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Let (H,)n be the classical Hermite polynomials such that

/ Ha () H(x)e ™" dx = S
R
The

x24y2

Kalx,y) = 37 Hi(x)He(y)e™
k=0

2

describes the statistical properties of the eigenvalues of a

M in the space of (n x n) Hermitian matrices
with the measure (M) = e~ T"M)dM (GUE, Mehta).
The

is given by the

F(s) = P[Amax < 5] = det(Id — xsK,)
where s is the indicator function of the interval [s, 00)
and K, : L(R) — L?(R) is the

[, F](x) = / Kn(x, y)F(y)dy

V f e [3(R)
«O>» «F»r « >

=

DA
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MOTIVATION
Let (H,), be the classical Hermite polynomials such that
/ H,,(X)H,,,(x)efx2 dx = 0pm
R

The Christoffel-Darboux (CD) kernel

n—1

Kn(va) = z:"_Ik(x)”_lk(.y)e_Xz;ry2 J

k=0

describes the statistical properties of the eigenvalues of a
random matrix M in the space of (n x n) Hermitian matrices

with the measure (M) = e~ (M) gMm (GUE, Mehta).
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MOTIVATION

Let (H,), be the classical Hermite polynomials such that
/ H,,(X)H,,,(x)efx2 dx = 0pm
R

The Christoffel-Darboux (CD) kernel

n—1

Kn(va) = z:"_Ik(x)”_lk(.y)e_Xz;ry2 J

k=0

describes the statistical properties of the eigenvalues of a
random matrix M in the space of (n x n) Hermitian matrices

with the measure (M) = e~ (M) gMm (GUE, Mehta).
The last particle distribution is given by the Fredholm determinant

F(s) = P[Amax < 5] = det(Id — x.K,)

where x; is the indicator function of the interval [s, c0)
and K, : L?(R) — L2(R) is the integral operator

(K, F](x) = / Kn(x.y)f(y)dy V€ [2(R)
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MOTIVATION

THEOREM (TRACY-WIDOM, 1994)

The log derivative of the Fredholm determinant
R(s) = 0s log(det(Id — xsK,))

solves the sigma-form of the Painlevé IV equation
(R")? 4+ 4(R")?(R' +2n) — 4(sR' — R)> =0
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The log derivative of the Fredholm determinant
R(s) = 0s log(det(Id — xsK,))
solves the sigma-form of the Painlevé IV equation

(R")? +4(R")?(R' +2n) — 4(sR' — R)> =0

GOAL OF THIS TALK

Extend these results to CD kernels associated to Hermite-type
matrix-valued orthogonal polynomials (MOP).
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Extend these results to CD kernels associated to Hermite-type
matrix-valued orthogonal polynomials (MOP).

@ Double integral representations of some Hermite-type MOP
= Matrix-valued CD kernels.
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MOTIVATION

THEOREM (TRACY-WIDOM, 1994)

The log derivative of the Fredholm determinant
R(s) = 0s log(det(Id — xsK,))

solves the sigma-form of the Painlevé IV equation
(R")? +4(R")?(R' +2n) — 4(sR' — R)> =0

GOAL OF THIS TALK

Extend these results to CD kernels associated to Hermite-type
matrix-valued orthogonal polynomials (MOP).

@ Double integral representations of some Hermite-type MOP
= Matrix-valued CD kernels.
@ Relate the Fredholm determinant of this kernel to a Riemann-Hilbert

problem (RHP) whose compatibility conditions lead to a derived
version of a non-commutative Painlevé IV equation.
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PRELIMINARIES

Let W be a weight matrix (positive definite and finite moments).
Consider L2,(R,CN*N) the weighted space with the inner product

<F,G>W:/RF(X)W(X)G*(X)C]X
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Consider L2,(R,CN*N) the weighted space with the inner product

<F,G>W:/RF(X)W(X)G*(X)C]X

A sequence (P,), of matrix orthonormal polynomials (MOP) with
respect to W is a sequence satisfying

degP,=n, (P,,Pm)w = Indnm
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PRELIMINARIES

Let W be a weight matrix (positive definite and finite moments).
Consider L2,(R,CN*N) the weighted space with the inner product

(F,G)w = / F(x)W(x)G"(x)dx
R
A sequence (P,), of matrix orthonormal polynomials (MOP) with

respect to W is a sequence satisfying

degP,=n, (Pn,Pm)w = Indnm
If (P,)n is complete, the Christoffel-Darboux (CD) kernel is

n—1
Ka(x.y) = 3 Piy)Pi(x). x,y €R
k=0

with the properties (F € LZ,(R, CN*N))
Q Ki(x,y) =K (y,x)
@ F(y) = (F(x),Ku(x,¥))w (reproducing kernel property)
@ Ki(x,2) = (Ki(z,y), Kn(y, x))w
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SOME NOTATION

0 m 0 0
0 0 wm 0 N-1 0 0
Ay = , Vi R Iy = S
00 0 - wng ; (1) 8
00 0 -~ 0

We will remove the dependence of N whenever there is no confusion
about the dimension of the matrices.
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SOME NOTATION

0 m 0 0
0 0 wn 0 Nfl 0 0
AN— : : - : ,V,'ER,JNZ : :
0 0 0 - 0 10
00 0 -~ 0

We will remove the dependence of N whenever there is no confusion
about the dimension of the matrices.
Let us denote zM = eM°€z_ For example
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THE FIRST EXAMPLE

Let us consider
the weight matrix (Durdn-Griinbaum, 2004) A

W(x) = e*XQeAXeA*X, x €R

and the family of MOP (P,,), o ~

satisfying the second order differential equation

P’ (x) 4 P, (x)(=2x1 + 2A) + P,(x)(A? — 2J) = (—2nl — 2J)P,(x)

THEOREM (CAFASSO-MDI, 2013)

There exist suitable constant matrices C,, and D,, such that

dz

Ax __ —J J —Z*42zx
P,(x)e™ = j{z C.z'e sy
g

2 2
P,,(X)eAX = / wD,w e 2w  dw
T
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CASE N =2

For the family of MOP (P,), with respect to (N = 2)

2 2
W(x) = e <1+XV z/x>’ < ER

175% 1

we have that, if 72 =1+ 512
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CASE N =2

For the family of MOP (P,), with respect to (N = 2)

2 2
W(x) = e <1+XV VX>’ < ER

175% 1

we have that, if 72 =1+ 512

1 (n+ 1)
1 vx\  n 2z 2405 4z
Pn(x) <0 1 > - 2”+17rij£ zv 1 ¢ znt1
V2 V2
2 1 wv

1 vx) ¢€F W2—xw
Pn(X)<0 1>_I\/7?/I . nl/2 iz e WdW

2wy, A
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CHRISTOFFEL-DARBOUX KERNEL (N = 2)

The CD kernel )
Kn(x,y) = > ®5(y)®i(x)
k=0

where ®,(x) = e‘x2/2||P,,||\7\,1P,,(x)eAX can be written as
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CHRISTOFFEL-DARBOUX KERNEL (N = 2)

The CD kernel )

Kn(x,y) = > ®5(y)®u(x)

k=0
where ®,(x) = e_X2/2||P,,||W P,(x)e”* can be written as

eW 2 2xw—2z*42zy+nlog(w/z)

dW dzzJZBzJZWJZB w— ¢

2771

where (1 —u)
B, = | nv

n — 1
2

w—Zz
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CHRISTOFFEL-DARBOUX KERNEL (N = 2)

The CD kernel )

Kn(x,y) = > ®5(y)®u(x)

k=0

where ®,(x) = e_X2/2||P,,||W P,(x)e”* can be written as

eW 2 2xw—2z*42zy+nlog(w/z)
dW dz zJZB z J2WJZB wo ¢

2771 w—Zz

where 1 —u
B,=|mw 1
2
In other words
29y _
2 X27y2 Z(’an’y%) w V(V";s Z) ew2—2xw—22+2zy+nlog(w/z)
el /dw% dz

(27”) T v nv(z—w) w(y2i—1)+z w—2z

272 22
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THE SECOND EXAMPLE
Let us consider the weight matrix (Duran-Griinbaum, 2004)
W(x) = e X eBYeB Y eR

where B = A(l + A)~! and the family of MOP (P,), satisfying the
second-order differential equation

P/ (x) + 2xP/(x)(2B — 1) + 2P,(x)(B — 2J) = (—2nl — 4J)P,(x)
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THE SECOND EXAMPLE
Let us consider the weight matrix (Duran-Griinbaum, 2004)
W(x) = e X eBYeB Y eR

where B = A(l + A)~! and the family of MOP (P,), satisfying the
second-order differential equation

P/ (x) + 2xP/(x)(2B — 1) + 2P,(x)(B — 2J) = (—2nl — 4J)P,(x)

THEOREM (CAFASsO-MDI, 2013)

There exist suitable constant matrices C,, and D, such that

2 _ _ 2 dz
P,,(X)eBX _ P 2JCnZZJe z°4-22zx

Zn+1

i

2 2 2
Pn(X)eBX — ¥ / W2JDnW—2JeW —2XWWndW
z
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CASE N =2

For the family of MOP (P,), with respect to (N = 2)

2,2 .2
W(X):e_x4<1+X2V 1/x>’ < ER

1% 1

we have that, if 62 =1+ "(" 1),2
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CASE N =2

For the family of MOP (P,), with respect to (N = 2)

2,2 .2
W(x):e_x4<1+X2V 1/x>’ < ER

VX 1
we have that, if 62 =1+ "(” 1),2

1 (n+1)(n+2)v

2 2
p (X) 1 vx _ n! 4z e—22+22x dz
"o 1 2rtigi Jo\ 2 1 zmtt
Yl

2

n

1 wx w2y 2
P, (x) ( ) / - 1) 1| ev 2w yngy,
O 1 If 74W2(52 57%
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CHRISTOFFEL-DARBOUX KERNEL (N = 2)

The CD kernel )
Kn(x,y) =Y ®5(y)®u(x)
k=0

where ®,(x) = e—><2/2||P,,||\7\,1P,,(x)eBX2 can be written as
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CHRISTOFFEL-DARBOUX KERNEL (N = 2)

The CD kernel )

Kn(x,y) = ®i(y)®x(x)

k=0
where ®,(x) = e—><2/2||P,,||\7\,1P,,(x)eBX2 can be written as

w2 —2xw—2z*+2zy+nlog(w/z)

%eXZEF / dW]{ dz Z2JQB,,Z_J3WJ3é,,W_2JZe
(2mi) T 5 w—z
where
1 nv? 1 v
—v

B, = 5I27+1 253+1§% é _ 1 v
n 1/n(n+1) . nv 1 ’ n Vn(nf 1) 1
45541 207,107 42 52

We have that I§,, is a right inverse of B, i.e. B,,I§,, =1
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CD KERNELS AND RIEMANN-HILBERT PROBLEMS

The Christoffel-Darboux kernel in both cases can be written as

2 22 ~ eW272XW7ZZ+2Zy+n log(w/z)
Kn ) = f d d. n n
()= e ™ [ f e BB

where B, is (N x p) and B, is (p x N) such that B,(z)B,(z) = In.
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CD KERNELS AND RIEMANN-HILBERT PROBLEMS

The Christoffel-Darboux kernel in both cases can be written as

2 22 ~ eW272><szz+2zy+n log(w/z)
K, s = - d d. n n
()= e ™ [ f e BB

where B, is (N x p) and B, is (p x N) such that B,(z)B,(z) = In.
Consider K,, the integral operator with kernel K,(x, y)

[K,F(x) = / F(y)Ka(x,y)dy ¥ F € L3(R,CVV)
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CD KERNELS AND RIEMANN-HILBERT PROBLEMS

The Christoffel-Darboux kernel in both cases can be written as

2 x2—y? A~ e
Ka(Y) = e ™ [ dw f o2 BL(B(w)

w? —2xw—z%42zy+nlog(w/z)

w—2z

where B, is (N x p) and B, is (p x N) such that B,(z)B,(z) = In.
Consider K,, the integral operator with kernel K,(x, y)

[K,F(x) = / F(y)Ka(x,y)dy ¥ F € L3(R,CVV)

ITs-1ZERGIN- KOREPIN-SLAVNOV (ITKS) THEORY

The Fredholm determinant det(Id — xsK,) is equal to the
Jimbo-Miwa-Ueno tau function 7yy. In particular

8, log det(Id — xoK,) = % / T (D) (OT-)(NE() 42

where we denoted
E() = 85(1 = G(A))(1 = G(N)) ~* = =0:G(\)(1 + G(N))
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CD KERNELS AND RIEMANN-HILBERT PROBLEMS

I'()) solves the following

RIEMANN-HILBERT PROBLEM

Find I'(\) € GL(N + p,C) analytic on C\{y UZ} such that

L) =T-(N(1-6(}), Aenuy

. I
P =1+F+5+, Ao
with
[0 OB (N) 0 0
G =1, 0 xz(A) + _e0BE(A) 0 Xy(A)

and 0,()\,s) = A2 — 2\s + nlog(\).
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THE FIRST EXAMPLE (N = 2)

THEOREM (CAFASsO-MDbDI, 2013)

Let I'(\) be the solution of the previous Riemann-Hilbert problem with
B,(z) = z2B,z7% and B,(w) = (B,(w))~! where

1 —v
B, = v )
2

= 0, log det(Id — v.K,) = Tr((l"l)22 _ (rl)u)

Consider the transformation ¥(\) = T'(\)eT (") where

G201, — 3, log(A 0
TA(>\)2< 3 0 zlog(%) _6()\5 I, — J, log())

This transformation allows ¥(\) to satisfy a Riemann-Hilbert problem
like the previous one but with constant jump.
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THE FIRST EXAMPLE (N = 2)

W(\) satisfies the Lax equations

WY =N+ A+ A1) T, 0,0 = (AU +U) T
The compatibility conditions give the following coupled system of ODEs:
{ W = —u’+2su+4z—2nl, +Va
Z' = 2u'z + 2uz’ — 257’
where Va = 2[J2,y]ly ! ([x,y] = xy — yx) and
z=—(T1), y=-2T1)1, u=T1)pT1)s5 +2sh

Combining these two equations we obtain a non-commutative version of
the derived Painlevé IV equation ({x,y} = xy + yx)

u”+ [u” u]— 4(n+ 1+ $?)u'— 2 ({v',u?} + uu'u)
+6s{u’,u} + 4u(u — shy) + (Va — 2(uVa))' + 25V =0
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THE PAINLEVE IV EQUATION

The reason why we claim that the previous equation is a
non-commutative version of the derived Painlevé IV is that if we
assume that all the variables commute, we get the equation

DERIVED PIV EQUATION

" — 4 — 6uPd + 120" u — 4nd + duP — dsu— 4520 =0

an this equation is the derivative of the Painlevé IV equation

PIV EQUATION

/\2 3 22
u“:(u) +7u3—4su2+2(52+1+n)u—i
2u 2 u
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THE SECOND EXAMPLE (N = 2)

THEOREM (CAFASsO-MDbI, 2013)

Let T'(A) be the solution of the previous Riemann-Hilbert problem with
B,(z) = z22B,z7% and B,(w) = wB,w =22, where

" 1 v
1 nv
O 207,107 v
Bn = 9 Bn = 1 v
vn(n+1) nv 1
45741 255“5 _vn(n—=1) 1
442 62

= 0s log det(Id — xsK,) = Tr((l"l)zz — (I‘1)11)

Consider the transformation W(\) = T'(\)eT () where

60501, — 23, log(A 0
Te(N) = 2 l2— Zhalog(2) 0.0)
0 I35 — Jslog(\)

This transformation allows ¥(\) to satisfy a Riemann-Hilbert problem
like the previous one but with constant jump.
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THE FIRST EXAMPLE (N = 2)
THEOREM (CONTINUATION)
W(\) satisfies the Lax equations
WY =N+ A+ A1) T, 0,0 = (AU +U) T
The compatibility conditions give the following coupled system of ODEs:
W = —u’+2su+4z—2nl,+ Vg
zZ/ = 2u’'z + 2uz’ — 257’

where Vg = 4J, — 2yJsy' (y' is a right inverse of y, i.e. yy! =1) and

z=—(T1)y, y=-2T1w, u=(T1)p(T1)},+2sh
Combining these two equations we obtain a non-commutative version of
the derived Painlevé IV equation
u”+ [u”,u]— 4(n+ 1+ s?)u'— 2 ({u',u?} + uu'u)
+6s{u’,u} + 4u(u — sly) + (Vg —2(uVg))’ +2sVg =0
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