2) (e . e29/2> satisfies the following Lax pair

1 -1
n+1 z 551 In n
2 E) ( 2T ivp 0 >X (2)

n _ —2z° — 403,z —%’y,,_l(z2 + Bn + Bnt1) n
7X ( ) (87”-7”_1(22 +6n +Bn+1) 223 +4an +1 X (Z)

The ladder operators are

PL(x) + 4B2xPy(x) = 4(x® + By + Brs1)BnPr1(x)

Pr(x) + 4x°Pa(x) = —4(x* + Bn + Bas1) Prsa(x)
The compatibility conditions are

n = 48,(Bny1 + Bn + Bn-1)

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP
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The theory of matrix orthogonal polynomials on the real line (MOP) was
introduced by Krein in 1949,
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The theory of matrix orthogonal polynomials on the real line (MOP) was
introduced by Krein in 1949,
A N x N matrix polynomial on the real line is

P(x) =Ax"+A,1x" '+ + Ay, xeR A;eCVN

Let W be a N x N a matrix of measures or weight matrix.
We will assume dW(x) = W(x)dx and W smooth and positive definite on R.
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Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was
introduced by Krein in 1949,

A N x N matrix polynomial on the real line is

P(x) =Ax"+ A, 1x" 1+ Ay, xeR A;jeCVVN
Let W be a N x N a matrix of measures or weight matrix.

We will assume dW(x) = W(x)dx and W smooth and positive definite on R.
We can construct a family of MOP with respect to the inner product

(P, Q)w = /}R P(x)W(x)Q* (x)dx € CV*N

such that

(Pn, Pm)w :/ P.(x)W(x)P},(x)dx = dpmly, n,m>0
R

Po(x) = Kn(X" + @pp_1x™ L4 ) = KpPa(x)

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP



Y™ - C — C2N*X2N g ch that

Q@ Y"is analyticin C\ R

Q Yi(x)=Y"(x) (I(')V

Q Y'(z) = (lan + O(1/2)) (z"

W(X)> when x € R
IN

Iy 0
0

as z — 0o
Z_HIN)
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Solution of the RHP for MOP

Y™ : C — C?N*2N gych that
© Y isanalyticin C\ R

@ YL(x) = Y (x) ('g "‘fﬁf) when x €
Q Y'(2) = (lany + O(1/2)) <Z"(;N Z_2|N> as z — 00

For n > 1 the unique solution of the RH problem above is given by

o= Pe@) CPW)(2)
= <_27ri’y,,_1P,,_1(Z) _27”.7”—1C(P”_1W)(Z)>

where C(F)(z) = 2= fR t)dt and v, = KiK.

t—
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We look for a pair of first-order difference/differential equations of the form

Y(2) = En(2)Y"(2), —

dz

Y'(z) = Fa(2)Y"(2)
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We look for a pair of first-order difference/differential equations of the form

Y(2) = En(2)Y"(2), —

dz

Y'(2) = Fs(2)Y"(2)

Goal: obtain an invertible transformation Y” — X" such that X" has a constant
jump across R. Consider X"(z) = Y"(z)V(z) where

V(z) = (T(z) 0

0 T_*(z))
where T is an invertible N x N smooth matrix function.
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We look for a pair of first-order difference/differential equations of the form

Y™ (2) = En(2)Y"(2), %Y"(Z) = Fa(2)Y"(2)

Goal: obtain an invertible transformation Y” — X" such that X" has a constant
jump across R. Consider X"(z) = Y"(z)V(z) where

ve) = ("5 %)

where T is an invertible N x N smooth matrix function.
This motivates to consider a factorization of the weight in the form

W(x) =T(x)T*(x), xeR.
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The Lax pair |

We look for a pair of first-order difference/differential equations of the form

Y™ (2) = En(2)Y"(2), %Y"(Z) = Fa(2)Y"(2)

Goal: obtain an invertible transformation Y” — X" such that X" has a constant
jump across R. Consider X"(z) = Y"(z)V(z) where

ve) = ("5 %)
where T is an invertible N x N smooth matrix function.
This motivates to consider a factorization of the weight in the form
W(x) =T(x)T"(x), x€R.
This factorization is not unique since
T(x) = T(x)S(x), x€R

T(x) is upper triangular and S(x) is an arbitrary smooth and unitary matrix

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP



We additionally assume

T'(2) = G(2)T(2),
where G is a matrix polynomial of degree m (most of our examples)

([T Z— Oy ’)% nl n
Y™ (z) = <27. g )Y (2)

T1%Yn
E,(z;G)
d n *Bn(Z;G) 7%’7” 1,4,7(Z;G) n
EY (2) = <27/'A,,1(z; G)Yn—1 B*(z; G) Y*z)
F.(z;G)

where A, and B, are matrix polynomials of degree m — 1 and m respectively.
Cross-differentiating the Lax pair yield the

E;(Z; G) + E.(z; G)F,(z;G) = F11(z; G)E,(z; G)
~ Manuel Dominguez de la Iglesia  Algebraic aspects of the RHP for MOP
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The RH problem for OP
The RH problem for MOP

The Lax pair Il
We additionally assume
T'(z) = G(2)T(2),

where G is a matrix polynomial of degree m (most of our examples)

_ L il
Yn+1(z) _ (Z O 71 In ) Yn(Z)

—2T i, 0
E.(z:G)
d niy_ ~B,(z; G) — 351V “An(2: G) i
dz (Z)_(QﬁiA,,_l(z;G)'y,,_l B:(z; G) Y'(2)
Fn(z;G)

where A, and B, are matrix polynomials of degree m — 1 and m respectively.
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The RH problem for OP
The RH problem for MOP

The Lax pair Il
We additionally assume
T'(z) = G(2)T(2),

where G is a matrix polynomial of degree m (most of our examples)

_ =il
Yn+1(z) _ (Z &n 557 ) Y'(2)

—2T i, 0
E.(z:G)
d n _ _Bn(Z; G) _%V;IAH(Z; G) n
zY(@)= (277//1,,_1(2; G)Yn1 BzG) )Y
Fn(z;G)

where A, and B, are matrix polynomials of degree m — 1 and m respectively.
Cross-differentiating the Lax pair yield the compatibility conditions

E/(z;G) + E,(z; G)F,(z;G) = F,11(z; G)E,(z; G)

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP
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The RH problem for OP
The RH problem for MOP

The Lax pair |l

If there exists a non-trivial matrix-valued function S, non-singular on C, smooth
and unitary on R, s.t.

W(x) =T()T (x), xeR, T(2)=G(z)T(z), zeC,
with G(z) = G(z) + H(z) and the matrix X" satisfies

d

5X(2) = Fa(2:G)X"(2) + Fu(z H)X"(2) — X"(2) <X

SN
N—r
|
X*O
—~
N
SN—r
N

with x(z) = S'(2)S*(2).

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP
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The RH problem for OP
The RH problem for MOP

The Lax pair |l

If there exists a non-trivial matrix-valued function S, non-singular on C, smooth
and unitary on R, s.t.

W(x) =T()T (x), xeR, T(2)=G(z)T(z), zeC,
with G(z) = G(z) + H(z) and the matrix X" satisfies

d
dz

SN
N—r
|
X*O
—~
N
SN—r
N

X"(z) = Fu(z; G)X"(2) + Fu(z; H)X"(2) — X"(2) <X

with x(z) = S'(2)S*(2).

Consequences: We have a class of ladder operators.
Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP



Let us consider T(x) = e=*"/2eA* and

W(x) = e e

AxeA x7

Ac CNXN

x € R.
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Let us consider T(x) = e

W(x) = e e

don _
Ex (z2) =

—x%/2 eAx

and

AxeA x7

Xn+1(z) _ ZIN _.an %7;1
—27ivYn

—zly + A
ATivp—1

AcCVN  xeR.

)%

1.-1
_;A/n n
z2ly — A*) X(z)

«0O0» «F»r « =) « P NEd



Let us consider T(x) = e=* /2e”* and

W(X) _ e—x2 eAxeA*x

, AcCVN  xeR.
Xn+1(z)=(le—an 1 -1

2xi In n
—27ivYn 0 )X (2)
dyn, v _ (—zln+A

N
i n n
ATiyp_1 zIN'— A*) X"(2)
ap = (A + ’Yn—lA*’Yn)/za 2(/3n+1 - /Bn) = Aan - anA aF IN
«0O>» «F»r « = < P NEd
NSRRI 1o sopoctsof the RHP for MOP




P (x) + Pp(x)A — AP,(x) = 28,Pn_1(x),

P (x) + 2xP(x) + AP (x) — Pp(x)A — 20,P(x) = 2P 1(x).

«40)>» «Fr «=» « =) = Q>
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The RH problem for OP
The RH problem for MOP

Ladder operators
P (x) + Po(x)A — AP,(x) = 28,P,_1(x),
P (x) + 2xPn(x) + AP (x) — Pp(x)A — 20pPn(x) = 2P 1 (x).

Combining them we get a second order differential equation
Second order differential equation
P, (x) + 2P, (x)(A — xIy) + P,(x)(A2 — 2xA)
= (—2xA + A2 — 48,)P ,(x) + 2(A — o) (P)(x) + Po(x)A — AP,(x)).

Manuel Dominguez de la Iglesia Algebraic aspects of the RHP for MOP



In order to use the freedom in the matrix case by a unitary matrix function
S we have to impose additional constraints on the weight W.
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The RH problem for OP ﬂe ﬁHP for MOPs
The RH problem for MOP Ex:mslxes"a”
In order to use the freedom in the matrix case by a unitary matrix function
S we have to impose additional constraints on the weight W.
The matrix H can be written as
2

H(x) = eMxe ™™ = x + ada(x)x + ad%(x)i +e

where x(x) = §'(x)S*(x) is skew-Hermitian on R.
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The RH problem for OP
The RH problem for MOP
In order to use the freedom in the matrix case by a unitary matrix function
S we have to impose additional constraints on the weight W.
The matrix H can be written as

x2

H(x) = eMxe ™™ = x + ada(x)x + ada(x) = + - - -,
where x(x) = S'(x)S*(x) is skew-Hermitian on R.

This matrix equation was considered already by Durdn-Griinbaum (2004),
when X is a constant matrix.
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The RH problem for OP
The RH problem for MOP
In order to use the freedom in the matrix case by a unitary matrix function
S we have to impose additional constraints on the weight W.
The matrix H can be written as

x2

H(x) = eMxe ™™ = x + ada(x)x + ada(x) = + - - -,

where x(x) = §'(x)S*(x) is skew-Hermitian on R.
This matrix equation was considered already by Durdn-Griinbaum (2004),
when X is a constant matrix.

o If deg H = 0 then x = ialy, a € R = No new ladder operators.
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The RH problem for OP
The RH problem for MOP

In order to use the freedom in the matrix case by a unitary matrix function
S we have to impose additional constraints on the weight W.
The matrix H can be written as

x2

H(x) = eMxe ™™ = x + ada(x)x + ada(x) = + - - -,

where x(x) = §'(x)S*(x) is skew-Hermitian on R.
This matrix equation was considered already by Durdn-Griinbaum (2004),
when X is a constant matrix.

o If deg H = 0 then x = ialy,a € R = No new ladder operators.

o If deg H =1 then
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The RH problem for OP
The RH problem for MOP
In order to use the freedom in the matrix case by a unitary matrix function
S we have to impose additional constraints on the weight W.
The matrix H can be written as

x2

H(x) = eMxe ™™ = x + ada(x)x + ada(x) = + - - -,

where x(x) = §'(x)S*(x) is skew-Hermitian on R.
This matrix equation was considered already by Durdn-Griinbaum (2004),
when X is a constant matrix.

o If deg H = 0 then x = ialy,a € R = No new ladder operators.

o If deg H =1 then

N N

O A=L-= ZV,E,,,.H, and x = iJ = iZ(N —NE;;

i=1 i—1
= ada(x) = —A and S(x) = e'¥
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The RH problem for OP
The RH problem for MOP

In order to use the freedom in the matrix case by a unitary matrix function

S we have to impose additional constraints on the weight W.
The matrix H can be written as

x2

H(x) = eMxe ™™ = x + ada(x)x + ada(x) = + - - -,

where x(x) = §'(x)S*(x) is skew-Hermitian on R.
This matrix equation was considered already by Durdn-Griinbaum (2004),
when X is a constant matrix.

o If deg H = 0 then x = ialy, a € R = No new ladder operators.
o If deg H =1 then

N N
O A=L-= ZV,E,,,.H, and x = iJ = iZ(N —NE;;
i=1 i=1
= ada(x) = —A and S(x) = e'¥
Q@A=L(Iy+L)Landx=1J _
= ada(x) = —A + A and S(x) = e
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Ja, —ad+a, =L+ %(Lzan —a,l?), J—v, 0y, = La, + a,L — 24




—aJ+a, =L+ = (Lza,, a,l?), J—~,"0v, = La, + a,l — 205

Po(x)d — JP,(x) — x(Pa(x)L — LP(x)) 4 2B,Pn(x) — nPa(x) = 2(L — an)BaPr_1(x)

Po(x)(d = xL) =47 1 (d = XL )¥aPn(x) +2Bns1Pn(x) — (n+ 1)Pa(x) = 2(ctn — L)P,11(x)




—aJ+a, =L+ = (Lza,, a,l?), J—~, 0y, =La, + a,l —2a)

Po(x)d — JP,(x) — x(Pa(x)L — LP(x)) 4 2B,Pn(x) — nPa(x) = 2(L — an)BaPr_1(x)
Po(x)(d = xL) =47 1 (d = XL )¥aPn(x) +2Bns1Pn(x) — (n+ 1)Pa(x) = 2(ctn — L)P,11(x)

(L= 0tn)Poy(x)+ (L= tn+xIn ) (Pa(x)L—LP (%)) = 2B0Pn(x) = P(x)d = IPn(x)— nP,(x)




The RH problem for OP i (R fiar (e

The RH problem for MOP Ul (Lo ey
Examples

First case A =L

New compatibility conditions

1 _
Ja,—an+a, =L+ E(Lzan —a,l?), J—~, 0y, = La, + a,l — 207

New ladder operators (0-th order)

Po(x)d — JP,(x) — x(Pa(x)L — LP,(x)) 4 28,Pn(x) — nPa(x) = 2(L — as)BaPr_1(x)
Pa(x)(d = xL) — 77 (4 = xL")7aP(x) + 2Bn1Pu(x) — (n+ 1)Pa(x) = 2(ctn — L)Pris1(x)
First-order differential equation

(L= 0t)Poy(x)+ (L= tn+xIn ) (Po(3)L —LP (X)) —2BaPn(x) = P(x) = IPn(x)—nP,(x)

Sturm-Liouville type differential equation (Durdn-Griinbaum, 2004)
Pl (x) + 2P, (x)(L — xln) + Pa(x)(L> — 20) = (—2nly + L? — 23)P,(x)
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. 4 2 R 2
Let us consider W(x) = e eBx eB™x

BeCV*N xeR.

PH(X) Jr 2X(|£)’7(X)B o BISH(X)) Jr 4X/5/7|-:)/7<X) o
(4(X2| + /1/771 + /Hn)

2(8 T U 181%7))//'}”'5/771(X>
P, (x) + 2x(Pn(x)B — BP,(x)) = (4x°1 + 2(28n11 — B — 7, 1B 7,)x)Pa(x)
(—40P1 + Boy1 + Bn) +2(B + 7, ' B*v,))Prsa(x)

nl ‘ 2(6,7_,7,38 Ban.nfl) o 4(31/jl7/</j/771

%}% /3”*1“13”) 2(B ‘ Yn lB '7/7)/3/7
«0O0)>» «F»r «Z» « > Q>
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. o 2 o2
Let us consider W(x) = e eBx eB™x

, BeCV*N xeR.
~/ o~ o~ o~
P,(x) + 2x(P,(x)B — BP,(x)) 4+ 4x8,P,(x) =

(4031 + Bur1 + Bn) — 2(B + v, 'B*7,))BrP o1 (x)
P’ (x) + 2x(Pa(x)B — BP,(x)) = (4x°1 + 2(28ps1 — B — 7 1B*7,)x)Pn(x)

(—401+ Bor1 + Bn) + 2(B + 77 'B™7,))Py1(x)

«O» «F»r « =>» Q>




The RH problem for OP i (R fiar (e

The RH problem for MOP Ul (Lo ey
Examples

Example Il: Freud type MOP

. 4 2 * 2
Let us consider W(x) = e ¥ eBX eB™x B e CNXN

)

x € R.
Ladder operators
P, (x) + 2x(P,(x)B — BP,(x)) + 4x3,Pn(x) =
(4031 + Brr1 + Bn) — 2(B + 7, 'B*74))BnPo-1(x)
P, (x) +2x(P,(x)B — BP,(x)) = (4x*1 +2(2Bns1 — B — 7; B 7,)x)Pn(x)
(=421 + Bpy1 + Bn) + 2(B + v, 'B*7,))P i1 (x)

Compatibility conditions

nl + 2(anq,nf2B - Ban,n72) = 4(ﬂn,6n71 + /@5 + /Bn+1ﬂn) - 2(B + ’Yn_lB*’Yn)ﬂn
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© The ladder operators method gives more insight about the differential
properties of MOP and new phenomena

© This method works for every weight matrix W. The corresponding

MOP satisfy differential equations, but not necessarily of
Sturm-Liouville type

«40» «F»r « =) 4
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The RH problem for OP
The RH problem for MOP

Final remarks

Conclusions
© The ladder operators method gives more insight about the differential
properties of MOP and new phenomena
@ This method works for every weight matrix W. The corresponding
MOP satisfy differential equations, but not necessarily of
Sturm-Liouville type
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Final remarks

Conclusions

© The ladder operators method gives more insight about the differential
properties of MOP and new phenomena

© This method works for every weight matrix W. The corresponding
MOP satisfy differential equations, but not necessarily of
Sturm-Liouville type

Future directions
@ Examples when supp(W) C [0, +00) or supp(W) C [—1,1]
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Examples

The RH problem for OP
The RH problem for MOP

Final remarks

Conclusions

© The ladder operators method gives more insight about the differential
properties of MOP and new phenomena

© This method works for every weight matrix W. The corresponding
MOP satisfy differential equations, but not necessarily of
Sturm-Liouville type

Future directions
@ Examples when supp(W) C [0, +00) or supp(W) C [—1,1]

@ Uniform asymptotics: steepest descent analysis for RHP
(Deift-Zhou,1993) extended to MOPRL
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