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Markov processes Bivariate Markov processes An example Future work

Orthogonal polynomials

Let ω be a positive measure on S ⊂ R and consider L2ω(S).
A system of polynomials (qn)n is orthogonal if

〈qn, qm〉ω =

∫

S

qn(x)qm(x)dω(x) = ‖qn‖
2
ωδnm, n,m ≥ 0

This is equivalent to a three-term recurrence relation (q−1 = 0, q0 = 1)

xqn(x) = anqn+1(x) + bnqn(x) + cnqn−1(x), n ≥ 1

where an, cn 6= 0, bn ∈ R and q0(x) = 1, q−1(x) = 0.
Jacobi operator (tridiagonal):

Jq =




b0 a0
c1 b1 a1

c2 b2 a2
. . .

. . .
. . .







q0(x)
q1(x)
q2(x)
...


 = x




q0(x)
q1(x)
q2(x)
...


 = xq, x ∈ S

The converse result is also true (Favard’s or spectral theorem)
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Classical families

(Bochner, 1929) Characterize families (qn)n satisfying

σ(x)q′′n (x) + τ(x)q′n(x) = λnqn(x), deg(σ) ≤ 2, deg(τ) = 1

The positive measure ω (symmetric) satisfies the Pearson equation

(σ(x)ω(x))′ = τ(x)ω(x)

1 Hermite: σ(x) = 1, τ(x) = −2x , λn = −2n

ω(x) = e−x2 , x ∈ R, normal or Gaussian distribution.

2 Laguerre: σ(x) = x , τ(x) = −x + α+ 1, λn = −n

ω(x) = xαe−x , x ∈ [0,+∞), α > −1, Gamma distribution.

3 Jacobi: σ(x) = 1− x2, τ(x) = −(α+ β + 2)x + β − α,
λn = −n(n + α+ β + 1)

ω(x) = (1− x)α(1 + x)β , x ∈ [−1, 1], α, β > −1, Beta kernel.
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Markov processes

A Markov process with state space S ⊂ R is a collection of random variables
{Xt ∈ S : t ∈ T } indexed by time T (discrete or continuous) such that they
have the Markov property: the future event only depends on the present, not
on the past (no memory).

S discrete (Markov chains)

The transition probabilities

Pij (t) ≡ Pr(Xt = j |X0 = i), i , j ∈ {0, 1, . . .}

come in terms of a stochastic matrix

P(t) =







P00(t) P01(t) · · ·
P10(t) P11(t) · · ·

...
...

. . .







S continuous (Markov processes)

The probabilities are described in terms of a density

p(t; x , y) ≡
∂

∂y
Pr(Xt ≤ y |X0 = x), x , y ∈ (a,b) ⊂ R
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Three important cases

1 Random walks: S = {0, 1, 2, . . .}, T = {0, 1, 2, . . .}.

P =







b0 a0
c1 b1 a1

. . .
. . .

. . .






, bi ≥ 0, ai , ci > 0, ai + bi + ci = 1

P(n) = Pn is the n-step transition probability matrix.

2 Birth-and-death processes: S = {0, 1, 2, . . .}, T = [0,∞).

P(t) satisfy the backward and forward equation

P
′(t) = AP(t), P

′(t) = P(t)A, P(0) = I

A =







−λ0 λ0

µ1 −(λ1 + µ1) λ1

. . .
. . .

. . .






, λi , µi > 0

3 Diffusion processes: S = (a,b) ⊆ R, T = [0,∞).

The density p(t; x , y) satisfy the backward and forward equation

∂

∂t
p(t; x , y) = Ap(t; x , y),

∂

∂t
p(t; x , y) = A∗

p(t; x , y)

A =
1

2
σ2(x)

d2

dx2
+ τ (x)

d

dx
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Random walks

· · ·
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Birth-and-death processes
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Diffusion processes

Ornstein-Uhlenbeck diffusion process: S = R and σ2(x) = 1, τ(x) = −x

It describes the velocity of a massive Brownian particle under the
influence of friction. It is the only nontrivial process which is stationary,
Gaussian and Markovian.
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Spectral methods

Given a infinitesimal operator A, if we can find a measure ω(x) associated
with A, and a set of orthogonal eigenfunctions f (i , x) such that

Af (i , x) = λ(i , x)f (i , x)

then it is possible to find spectral representations of

Transition probabilities

Discrete case: transition probability matrix Pij(t).
Continuous case: transition density p(t; x , y).

Invariant measure or distribution

Discrete case: π = (π0, π1, . . .) ≥ 0 with

πj = lim
t→∞

Pij(t)

Continuous case: ψ(y) with

ψ(y) = lim
t→∞

p(t; x , y)
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Random walks

S = T = {0, 1, 2, . . .}.
Spectral theorem (Karlin-MacGregor, 1959): there exists a measure ω
associated with P which orthogonal polynomials (qn)n satisfy (q−1 = 0, q0 = 1)

Pq =







b0 a0
c1 b1 a1

. . .
. . .

. . .













q0(x)
q1(x)

...






= x







q0(x)
q1(x)

...






, x ∈ [−1, 1]

Transition probabilities

P
n
ij = Pr(Xn = j |X0 = i) =

1

‖qi‖2ω

∫ 1

−1

x
n
qi(x)qj(x)dω(x)

Invariant measure

Non-null vector π = (π0, π1, . . . ) ≥ 0 such that

πP = π ⇒ πi =
a0a1 · · · ai−1

c1c2 · · · ci
=

1

‖qi‖2ω

Examples: Urn models related with Jacobi polynomials (Legendre, Gegenbauer,

Chebyshev).
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Birth-and-death processes

S = {0, 1, 2, . . .}, T = [0,∞).
Spectral theorem (Karlin-MacGregor, 1959): there exists a measure ω
associated with A which orthogonal polynomials (qn)n satisfy (q−1 = 0, q0 = 1)

Aq =







−λ0 λ0

µ1 −(λ1 + µ1) λ1

. . .
. . .

. . .













q0(x)
q1(x)

...






= −x







q0(x)
q1(x)

...







Transition probabilities

Pij(t) = Pr(Xt = j |X0 = i) =
1

‖qi‖2ω

∫

∞

0

e
−xt

qi(x)qj (x)dω(x)

Invariant measure

Non-null vector π = (π0, π1, . . . ) ≥ 0 such that

πA = 0 ⇒ πi =
λ0λ1 · · · λi−1

µ1µ2 · · ·µi

=
1

‖qi‖2ω

Examples: Laguerre, Meixner (linear growth models), Charlier (M/M/∞

queue), Krawtchouk (Ehrenfest model) polynomials.
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Diffusion processes

S = (a, b) ⊆ R, T = [0,∞).
If there exists a positive measure ω symmetric with respect to A and the
corresponding family of orthonormal functions (φn)n satisfy

Aφn(x) =
1

2
σ2(x)φ′′n (x) + τ(x)φ′n(x) = λnφn(x)

Transition probability density

p(t; x , y) =

∞∑

n=0

eλntφn(x)φn(y)ω(y)

Invariant measure

ψ(y) such that A∗ψ(y) = 0 ⇒ ψ(y) =
1∫

S
ω(x)dx

ω(y)

Examples: Hermite (Orstein-Uhlenbeck process), Laguerre (squared
Bessel process), Jacobi polynomials (Wright-Fisher model).
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Matrix-valued orthogonal polynomials

Matrix valued polynomials on the real line:

Anx
n + · · ·+ A1x +A0, Ai ∈ C

N×N

Krein (1949): matrix-valued orthogonal polynomials (MOP)
Orthogonality: weight matrix W supported on S ⊂ R (positive definite with
finite moments) and a matrix valued inner product (L2

W(S ;CN×N)):

〈P,Q〉W =

∫

S

P(x)W(x)Q∗(x) dx

A system of MOP (Qn)n (〈Qn,Qm〉W = ‖Qn‖
2
Wδnm) satisfies a three-term

recurrence relation (Q−1 = 0,Q0 = I)

xQn(x) = AnQn+1(x) +BnQn(x) + CnQn−1(x), det(Cn) 6= 0

Jacobi operator (block tridiagonal)

JQ =











B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .





















Q0(x)
Q1(x)
Q2(x)

...











= x











Q0(x)
Q1(x)
Q2(x)

...











= xQ, x ∈ S

The converse result is also true (Favard’s or spectral theorem**)
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N×N
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Durán (1997): characterize families of MOP (Qn)n satisfying

DQn(x) ≡ F2(x)Q
′′

n (x) + F1(x)Q
′

n(x) + F0(x)Qn(x) = Qn(x)Γn

where deg(Fj(x) ≤ j) and Γn ∈ RN×N .
Equivalent to the symmetry of D with respect to the inner product, i.e.
(DP,Q)

W
= (P,DQ)

W
, for all matrix polynomials P,Q.

Symmetry equations or matrix Pearson equations

A
∗

2(x)W(x) = W(x)A2(x)

A
∗

1(x)W(x) = (W(x)A2(x))
′ −W(x)A1(x)

A
∗

0(x)W(x) =
1

2
(W(x)A2(x))

′′ − (W(x)A1(x))
′ +W(x)A0(x)

New examples and methods: Since 2002, Durán, Grünbaum,
Pacharoni, Tirao, Castro, Román, MdI...

New phenomena: MOP satisfying odd order differential equations,
several second-order differential operators for a fixed family of MOP
and viceversa, family of ladder operators...
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Pacharoni, Tirao, Castro, Román, MdI...

New phenomena: MOP satisfying odd order differential equations,
several second-order differential operators for a fixed family of MOP
and viceversa, family of ladder operators...



Markov processes Bivariate Markov processes An example Future work

Durán (1997): characterize families of MOP (Qn)n satisfying

DQn(x) ≡ F2(x)Q
′′

n (x) + F1(x)Q
′

n(x) + F0(x)Qn(x) = Qn(x)Γn

where deg(Fj(x) ≤ j) and Γn ∈ RN×N .
Equivalent to the symmetry of D with respect to the inner product, i.e.
(DP,Q)

W
= (P,DQ)

W
, for all matrix polynomials P,Q.

Symmetry equations or matrix Pearson equations

A
∗

2(x)W(x) = W(x)A2(x)

A
∗

1(x)W(x) = (W(x)A2(x))
′ −W(x)A1(x)

A
∗

0(x)W(x) =
1

2
(W(x)A2(x))

′′ − (W(x)A1(x))
′ +W(x)A0(x)

New examples and methods: Since 2002, Durán, Grünbaum,
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Bivariate Markov processes

Now we have a bivariate or 2-component Markov process of the form

{(Xt ,Yt) : t ∈ T }

indexed by time T (time) and with state space S × {1, 2, . . . ,N}, S ⊂ R.
The first component is the level while the second component is the phase.
Now the transition probabilities are matrix-valued.

S discrete: block transition probabilities

(Pij )i′j′ (t) ≡ Pr(Xt = j ,Yt = j
′|X0 = i ,Y0 = i

′)

The block matrix is stochastic.

S continuous: matrix transition density

Pij(t; x , y) ≡
∂

∂y
Pr(Xt ≤ y ,Yt = j |X0 = x ,Y0 = i)

Every entry must be nonnegative and

P(t; x ,A)eN ≤ eN , eN = (1, 1, . . . , 1)T

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
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Quasi-birth-and-death processes

Discrete time: State space {0, 1, 2, . . .} × {1, 2, . . . ,N}, time
T = {0, 1, 2, . . .} and

(Pij)i′j′ = Pr(Xn+1 = j ,Yn+1 = j
′|Xn = i ,Yn = i

′) = 0 for |i − j | > 1.

i.e. a N × N block tridiagonal transition probability matrix (stochastic)

P =







B0 A0

C1 B1 A1

. . .
. . .

. . .







Continuous time: State space {0, 1, 2, . . .} × {1, 2, . . . ,N}, time
T = [0,+∞). The matrix P is now given by

(Pij)i′j′ (t) ≡ Pr(Xt = j ,Yt = j
′|X0 = i ,Y0 = i

′)

and will satisfy the so-called backward and forward equations

P
′(t) = AP(t), P

′(t) = P(t)A

In both cases, the invariant distribution (n, t → ∞) is

π = (π0;π1; · · · ) ≥ 0, πi ∈ R
N

such that πP = π (discrete case) or πA = 0 (continuous case).
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Stochastic representation (N = 4 phases)

Special case of An,Bn,Cn tridiagonal:

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b
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Switching diffusion processes

The state space is now (a,b)× {1, 2, . . . ,N} and time T = [0,∞).
The density matrix P(t; x , y) satisfies the backward and forward equations

∂

∂t
P(t; x , y) = AP(t; x , y),

∂

∂t
P(t; x , y) = P(t; x , y)A∗

where A is a matrix-valued differential operator

A =
1

2
A(x)

d2

dx2
+ B(x)

d1

dx1
+Q(x)

d0

dx0

We have that A(x) and B(x) are diagonal matrices and Q(x) is the
infinitesimal operator of a continuous time Markov chain, i.e.

Qii(x) ≤ 0, Qij(x) ≥ 0, i 6= j , Q(x)eN = 0

The row vector-valued invariant distribution (t → ∞)

ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y)), 0 ≤ ψj (y) ≤ 1,

(
∫ b

a

ψ(y)dy

)

eN = 1

satisfies

ψ(y)A∗ ≡
1

2
(ψ(y)A(y))′′ − (ψ(y)B(y))′ +ψ(y)Q(y) = 0
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Stochastic representation (N = 3 phases)

N = 3 phases and S = R with

Aii (x) = i2, Bii(x) = −ix , i = 1, 2, 3
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Spectral methods

Now, given a matrix-valued infinitesimal operator A, if we can find a
weight matrix W(x) associated with A, and a set of orthogonal matrix
eigenfunctions F(i , x) such that

AF(i , x) = F(i , x)Λ(i , x)

then it is possible to find spectral representations of

Transition probabilities

Discrete case: transition probability matrix P(t)
Continuous case: transition density P(t; x , y).

Invariant measure or distribution

Discrete case: π = (π0,π1, . . .) ≥ 0 with

πj = lim
t→∞

P·j(t) ∈ R
N

Continuous case: ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y)) with

ψj(y) = lim
t→∞

P·j(t; x , y)
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Quasi-birth-and-death processes

Discrete time: {0, 1, 2, . . .} × {1, 2, . . . ,N}, T = {0, 1, 2, . . .}.

Spectral theorem (Grünbaum, Dette et al., 2006): ∃* W on [−1, 1]
associated with P which MOP (Qn)n satisfy PQ = xQ (Q−1 = 0,Q0 = I)

P
n
ij =

(∫ 1

−1

x
n
Qi (x)W(x)Q∗

j (x)dx

)(∫ 1

−1

Qj (x)W(x)Q∗

j (x)dx

)−1

Continuous time: {0, 1, 2, . . .} × {1, 2, . . . ,N}, T = [0,∞)

Spectral theorem (Detter-Reuther, 2010): ∃* W on [0,∞) associated
with A which MOP (Qn)n satisfy AQ = −xQ (Q−1 = 0,Q0 = I)

Pij (t) =

(
∫

∞

0

e
−xt

Qi(x)W(x)Q∗

j (x)dx

)(
∫

∞

0

Qj (x)W(x)Q∗

j (x)dx

)−1

Invariant measure (MdI, 2011)

π = (π0;π1; · · · ) ≡ (Π0eN ;Π1eN ; · · · ) such that πP = π (discrete time) or
πA = 0 (continuous time)

Πn = (CT
1 · · ·CT

n )
−1

Π0(A0 · · ·An−1) =

(
∫

supp(W)

Qn(x)W(x)Q∗

n(x)dx

)−1
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Switching diffusion models

State space: (a, b)× {1, 2, . . . ,N}. Time: T = [0,∞)
If there exists a weight matrix W symmetric with respect to A which
matrix-valued orthonormal functions (Φn)n satisfies

AΦn(x) =
1

2
A(x)Φ′′

n (x) + B(x)Φ′

n(x) +Q(x)Φn(x) = Φn(x)Γn

Transition probability density matrix (MdI, 2012)

P(t; x , y) =
∞∑

n=0

Φn(x)e
ΓntΦ

∗

n(y)W(y)

Invariant distribution (MdI, 2012)

ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y)) such that ψ(y)A∗
= 0

⇒ ψ(y) =

(∫ b

a

eTNW(x)eNdx

)−1

eTNW(y)
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An example coming from group representation

Let N ∈ {1, 2, . . .}, α, β > −1, 0 < k < β + 1 and Eij will denote the
matrix with 1 at entry (i , j) and 0 otherwise.
For x ∈ (0, 1), we have a symmetric pair {W,A}
(Grünbaum-Pacharoni-Tirao, 2002) where

W(x) = xα(1 − x)β
N∑

i=1

(
β − k + i − 1

i − 1

)(
N + k − i − 1

N − i

)
xN−iEii

A =
1

2
A(x)

d2

dx2
+ B(x)

d

dx
+Q(x)

d0

dx0

A(x) = 2x(1− x)I, B(x) =

N∑

i=1

[α+1+N− i − x(α+β+2+N− i)]Eii

Q(x) =

N∑

i=2

µi (x)Ei ,i−1 −

N∑

i=1

(λi (x) + µi(x))Eii +

N−1∑

i=1

λi (x)Ei ,i+1,

λi (x) =
1

1− x
(N − i)(i + β − k), µi (x) =

x

1− x
(i − 1)(N − i + k).
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A quasi-birth-and-death process

It is possible to get (Grünbaum-MdI, 2008) an equivalent symmetric pair

{W̃, Ã} and a family of MOP (Qn)n such that Q−1 = 0,Q0 = I and

Qn(1)eN = eN , eN = (1, 1, · · · , 1)T

The family (Qn)n satisfies a three-term recurrence relation

xQn(x) = AnQn+1(x) + BnQn(x) + CnQn−1(x), n = 0, 1, . . . ,

where Bn is tridiagonal, An is lower bidiagonal and Cn is upper
bidiagonal. The corresponding Jacobi matrix P is stochastic

P =




B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .




n-step transition probability matrix P
n is terms of the

Karlin-McGregor representation and the invariant measure π.

We studied recurrence, the shape of the invariant distribution and
other probabilistic aspects.
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Particular case α = β = 0, k = 1/2, N = 2

Pentadiagonal transition probability matrix:

P =




5

9

2

9

2

9
2

9

7

18

4

45

3

10
5

36

1

18

107

225

3

50

27

100
1

6

4

75

23

50

6

175

2

7
14

75

2

75

597

1225

4

147

40

147
1

5

6

245

47

98

8

441

5

18
. . .

. . .
. . .

. . .
. . .




Invariant measure such that πP = π

π =

(
2

3
,
2

3
;
16

15
,
6

5
;
54

35
,
12

7
;
128

63
,
20

9
;
250

99
,
30

11
;
432

143
,
42

13
;
686

195
,
56

15
; · · ·

)
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Associated network

· · ·

· · ·

.22 .27 .27

.14 .23 .20

.56

.39

.48 .49

.46 .48

.22 .05 .02.22 .06 .03

.09 .03 .02

.06 .03 .02

.30 .29 .28

.17 .20 .21

1 3 5

2 4 6
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A variant of the Wright-Fisher model

The Wright-Fisher diffusion model involving only mutation effects
considers a big population of constant size M of two types A and B

A
1+β

2−−→ B, B
1+α
2−−→ A, α, β > −1

As M → ∞, this model can be described by a diffusion process whose
state space is S = [0, 1] with drift and diffusion coefficient

τ(x) = α+ 1− x(α + β + 2), σ2(x) = 2x(1− x), α, β > −1

The N phases of our bivariate Markov process are variations of the
Wright-Fisher model in the drift coefficients:

Bii(x) = α+ 1 + N − i − x(α+ β + 2 + N − i), Aii (x) = 2x(1− x)

Now there is an extra parameter k ∈ (0, β + 1) in Q(x), which measures

how the process moves through all the phases.
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Some sample paths
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Spectral analysis

There exists a family of orthonormal MOP (Φn)n (matrix-valued spherical
functions) such that

1

2
A(x)Φ′′

n (x) +B(x)Φ′

n(x) +Q(x)Φn(x) = Φn(x)Γn

Transition probability matrix (MdI, 2012)

P(t; x , y) =

∞
∑

n=0

Φn(x)e
Γnt

Φ
∗

n(y)W(y)

Invariant distribution (MdI, 2012)

⇒ ψ(y) =

(∫ 1

0

e
T
NW(x)eNdx

)−1

e
T
NW(y), e

T = (1, 1, . . . , 1)

ψj(y ) = yα+N−j(1− y )β
(
N−1
j−1

)(
α+β+N

α

) (β+N)(k)N−j (β−k+1)j−1

(α+β−k+2)N−1

In (MdI, 2012) I have studied the probabilistic aspects of this process in
terms of the parameters, like waiting times, tendency, the invariant
distribution or the probabilistic meaning of the new parameter k .
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3 years ahead I

1 Accommodate examples of MOP to bivariate Markov processes

Discrete case: Find appropriate families of MOP for which
the corresponding Jacobi matrix is either stochastic or the
infinitesimal operator of a continuous-time
quasi-birth-and-death process.

Continuous case: Given a symmetric pair {W̃, Ã}, find an
appropriate transformation (depending on x)

{W̃, Ã} → {W,A} such that the new A is the infinitesimal
operator of a switching diffusion process.

2 Apply spectral methods to examples of real world bivariate Markov
processes in the literature.

Main problem: Find eigenfunctions and the corresponding weight
matrix W for a given infinitesimal operator A.

Possible approach: Find weight matrices such that they are
variations of continuous and scalar weights, or matrix-valued
eigenfunctions combinations of scalar special functions.
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3 years ahead II

3 Noncommutative integrable systems

Some of the families of MOP are related to noncommutative
Painlevé equations via Riemann-Hilbert problems (Cafasso-Mdi,
2013).

Main tool: Integral representations of some families of MOP. We
plan to in continue this work by considering connections of other
families with some nonlinear differential equations, or with random
matrices problems.

4 Other open problems

Finding new examples and phenomena of some of these MOP.
Electrostatic interpretation of the zeros of MOP (these are
given by det(Qn(x)) = 0)
Asymptotic analysis of some of these families.
Principal dynamical components (MdI-Tabak, 2013).
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5 years ahead I

1 Signal processing

Related to commuting integral and differential operators (for
example prolate spheroidal wave functions).

From the discrete setting (Grünbaum, 1983), given a full matrix M

(integral operator) one tries to find a tridiagonal matrix T

(differential operator) with simple spectrum such that MT = TM .

Something similar can be done in the matrix case
(Durán-Grünbaum, 2005), but now with a 2× 2 block matrix M.
The reproducing kernel of M is given by

Mij =

∫ Ω

0

Qi (x)W̃(x)Q∗

j (x)dx , i , j = 0, 1, . . . ,T

Here the band limiting is the restriction to the interval (0,Ω) and
the time limiting the restriction to the range 0, 1, . . . ,T .

They found a block tridiagonal T such that MT = TM.

Main goal: Explore this example in depth or find other examples.
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5 years ahead II

2 Noncommutative harmonic oscillators

It is very well known that the quantum harmonic oscillator can be
studied using Hermite or wave functions ψn(x). These functions are
eigenfunctions of the Schrödinger equation

ψ′′

n (x)− x2ψn(x) = −(2n+ 1)ψn(x)

In the matrix case Parmeggiani-Wakayama, 2002 consider 2× 2
differential operators of the form

A = A

(
−

d2

dx2
+

x2

2

)
+ B

(
x
d

dx
+

1

2

)
, x ∈ R

where A,B ∈ R2×2, A > 0,B = −B
T and A+ iB > 0.

Main goal: relate these differential operators with MOP or
switching diffusion models on R, or extend to N × N examples.
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Durán, A. J. and Grünbaum, F. A., Orthogonal matrix polynomials

satisfying second order differential equations, Internat. Math. Research
Notices, 2004: 10 (2004), 461–484.
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