Spectral methods for bivariate Markov processes

Manuel Domínguez de la Iglesia

Departamento de Análisis Matemático, Universidad de Sevilla

Instituto de Matemáticas, UNAM
Ciudad de México, June 25, 2013
OUTLINE

1. MARKOV PROCESSES
 - Preliminaries
 - Spectral methods

2. BIVARIATE MARKOV PROCESSES
 - Preliminaries
 - Spectral methods

3. AN EXAMPLE
 - A quasi-birth-and-death process
 - A variant of the Wright-Fisher model

4. FUTURE WORK
 - 3 years ahead
 - 5 years ahead
1. **Markov processes**
 - Preliminaries
 - Spectral methods

2. **Bivariate Markov processes**
 - Preliminaries
 - Spectral methods

3. **An example**
 - A quasi-birth-and-death process
 - A variant of the Wright-Fisher model

4. **Future work**
 - 3 years ahead
 - 5 years ahead
ORTHOGONAL POLYNOMIALS

Let \(\omega \) be a positive measure on \(S \subset \mathbb{R} \) and consider \(L^2_\omega(S) \).
A system of polynomials \((q_n)_n \) is orthogonal if

\[
\langle q_n, q_m \rangle_\omega = \int_S q_n(x)q_m(x)d\omega(x) = \|q_n\|^2_\omega \delta_{nm}, \quad n, m \geq 0
\]

This is equivalent to a three-term recurrence relation \((q_{-1} = 0, q_0 = 1) \)

\[
xq_n(x) = a_nq_{n+1}(x) + b_nq_n(x) + c_nq_{n-1}(x), \quad n \geq 1
\]

where \(a_n, c_n \neq 0, b_n \in \mathbb{R} \) and \(q_0(x) = 1, q_{-1}(x) = 0. \)

Jacobi operator (tridiagonal):

\[
Jq = \begin{pmatrix}
 b_0 & a_0 & & \\
 c_1 & b_1 & a_1 & \\
 c_2 & b_2 & a_2 & \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\begin{pmatrix}
 q_0(x) \\
 q_1(x) \\
 q_2(x) \\
 \vdots
\end{pmatrix}
= x
\begin{pmatrix}
 q_0(x) \\
 q_1(x) \\
 q_2(x) \\
 \vdots
\end{pmatrix}
= xq, \quad x \in S
\]

The converse result is also true (Favard’s or spectral theorem).
ORTHOGONAL POLYNOMIALS

Let ω be a positive measure on $S \subset \mathbb{R}$ and consider $L^2_\omega(S)$. A system of polynomials $(q_n)_n$ is orthogonal if

$$\langle q_n, q_m \rangle_\omega = \int_S q_n(x)q_m(x)d\omega(x) = \|q_n\|_\omega^2 \delta_{nm}, \quad n, m \geq 0$$

This is equivalent to a three-term recurrence relation $(q_{-1} = 0, q_0 = 1)$

$$xq_n(x) = a_nq_{n+1}(x) + b_nq_n(x) + c_nq_{n-1}(x), \quad n \geq 1$$

where $a_n, c_n \neq 0$, $b_n \in \mathbb{R}$ and $q_0(x) = 1, q_{-1}(x) = 0$.

Jacobi operator (tridiagonal):

$$Jq = \begin{pmatrix} b_0 & a_0 \\ c_1 & b_1 & a_1 \\ & \ddots & \ddots & \ddots \\ & & c_{n-1} & b_{n-1} & a_{n-1} \\ & & & c_n & b_n \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \\ q_{n-1}(x) \end{pmatrix} = x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \\ q_{n-1}(x) \end{pmatrix} = xq, \quad x \in S$$

The converse result is also true (Favard’s or spectral theorem).
ORTHOGONAL POLYNOMIALS

Let ω be a positive measure on $S \subset \mathbb{R}$ and consider $L^2_\omega(S)$. A system of polynomials $(q_n)_n$ is orthogonal if

$$\langle q_n, q_m \rangle_\omega = \int_S q_n(x)q_m(x)d\omega(x) = \|q_n\|_\omega^2 \delta_{nm}, \quad n, m \geq 0$$

This is equivalent to a three-term recurrence relation ($q_{-1} = 0, q_0 = 1$)

$$xq_n(x) = a_n q_{n+1}(x) + b_n q_n(x) + c_n q_{n-1}(x), \quad n \geq 1$$

where $a_n, c_n \neq 0, b_n \in \mathbb{R}$ and $q_0(x) = 1, q_{-1}(x) = 0$.

Jacobi operator (tridiagonal):

$$Jq = \begin{pmatrix} b_0 & a_0 & \ & \ \\ c_1 & b_1 & a_1 & \ \\ & c_2 & b_2 & a_2 \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ q_2(x) \\ \vdots \end{pmatrix} = xq,$$

$x \in S$

The converse result is also true (Favard’s or spectral theorem).
ORTHOGONAL POLYNOMIALS

Let ω be a positive measure on $S \subset \mathbb{R}$ and consider $L^2_\omega(S)$. A system of polynomials $(q_n)_n$ is orthogonal if

$$\langle q_n, q_m \rangle_\omega = \int_S q_n(x)q_m(x)d\omega(x) = \|q_n\|_\omega^2 \delta_{nm}, \quad n, m \geq 0$$

This is equivalent to a three-term recurrence relation ($q_{-1} = 0, q_0 = 1$)

$$xq_n(x) = a_nq_{n+1}(x) + b_nq_n(x) + c_nq_{n-1}(x), \quad n \geq 1$$

where $a_n, c_n \neq 0$, $b_n \in \mathbb{R}$ and $q_0(x) = 1, q_{-1}(x) = 0$.

Jacobi operator (tridiagonal):

$$Jq = \begin{pmatrix} b_0 & a_0 \\ c_1 & b_1 & a_1 \\ & c_2 & b_2 & a_2 \\ & & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ q_2(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} q_0(x) \\ q_1(x) \\ q_2(x) \\ \vdots \end{pmatrix} = xq, \quad x \in S$$

The converse result is also true (Favard's or spectral theorem).
CLASSICAL FAMILIES

(Bochner, 1929) Characterize families \((q_n)_n\) satisfying

\[
\sigma(x)q''_n(x) + \tau(x)q'_n(x) = \lambda_n q_n(x), \quad \deg(\sigma) \leq 2, \quad \deg(\tau) = 1
\]

The positive measure \(\omega\) (symmetric) satisfies the Pearson equation

\[
(\sigma(x)\omega(x))' = \tau(x)\omega(x)
\]

- **Hermite**: \(\sigma(x) = 1, \tau(x) = -2x, \lambda_n = -2n\)
 \(\omega(x) = e^{-x^2}, x \in \mathbb{R}\), normal or Gaussian distribution.

- **Laguerre**: \(\sigma(x) = x, \tau(x) = -x + \alpha + 1, \lambda_n = -n\)
 \(\omega(x) = x^\alpha e^{-x}, x \in [0, +\infty), \alpha > -1\), Gamma distribution.

- **Jacobi**: \(\sigma(x) = 1 - x^2, \tau(x) = -(\alpha + \beta + 2)x + \beta - \alpha, \lambda_n = -n(n + \alpha + \beta + 1)\)
 \(\omega(x) = (1 - x)^\alpha (1 + x)^\beta, x \in [-1, 1], \alpha, \beta > -1\), Beta kernel.
CLASSICAL FAMILIES

(Bochner, 1929) Characterize families \((q_n)_n\) satisfying

\[
\sigma(x)q''_n(x) + \tau(x)q'_n(x) = \lambda_n q_n(x), \quad \text{deg}(\sigma) \leq 2, \quad \text{deg}(\tau) = 1
\]

The positive measure \(\omega\) (symmetric) satisfies the Pearson equation

\[
(\sigma(x)\omega(x))' = \tau(x)\omega(x)
\]

Hermite: \(\sigma(x) = 1, \tau(x) = -2x, \lambda_n = -2n\)
\(\omega(x) = e^{-x^2}, x \in \mathbb{R}, \) normal or Gaussian distribution.

Laguerre: \(\sigma(x) = x, \tau(x) = -x + \alpha + 1, \lambda_n = -n\)
\(\omega(x) = x^\alpha e^{-x}, x \in [0, +\infty), \alpha > -1, \) Gamma distribution.

Jacobi: \(\sigma(x) = 1 - x^2, \tau(x) = -(\alpha + \beta + 2)x + \beta - \alpha, \lambda_n = -n(n + \alpha + \beta + 1)\)
\(\omega(x) = (1 - x)^\alpha (1 + x)^\beta, x \in [-1, 1], \alpha, \beta > -1, \) Beta kernel.
Classical families

(Bochner, 1929) Characterize families \((q_n)_n\) satisfying

\[
\sigma(x)q_n''(x) + \tau(x)q_n'(x) = \lambda_n q_n(x), \quad \deg(\sigma) \leq 2, \quad \deg(\tau) = 1
\]

The positive measure \(\omega\) (symmetric) satisfies the Pearson equation

\[
(\sigma(x)\omega(x))' = \tau(x)\omega(x)
\]

1. **Hermite**: \(\sigma(x) = 1, \tau(x) = -2x, \lambda_n = -2n\)
 \[\omega(x) = e^{-x^2}, x \in \mathbb{R}, \text{ normal or Gaussian distribution.}\]

2. **Laguerre**: \(\sigma(x) = x, \tau(x) = -x + \alpha + 1, \lambda_n = -n\)
 \[\omega(x) = x^\alpha e^{-x}, x \in [0, +\infty), \alpha > -1, \text{ Gamma distribution.}\]

3. **Jacobi**: \(\sigma(x) = 1 - x^2, \tau(x) = -(\alpha + \beta + 2)x + \beta - \alpha, \lambda_n = -n(n + \alpha + \beta + 1)\)
 \[\omega(x) = (1 - x)^\alpha(1 + x)^\beta, x \in [-1, 1], \alpha, \beta > -1, \text{ Beta kernel.}\]
CLASSICAL FAMILIES

(Bochner, 1929) Characterize families \((q_n)_n\) satisfying

\[
\sigma(x)q''_n(x) + \tau(x)q'_n(x) = \lambda_n q_n(x), \quad \deg(\sigma) \leq 2, \quad \deg(\tau) = 1
\]

The *positive* measure \(\omega\) (symmetric) satisfies the *Pearson equation*

\[
(\sigma(x)\omega(x))' = \tau(x)\omega(x)
\]

1. **HERMITE:** \(\sigma(x) = 1, \tau(x) = -2x, \lambda_n = -2n\)
 \[\omega(x) = e^{-x^2}, x \in \mathbb{R}, \text{ normal or Gaussian distribution.}\]

2. **LAGUERRE:** \(\sigma(x) = x, \tau(x) = -x + \alpha + 1, \lambda_n = -n\)
 \[\omega(x) = x^\alpha e^{-x}, x \in [0, +\infty), \alpha > -1, \text{ Gamma distribution.}\]

3. **JACOBI:** \(\sigma(x) = 1 - x^2, \tau(x) = -(\alpha + \beta + 2)x + \beta - \alpha, \lambda_n = -n(n + \alpha + \beta + 1)\)
 \[\omega(x) = (1 - x)^\alpha (1 + x)^\beta, x \in [-1, 1], \alpha, \beta > -1, \text{ Beta kernel.}\]
Classical families

(Bochner, 1929) Characterize families \((q_n)_n\) satisfying

\[
\sigma(x)q''_n(x) + \tau(x)q'_n(x) = \lambda_n q_n(x), \quad \text{deg}(\sigma) \leq 2, \quad \text{deg}(\tau) = 1
\]

The positive measure \(\omega\) (symmetric) satisfies the Pearson equation

\[
(\sigma(x)\omega(x))' = \tau(x)\omega(x)
\]

1. **Hermite**: \(\sigma(x) = 1, \tau(x) = -2x, \lambda_n = -2n\)
 \[
 \omega(x) = e^{-x^2}, x \in \mathbb{R}, \text{normal or Gaussian distribution}.
 \]

2. **Laguerre**: \(\sigma(x) = x, \tau(x) = -x + \alpha + 1, \lambda_n = -n\)
 \[
 \omega(x) = x^\alpha e^{-x}, x \in [0, +\infty), \alpha > -1, \text{Gamma distribution}.
 \]

3. **Jacobi**: \(\sigma(x) = 1 - x^2, \tau(x) = - (\alpha + \beta + 2)x + \beta - \alpha, \lambda_n = -n(n + \alpha + \beta + 1)\)
 \[
 \omega(x) = (1 - x)^\alpha (1 + x)^\beta, x \in [-1, 1], \alpha, \beta > -1, \text{Beta kernel}.
 \]
Markov processes

A Markov process with state space $S \subset \mathbb{R}$ is a collection of random variables $\{X_t \in S : t \in \mathcal{T}\}$ indexed by time \mathcal{T} (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

- **S discrete (Markov chains)**
 The transition probabilities

 \[P_{ij}(t) \equiv \Pr(X_t = j|X_0 = i), \quad i, j \in \{0, 1, \ldots\} \]

 come in terms of a stochastic matrix
 \[
 P(t) = \begin{pmatrix}
 P_{00}(t) & P_{01}(t) & \cdots \\
 P_{10}(t) & P_{11}(t) & \cdots \\
 \vdots & \vdots & \ddots
 \end{pmatrix}
 \]

- **S continuous (Markov processes)**
 The probabilities are described in terms of a density

 \[p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \leq y|X_0 = x), \quad x, y \in (a, b) \subset \mathbb{R} \]
A Markov process with state space \(S \subset \mathbb{R} \) is a collection of random variables \(\{X_t \in S : t \in T\} \) indexed by time \(T \) (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

- **\(S \) discrete (Markov chains)**
 - The transition probabilities

 \[
P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i), \quad i, j \in \{0, 1, \ldots\}
 \]

 come in terms of a stochastic matrix

 \[
P(t) = \begin{pmatrix}
P_{00}(t) & P_{01}(t) & \cdots \\
P_{10}(t) & P_{11}(t) & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix}
 \]

- **\(S \) continuous (Markov processes)**
 - The probabilities are described in terms of a density

 \[
p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \leq y | X_0 = x), \quad x, y \in (a, b) \subset \mathbb{R}
 \]
A Markov process with state space \(S \subset \mathbb{R} \) is a collection of random variables \(\{X_t \in S : t \in T\} \) indexed by time \(T \) (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

- **\(S \) discrete (Markov chains)**
 - The transition probabilities come in terms of a stochastic matrix

\[
P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i), \quad i, j \in \{0, 1, \ldots\}
\]

- **\(S \) continuous (Markov processes)**
 - The probabilities are described in terms of a density

\[
p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \leq y | X_0 = x), \quad x, y \in (a, b) \subset \mathbb{R}
\]
THREE IMPORTANT CASES

1. **Random walks**: $S = \{0, 1, 2, \ldots \}$, $T = \{0, 1, 2, \ldots \}$.

 \[
 P = \begin{pmatrix}
 b_0 & a_0 \\
 c_1 & b_1 & a_1 \\
 \vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{pmatrix}, \quad b_i \geq 0, \ a_i, \ c_i > 0, \quad a_i + b_i + c_i = 1
 \]

 \[P(n) = P^n\] is the \emph{n-step transition probability matrix}.

2. **Birth-and-death processes**: $S = \{0, 1, 2, \ldots \}$, $T = [0, \infty)$.

 \(P(t)\) satisfy the \emph{backward and forward equation}

 \[
P'(t) = AP(t), \quad P'(t) = P(t)A, \quad P(0) = I
 \]

 \[
 A = \begin{pmatrix}
 -\lambda_0 & \lambda_0 \\
 \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\
 \vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{pmatrix}, \quad \lambda_i, \mu_i > 0
 \]

3. **Diffusion processes**: $S = (a, b) \subseteq \mathbb{R}$, $T = [0, \infty)$.

 The density $p(t; x, y)$ satisfy the \emph{backward and forward equation}

 \[
 \frac{\partial}{\partial t} p(t; x, y) = Ap(t; x, y), \quad \frac{\partial}{\partial t} p(t; x, y) = A^* p(t; x, y)
 \]

 \[
 A = \frac{1}{2} \sigma^2(x) \frac{d^2}{dx^2} + \tau(x) \frac{d}{dx}
 \]
THREE IMPORTANT CASES

1. **Random walks:** $S = \{0, 1, 2, \ldots\}$, $T = \{0, 1, 2, \ldots\}$.

 \[P = \begin{pmatrix} b_0 & a_0 \\ c_1 & b_1 & a_1 \\ & & \ddots \end{pmatrix}, \quad b_i \geq 0, \ a_i, \ c_i > 0, \ a_i + b_i + c_i = 1 \]

 \[P(n) = P^n \text{ is the } n\text{-step transition probability matrix.} \]

2. **Birth-and-death processes:** $S = \{0, 1, 2, \ldots\}$, $T = [0, \infty)$.

 $P(t)$ satisfy the *backward and forward equation*

 \[P'(t) = AP(t), \quad P'(t) = P(t)A, \quad P(0) = I \]

 \[A = \begin{pmatrix} -\lambda_0 & \lambda_0 & \mu_1 & \lambda_1 & \cdots \\ \lambda_0 & - (\lambda_1 + \mu_1) & \lambda_1 & \cdots \\ \mu_1 & \lambda_1 & \cdots \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad \lambda_i, \mu_i > 0 \]

3. **Diffusion processes:** $S = (a, b) \subseteq \mathbb{R}$, $T = [0, \infty)$.

 The density $p(t; x, y)$ satisfy the *backward and forward equation*

 \[\frac{\partial}{\partial t} p(t; x, y) = Ap(t; x, y), \quad \frac{\partial}{\partial t} p(t; x, y) = A^* p(t; x, y) \]

 \[A = \frac{1}{2} \sigma^2(x) \frac{d^2}{dx^2} + \tau(x) \frac{d}{dx} \]
THREE IMPORTANT CASES

1. Random walks: \(S = \{0, 1, 2, \ldots\}, \ T = \{0, 1, 2, \ldots\} \).

 \[
 P = \begin{pmatrix}
 b_0 & a_0 \\
 c_1 & b_1 & a_1 \\
 \vdots & \vdots & \vdots & \ddots
 \end{pmatrix}, \quad b_i \geq 0, \ a_i, c_i > 0, \quad a_i + b_i + c_i = 1
 \]

 \(P(n) = P^n \) is the \(n \)-step transition probability matrix.

2. Birth-and-death processes: \(S = \{0, 1, 2, \ldots\}, \ T = [0, \infty) \).

 \(P(t) \) satisfy the \textit{backward and forward equation}
 \[
 P'(t) = AP(t), \quad P'(t) = P(t)A, \quad P(0) = I
 \]

 \[
 A = \begin{pmatrix}
 -\lambda_0 & \lambda_0 \\
 \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\
 \vdots & \vdots & \vdots & \ddots
 \end{pmatrix}, \quad \lambda_i, \mu_i > 0
 \]

3. Diffusion processes: \(S = (a, b) \subseteq \mathbb{R}, \ T = [0, \infty) \).

 The density \(p(t; x, y) \) satisfy the \textit{backward and forward equation}
 \[
 \frac{\partial}{\partial t} p(t; x, y) = Ap(t; x, y), \quad \frac{\partial}{\partial t} p(t; x, y) = A^* p(t; x, y)
 \]

 \[
 A = \frac{1}{2} \sigma^2(x) \frac{d^2}{dx^2} + \tau(x) \frac{d}{dx}
 \]
Random walks
Random walks
Markov processes

Bivariate Markov processes

An example

Future work

RANDOM WALKS

![Random Walk Diagram](image)
Random walks

![Diagram of a random walk](image)

- **Markov processes**
- **Bivariate Markov processes**
- **An example**
- **Future work**
Random walks

![Random Walk Diagram]

- **Markov processes**
- **Bivariate Markov processes**
- **An example**
- **Future work**
Random walks

![Random walks diagram]

- S
- T
- $b_0, b_1, b_2, b_3, b_4, b_5$
- $a_0, a_1, a_2, a_3, a_4, a_5$
- $c_1, c_2, c_3, c_4, c_5, c_6$
RANDOM WALKS
Random walks

\[
\begin{align*}
 &b_0 & a_0 & b_1 & a_1 & b_2 & a_2 & b_3 & a_3 & b_4 & a_4 & b_5 & a_5 & \ldots \\
 &0 & 1 & 2 & 3 & 4 & 5 & & & & & & & \\
\end{align*}
\]

\[S\]

\[T\]
Random walks
Random walks

A random walk is a stochastic process that involves a sequence of random steps. Each step is determined by a probability distribution. In the context of Markov processes, random walks can be used to model various phenomena, such as the movement of particles in a fluid or the evolution of a financial market.

The diagram illustrates a simple random walk on a finite state space. The states are labeled from 0 to 5, and the transitions between states are shown by arrows. Each transition is associated with a probability, represented by the labels on the arrows.

The graph also shows a cumulative sum of the random walk, indicating the progress over time. This can be useful in understanding the long-term behavior of the process.
Random walks

Markov processes
Bivariate Markov processes
An example
Future work
Random walks
Random Walks

![Random Walk Diagram]

- **States**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

- **Transitions**:
 - b_0 to a_0, c_1
 - 1 to a_1, b_1, c_2
 - 2 to a_2, b_2, c_3
 - 3 to a_3, b_3, c_4
 - 4 to a_4, b_4, c_5
 - 5 to a_5, b_5

- **Graph S**

- **Timeline \mathcal{T}**
BIRTH-AND-DEATH PROCESSES
Birth-and-death processes
BIRTH-AND-DEATH PROCESSES

\[
\begin{array}{cccccc}
0 & \lambda_0 & \mu_1 & 1 & \lambda_1 & \mu_2 \\
& & & & & \\
\mu_1 & & \lambda_2 & \mu_2 & \lambda_3 & \mu_3 \\
\mu_2 & & & \mu_2 & \lambda_4 & \mu_4 \\
& & & & \mu_3 & \lambda_5 & \mu_5 \\
& & & & & \mu_4 & \lambda_6 & \mu_6 \\
& & & & & & \cdots
\end{array}
\]
BIRTH-AND-DEATH PROCESSES

\[
\begin{align*}
0 & \xrightarrow{\lambda_0} 1 \\
1 & \xrightarrow{\lambda_1} 2 \\
2 & \xrightarrow{\lambda_2} 3 \\
3 & \xrightarrow{\lambda_3} 4 \\
4 & \xrightarrow{\lambda_4} 5 \\
5 & \xrightarrow{\lambda_5} \ldots
\end{align*}
\]

\[
\begin{align*}
0 & \xrightarrow{\mu_1} 1 \\
1 & \xrightarrow{\mu_2} 2 \\
2 & \xrightarrow{\mu_3} 3 \\
3 & \xrightarrow{\mu_4} 4 \\
4 & \xrightarrow{\mu_5} 5 \\
5 & \xrightarrow{\mu_6} \ldots
\end{align*}
\]
Birth-and-death processes

\[
\begin{align*}
0 & \xrightarrow{\lambda_0} 1 & 1 & \xrightarrow{\lambda_1} 2 \\
& \xleftarrow{\mu_1} 0 & 2 & \xleftarrow{\mu_2} 1 & 3 & \xleftarrow{\mu_3} 2 \\
& 3 & \xleftarrow{\mu_4} 4 & 4 & \xleftarrow{\mu_5} 5 & \ldots \\
& & & 5 & \xleftarrow{\mu_6} & \\
\end{align*}
\]
Birth-and-death processes

\[\begin{array}{cccc}
0 & \xrightarrow{\lambda_0} & 1 & \xrightarrow{\lambda_1} 2 \\
\mu_1 & \xleftarrow{\mu_2} & \xrightarrow{\mu_3} & \xleftarrow{\mu_4} 4 \\
\lambda_2 & \xrightarrow{\lambda_3} 5 & \xleftarrow{\lambda_4} & \xrightarrow{\lambda_5} \ldots \\
\mu_5 & \xleftarrow{\mu_6} & \xrightarrow{\mu_4} & \xleftarrow{\mu_3} 3 \\
\end{array} \]
Birth-and-death processes

\[\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \ldots \]

\[\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6, \ldots \]

\[S \]

\[T \]
BIRTH-AND-DEATH PROCESSES

\[
\begin{array}{cccccc}
0 & \xrightarrow{\lambda_0} & 1 & \xrightarrow{\lambda_1} & 2 & \xrightarrow{\lambda_2} & 3 & \xrightarrow{\lambda_3} & 4 & \xrightarrow{\lambda_4} & 5 & \xrightarrow{\lambda_5} & \ldots \\
\mu_1 & \xleftarrow{} & \mu_2 & \xleftarrow{} & \mu_3 & \xleftarrow{} & \mu_4 & \xleftarrow{} & \mu_5 & \xleftarrow{} & \mu_6 & \\
\end{array}
\]
Birth-and-death processes

\[\begin{align*}
0 & \xrightarrow{\lambda_0} 1 \xrightarrow{\lambda_1} 2 \xrightarrow{\lambda_2} 3 \xrightarrow{\lambda_3} 5 \xrightarrow{\lambda_4} \cdots \\
\mu_1 & \xleftarrow{} 1 \xleftarrow{} 2 \xleftarrow{} 3 \xleftarrow{} 5 \xleftarrow{} mu_6
\end{align*} \]
Diffusion processes

Ornstein-Uhlenbeck diffusion process: $S = \mathbb{R}$ and $\sigma^2(x) = 1$, $\tau(x) = -x$

It describes the velocity of a massive Brownian particle under the influence of friction. It is the only nontrivial process which is stationary, Gaussian and Markovian.

![Graphs showing the Ornstein-Uhlenbeck process for different initial conditions](image)

- $X_0 = 0$
- $X_0 = 3$
- $X_0 = -3$
- $X_0 = 10$
Spectral methods

Given a infinitesimal operator \mathcal{A}, if we can find a measure $\omega(x)$ associated with \mathcal{A}, and a set of orthogonal eigenfunctions $f(i, x)$ such that

$$\mathcal{A}f(i, x) = \lambda(i, x)f(i, x)$$

then it is possible to find spectral representations of

- **Transition probabilities**
 - Discrete case: transition probability matrix $P_{ij}(t)$.
 - Continuous case: transition density $p(t; x, y)$.

- **Invariant measure or distribution**
 - Discrete case: $\pi = (\pi_0, \pi_1, \ldots) \geq 0$ with
 $$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$
 - Continuous case: $\psi(y)$ with
 $$\psi(y) = \lim_{t \to \infty} p(t; x, y)$$
Given an infinitesimal operator \mathcal{A}, if we can find a measure $\omega(x)$ associated with \mathcal{A}, and a set of orthogonal eigenfunctions $f(i, x)$ such that

$$\mathcal{A}f(i, x) = \lambda(i, x)f(i, x)$$

then it is possible to find spectral representations of

- **Transition probabilities**
 - Discrete case: transition probability matrix $P_{ij}(t)$.
 - Continuous case: transition density $p(t; x, y)$.

- **Invariant measure or distribution**
 - Discrete case: $\pi = (\pi_0, \pi_1, \ldots) \geq 0$ with
 $$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$
 - Continuous case: $\psi(y)$ with
 $$\psi(y) = \lim_{t \to \infty} p(t; x, y)$$
Given a infinitesimal operator \mathcal{A}, if we can find a measure $\omega(x)$ associated with \mathcal{A}, and a set of orthogonal eigenfunctions $f(i, x)$ such that

$$\mathcal{A}f(i, x) = \lambda(i, x)f(i, x)$$

then it is possible to find spectral representations of

- **Transition probabilities**
 - Discrete case: transition probability matrix $P_{ij}(t)$.
 - Continuous case: transition density $p(t; x, y)$.

- **Invariant measure or distribution**
 - Discrete case: $\pi = (\pi_0, \pi_1, \ldots) \geq 0$ with
 $$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$
 - Continuous case: $\psi(y)$ with
 $$\psi(y) = \lim_{t \to \infty} p(t; x, y)$$
Random walks

\[S = \mathcal{T} = \{0, 1, 2, \ldots\}. \]

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure \(\omega \) associated with \(P \) which orthogonal polynomials \((q_n)_n \) satisfy \((q_{-1} = 0, q_0 = 1) \)

\[
Pq = \begin{pmatrix} b_0 & a_0 & \cdots \\ c_1 & b_1 & a_1 \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]
\]

Transition probabilities

\[
P^n_{ij} = \Pr(X_n = j | X_0 = i) = \frac{1}{\|q_i\|_2^2} \int_{-1}^{1} x^n q_i(x) q_j(x) d\omega(x)
\]

Invariant measure

Non-null vector \(\pi = (\pi_0, \pi_1, \ldots) \geq 0 \) such that

\[
\pi P = \pi \quad \Rightarrow \quad \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|_2^2}
\]

Examples: Urn models related with Jacobi polynomials (Legendre, Gegenbauer, Chebyshev).
Random walks

\[S = T = \{0, 1, 2, \ldots\} \]

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure \(\omega \) associated with \(P \) which orthogonal polynomials \((q_n)_n \) satisfy \((q_{-1} = 0, q_0 = 1) \)

\[
Pq = \begin{pmatrix} b_0 & a_0 \\ c_1 & b_1 & a_1 \\ \vdots & \vdots & \vdots \\ \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \\ \end{pmatrix} = x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \\ \end{pmatrix}, \quad x \in [-1, 1]
\]

Transition probabilities

\[
P^n_{ij} = \Pr(X_n = j|X_0 = i) = \frac{1}{\|q_i\|^2_\omega} \int_{-1}^1 x^n q_i(x)q_j(x) d\omega(x)
\]

Invariant measure

Non-null vector \(\pi = (\pi_0, \pi_1, \ldots) \geq 0 \) such that

\[
\pi P = \pi \quad \Rightarrow \quad \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|^2_\omega}
\]

Examples: Urn models related with Jacobi polynomials (Legendre, Gegenbauer, Chebyshev).
Random walks

\[S = \mathcal{T} = \{0, 1, 2, \ldots\}. \]

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure \(\omega \) associated with \(P \) which orthogonal polynomials \((q_n)_n \) satisfy \((q_{-1} = 0, q_0 = 1) \)

\[
Pq = \begin{pmatrix} b_0 & a_0 & \cdots \\ c_1 & b_1 & a_1 \\ \vdots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]
\]

Transition Probabilities

\[
P^n_{ij} = \Pr(X_n = j|X_0 = i) = \frac{1}{\|q_i\|_\omega^2} \int_{-1}^1 x^n q_i(x)q_j(x)d\omega(x)
\]

Invariant Measure

Non-null vector \(\pi = (\pi_0, \pi_1, \ldots) \geq 0 \) such that

\[
\pi P = \pi \quad \Rightarrow \quad \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|_\omega^2}
\]

Examples: Urn models related with Jacobi polynomials (Legendre, Gegenbauer, Chebyshev).
RANDOM WALKS

\(S = \mathcal{T} = \{0, 1, 2, \ldots \} \).

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure \(\omega \) associated with \(P \) which orthogonal polynomials \((q_n)_n \) satisfy \((q_{-1} = 0, q_0 = 1)\)

\[
Pq = \begin{pmatrix}
b_0 & a_0 \\
c_1 & b_1 & a_1 \\
 & \ddots & \ddots & \ddots
\end{pmatrix}
\begin{pmatrix}
q_0(x) \\
q_1(x) \\
 & \ddots & \ddots & \ddots
\end{pmatrix}
= x
\begin{pmatrix}
q_0(x) \\
q_1(x) \\
 & \ddots & \ddots & \ddots
\end{pmatrix}, \quad x \in [-1, 1]
\]

Transition probabilities

\[
P^n_{ij} = \Pr(X_n = j|X_0 = i) = \frac{1}{\|q_i\|_\omega^2} \int_{-1}^{1} x^n q_i(x)q_j(x)d\omega(x)
\]

Invariant measure

Non-null vector \(\pi = (\pi_0, \pi_1, \ldots) \geq 0 \) such that

\[
\pi P = \pi \quad \Rightarrow \quad \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|_\omega^2}
\]

Examples: Urn models related with Jacobi polynomials (Legendre, Gegenbauer, Chebyshev).
BIRTH-AND-DEATH PROCESSES

\[S = \{0, 1, 2, \ldots\}, \; \mathcal{T} = [0, \infty). \]

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure \(\omega \) associated with \(\mathcal{A} \) which orthogonal polynomials \((q_n)_n \) satisfy \((q_{n-1} = 0, q_0 = 1) \)

\[
\mathcal{A}q = \begin{pmatrix}
-l_0 & \lambda_0 \\
\mu_1 & -\left(\lambda_1 + \mu_1\right) & \lambda_1 \\
& \ddots & \ddots & \ddots \\
& & & \ddots & \ddots \\
& & & & \ddots & \ddots & \ddots
\end{pmatrix}
\begin{pmatrix}
q_0(x) \\
q_1(x) \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix} = -x \begin{pmatrix}
q_0(x) \\
q_1(x) \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\]

Transition probabilities

\[
P_{ij}(t) = \Pr(X_t = j | X_0 = i) = \frac{1}{\|q_i\|^2_\omega} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)
\]

Invariant measure

Non-null vector \(\pi = (\pi_0, \pi_1, \ldots) \geq 0 \) such that

\[
\pi \mathcal{A} = 0 \quad \Rightarrow \quad \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|^2_\omega}
\]

Examples: Laguerre, Meixner (linear growth models), Charlier \((M/M/\infty \text{ queue})\), Krawtchouk (Ehrenfest model) polynomials.
Birth-and-death processes

\[S = \{0, 1, 2, \ldots\}, \ T = [0, \infty). \]

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure \(\omega \) associated with \(A \) which orthogonal polynomials \((q_n)_n\) satisfy \((q_{-1} = 0, q_0 = 1)\)

\[
Aq = \begin{pmatrix}
-\lambda_0 & \lambda_0 \\
\mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\
& \ddots & \ddots & \ddots
\end{pmatrix}
\begin{pmatrix}
q_0(x) \\
q_1(x) \\
\vdots
\end{pmatrix} = -x
\begin{pmatrix}
q_0(x) \\
q_1(x) \\
\vdots
\end{pmatrix}
\]

Transition probabilities

\[
P_{ij}(t) = \Pr(X_t = j|X_0 = i) = \frac{1}{\|q_i\|^2_\omega} \int_0^\infty e^{-xt} q_i(x)q_j(x) d\omega(x)
\]

Invariant measure

Non-null vector \(\pi = (\pi_0, \pi_1, \ldots) \geq 0 \) such that

\[
\pi A = 0 \quad \Rightarrow \quad \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|^2_\omega}
\]

Examples: Laguerre, Meixner (linear growth models), Charlier \((M/M/\infty \text{ queue})\), Krawtchouk (Ehrenfest model) polynomials.
Birth-and-death processes

$S = \{0, 1, 2, \ldots \}$, $\mathcal{T} = [0, \infty)$.

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure ω associated with \mathcal{A} which orthogonal polynomials $(q_n)_n$ satisfy ($q_{-1} = 0$, $q_0 = 1$)

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \\ \vdots \end{pmatrix}$$

Transition probabilities

$$P_{ij}(t) = \Pr(X_t = j|X_0 = i) = \frac{1}{\|q_i\|_2\omega} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

Invariant measure

Non-null vector $\pi = (\pi_0, \pi_1, \ldots) \geq 0$ such that

$$\pi \mathcal{A} = 0 \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|_2^2}$$

Examples: Laguerre, Meixner (linear growth models), Charlier ($M/M/\infty$ queue), Krawtchouk (Ehrenfest model) polynomials.
Birth-and-death processes

\[S = \{0, 1, 2, \ldots \}, \ T = [0, \infty). \]

Spectral theorem (Karlin-MacGregor, 1959): there exists a measure \(\omega \) associated with \(\mathcal{A} \) which orthogonal polynomials \((q_n)_n \) satisfy \((q_{-1} = 0, q_0 = 1) \)

\[
\mathcal{A}q = \begin{pmatrix}
-\lambda_0 & \lambda_0 \\
\mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\
\vdots & \ddots & \ddots & \ddots \\
\end{pmatrix}
\begin{pmatrix}
q_0(x) \\
q_1(x) \\
\vdots \\
\end{pmatrix} = -x \begin{pmatrix}
q_0(x) \\
q_1(x) \\
\vdots \\
\end{pmatrix}
\]

Transition probabilities

\[
P_{ij}(t) = \Pr(X_t = j|X_0 = i) = \frac{1}{\|q_i\|_\omega^2} \int_0^\infty e^{-xt} q_i(x)q_j(x) d\omega(x)
\]

Invariant measure

Non-null vector \(\pi = (\pi_0, \pi_1, \ldots) \geq 0 \) such that

\[
\pi \mathcal{A} = 0 \implies \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|_\omega^2}
\]

Examples: Laguerre, Meixner (linear growth models), Charlier \((M/M/\infty \text{ queue})\), Krawtchouk (Ehrenfest model) polynomials.
DIFFUSION PROCESSES

\[S = (a, b) \subseteq \mathbb{R}, \quad T = [0, \infty). \]

If there exists a positive measure \(\omega \) symmetric with respect to \(\mathcal{A} \) and the corresponding family of **orthonormal functions** \((\phi_n)_n\) satisfy

\[
\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi''_n(x) + \tau(x)\phi'_n(x) = \lambda_n\phi_n(x)
\]

Transition Probability Density

\[
p(t; x, y) = \sum_{n=0}^{\infty} e^{\lambda_nt}\phi_n(x)\phi_n(y)\omega(y)
\]

Invariant Measure

\[
\psi(y) \quad \text{such that} \quad \mathcal{A}^*\psi(y) = 0 \Rightarrow \psi(y) = \frac{1}{\int_S \omega(x)dx}\omega(y)
\]

Examples: Hermite (Orstein-Uhlenbeck process), Laguerre (squared Bessel process), Jacobi polynomials (Wright-Fisher model).
DIFFUSION PROCESSES

\(S = (a, b) \subseteq \mathbb{R}, \ T = [0, \infty) \).

If there exists a positive measure \(\omega \) symmetric with respect to \(A \) and the corresponding family of orthonormal functions \((\phi_n)_n \) satisfy

\[
A\phi_n(x) = \frac{1}{2} \sigma^2(x) \phi''_n(x) + \tau(x) \phi'_n(x) = \lambda_n \phi_n(x)
\]

Transition probability density

\[
p(t; x, y) = \sum_{n=0}^{\infty} e^{\lambda_n t} \phi_n(x) \phi_n(y) \omega(y)
\]

Invariant measure

\[
\psi(y) \text{ such that } A^*\psi(y) = 0 \Rightarrow \psi(y) = \frac{1}{\int_S \omega(x) dx} \omega(y)
\]

Examples: Hermite (Orstein-Uhlenbeck process), Laguerre (squared Bessel process), Jacobi polynomials (Wright-Fisher model).
Diffusion processes

\(S = (a, b) \subseteq \mathbb{R}, \ T = [0, \infty). \)

If there exists a positive measure \(\omega \) symmetric with respect to \(A \) and the corresponding family of orthonormal functions \((\phi_n)_n \) satisfy

\[
A \phi_n(x) = \frac{1}{2} \sigma^2(x) \phi_n''(x) + \tau(x) \phi_n'(x) = \lambda_n \phi_n(x)
\]

Transition probability density

\[
p(t; x, y) = \sum_{n=0}^{\infty} e^{\lambda_n t} \phi_n(x) \phi_n(y) \omega(y)
\]

Invariant measure

\(\psi(y) \) such that \(A^* \psi(y) = 0 \implies \psi(y) = \frac{1}{\int_{S} \omega(x) dx} \omega(y) \)

Examples: Hermite (Orstein-Uhlenbeck process), Laguerre (squared Bessel process), Jacobi polynomials (Wright-Fisher model).
Diffusion processes

\[S = (a, b) \subseteq \mathbb{R}, \ T = [0, \infty). \]

If there exists a positive measure \(\omega \) symmetric with respect to \(A \) and the corresponding family of orthonormal functions \((\phi_n) \) satisfy

\[
A\phi_n(x) = \frac{1}{2} \sigma^2(x)\phi''_n(x) + \tau(x)\phi'_n(x) = \lambda_n \phi_n(x)
\]

Transition probability density

\[
p(t; x, y) = \sum_{n=0}^{\infty} e^{\lambda_n t} \phi_n(x)\phi_n(y)\omega(y)
\]

Invariant measure

\[
\psi(y) \text{ such that } A^*\psi(y) = 0 \Rightarrow \psi(y) = \frac{1}{\int_S \omega(x)dx} \omega(y)
\]

Examples: Hermite (Orstein-Uhlenbeck process), Laguerre (squared Bessel process), Jacobi polynomials (Wright-Fisher model).
MARKOV PROCESSES
- Preliminaries
- Spectral methods

BIVARIATE MARKOV PROCESSES
- Preliminaries
- Spectral methods

AN EXAMPLE
- A quasi-birth-and-death process
- A variant of the Wright-Fisher model

FUTURE WORK
- 3 years ahead
- 5 years ahead
Matrix valued polynomials on the real line:

\[A_n x^n + \cdots + A_1 x + A_0, \quad A_i \in \mathbb{C}^{N \times N} \]

Krein (1949): matrix-valued orthogonal polynomials (MOP)
Orthogonality: weight matrix \(W \) supported on \(S \subset \mathbb{R} \) (positive definite with finite moments) and a matrix valued inner product \((L^2_\omega(S; \mathbb{C}^{N \times N})) \):

\[
\langle P, Q \rangle_W = \int_S P(x)W(x)Q^*(x) \, dx
\]

A system of MOP \((Q_n)_n \) \(\langle Q_n, Q_m \rangle_W = \|Q_n\|_W^2 \delta_{nm} \) satisfies a three-term recurrence relation \((Q_{-1} = 0, Q_0 = I) \)

\[
xQ_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad \text{det}(C_n) \neq 0
\]

Jacobi operator (block tridiagonal)

\[
JQ = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
C_2 & B_2 & A_2 \\
\vdots & \ddots & \ddots \\
\end{pmatrix}
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots \\
\end{pmatrix}
= x
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots \\
\end{pmatrix}
= xQ, \quad x \in S
\]

The converse result is also true (Favard’s or spectral theorem**).
Matrix-valued orthogonal polynomials on the real line:

\[A_n x^n + \cdots + A_1 x + A_0, \quad A_i \in \mathbb{C}^{N \times N} \]

Krein (1949): matrix-valued orthogonal polynomials (MOP)

Orthogonality: weight matrix \(W \) supported on \(S \subset \mathbb{R} \) (positive definite with finite moments) and a matrix valued inner product \((L^2_W(S; \mathbb{C}^{N \times N})) \):

\[
\langle P, Q \rangle_W = \int_S P(x)W(x)Q^*(x) \, dx
\]

A system of MOP \((Q_n)_n \) (\(\langle Q_n, Q_m \rangle_W = \|Q_n\|_W^2 \delta_{nm} \)) satisfies a three-term recurrence relation (\(Q_{-1} = 0, Q_0 = I \))

\[
xQ_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad \text{det}(C_n) \neq 0
\]

Jacobi operator (block tridiagonal)

\[
JQ = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& C_2 & B_2 & A_2 \\
& & & \ddots & \ddots & \ddots \\
& & & & \ddots & \ddots & \ddots \\
& & & & & \ddots & \ddots & \ddots \\
& & & & & & \ddots & \ddots & \ddots \\
& & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & & & & & & & & & \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots
\end{pmatrix}
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix} = x \begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix} = xQ, \quad x \in S
\]

The converse result is also true (Favard’s or spectral theorem)**
Matrix-valued polynomials on the real line:

\[A_n x^n + \cdots + A_1 x + A_0, \quad A_i \in \mathbb{C}^{N \times N} \]

Krein (1949): matrix-valued orthogonal polynomials (MOP)

Orthogonality: weight matrix \(W \) supported on \(S \subset \mathbb{R} \) (positive definite with finite moments) and a matrix valued inner product \((L^2_W(S; \mathbb{C}^{N \times N})) \):

\[
\langle P, Q \rangle_W = \int_S P(x) W(x) Q^*(x) \, dx
\]

A system of MOP \((Q_n) \) \((\langle Q_n, Q_m \rangle_W = \|Q_n\|_W^2 \delta_{nm}) \) satisfies a three-term recurrence relation \((Q_{-1} = 0, Q_0 = I) \)

\[
x Q_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad \det(C_n) \neq 0
\]

Jacobi operator (block tridiagonal)

\[
JQ = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& C_2 & B_2 & A_2 \\
& & & & \ddots
\end{pmatrix}
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix}
= x
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix}
= x Q, \quad x \in S
\]

The converse result is also true (Favard’s or spectral theorem**).
Matrix valued polynomials on the real line:

\[A_n x^n + \cdots + A_1 x + A_0, \quad A_i \in \mathbb{C}^{N \times N} \]

Krein (1949): matrix-valued orthogonal polynomials (MOP)

Orthogonality: weight matrix \(W \) supported on \(S \subset \mathbb{R} \) (positive definite with finite moments) and a matrix valued inner product (\(L^2_W(S; \mathbb{C}^{N \times N}) \)):

\[
\langle P, Q \rangle_W = \int_S P(x) W(x) Q^*(x) \, dx
\]

A system of MOP \((Q_n)_n \) (\(\langle Q_n, Q_m \rangle_W = \|Q_n\|^2_W \delta_{nm} \)) satisfies a three-term recurrence relation \((Q_{-1} = 0, Q_0 = I) \)

\[
x Q_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad \det(C_n) \neq 0
\]

Jacobi operator (block tridiagonal)

\[
JQ = \begin{pmatrix}
B_0 & A_0 & & \\
C_1 & B_1 & A_1 & \\
& C_2 & B_2 & A_2 \\
& & & \ddots
\end{pmatrix}
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix}
= x
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix}
= xQ, \quad x \in S
\]

The converse result is also true (Favard’s or spectral theorem**).
Matrix-valued orthogonal polynomials on the real line:

\[A_n x^n + \cdots + A_1 x + A_0, \quad A_i \in \mathbb{C}^{N \times N} \]

Krein (1949): matrix-valued orthogonal polynomials (MOP)

Orthogonality: weight matrix \(W \) supported on \(S \subset \mathbb{R} \) (positive definite with finite moments) and a matrix valued inner product (\(L_2^W(S; \mathbb{C}^{N \times N}) \)):

\[\langle P, Q \rangle_W = \int_S P(x)W(x)Q^*(x) \, dx \]

A system of MOP \((Q_n)_n \) \((\langle Q_n, Q_m \rangle_W = \|Q_n\|_W^2 \delta_{nm}) \) satisfies a three-term recurrence relation \((Q_{-1} = 0, Q_0 = I) \)

\[xQ_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad \det(C_n) \neq 0 \]

Jacobi operator (block tridiagonal)

\[JQ = \begin{pmatrix} \begin{bmatrix} B_0 & A_0 \cr C_1 & B_1 & A_1 \cr & \ddots & \ddots & \ddots \end{bmatrix} \end{pmatrix} \begin{pmatrix} Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots \end{pmatrix} = x \begin{pmatrix} Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots \end{pmatrix} = xQ, \quad x \in S \]

The converse result is also true (Favard’s or spectral theorem**).
Matrix-valued orthogonal polynomials on the real line:

\[A_n x^n + \cdots + A_1 x + A_0, \quad A_i \in \mathbb{C}^{N \times N} \]

Krein (1949): matrix-valued orthogonal polynomials (MOP)

Orthogonality: weight matrix \(W \) supported on \(S \subset \mathbb{R} \) (positive definite with finite moments) and a matrix valued inner product \((L^2_W(S; \mathbb{C}^{N \times N})) \):

\[
\langle P, Q \rangle_W = \int_S P(x) W(x) Q^*(x) \, dx
\]

A system of MOP \((Q_n)_n \) \((\langle Q_n, Q_m \rangle_W = \|Q_n\|_W^2 \delta_{nm}) \) satisfies a three-term recurrence relation \((Q_{-1} = 0, Q_0 = I) \)

\[xQ_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad \det(C_n) \neq 0 \]

Jacobi operator (block tridiagonal)

\[
JQ = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& C_2 & B_2 & A_2 \\
& & \ddots & \ddots & \ddots
\end{pmatrix}
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix} = x
\begin{pmatrix}
Q_0(x) \\
Q_1(x) \\
Q_2(x) \\
\vdots
\end{pmatrix} = xQ, \quad x \in S
\]

The converse result is also true (Favard’s or spectral theorem**).
Durán (1997): characterize families of MOP \((Q_n)_n\) satisfying

\[
\mathcal{D}Q_n(x) \equiv F_2(x)Q''_n(x) + F_1(x)Q'_n(x) + F_0(x)Q_n(x) = Q_n(x)\Gamma_n
\]

where \(\text{deg}(F_j(x) \leq j)\) and \(\Gamma_n \in \mathbb{R}^{N \times N}\).
Equivalent to the symmetry of \(\mathcal{D}\) with respect to the inner product, i.e.
\((\mathcal{D}P, Q)_W = (P, \mathcal{D}Q)_W\), for all matrix polynomials \(P, Q\).

Symmetry equations or matrix Pearson equations

\[
\begin{align*}
A_2^*(x)W(x) &= W(x)A_2(x) \\
A_1^*(x)W(x) &= (W(x)A_2(x))' - W(x)A_1(x) \\
A_0^*(x)W(x) &= \frac{1}{2}(W(x)A_2(x))'' - (W(x)A_1(x))' + W(x)A_0(x)
\end{align*}
\]

- New phenomena: MOP satisfying *odd* order differential equations, several second-order differential operators for a fixed family of MOP and viceversa, *family* of ladder operators...
Durán (1997): characterize families of MOP \((Q_n)_n\) satisfying

\[\mathcal{D}Q_n(x) \equiv F_2(x)Q''_n(x) + F_1(x)Q'_n(x) + F_0(x)Q_n(x) = Q_n(x)\Gamma_n \]

where \(\text{deg}(F_j(x) \leq j)\) and \(\Gamma_n \in \mathbb{R}^{N\times N}\).

Equivalent to the symmetry of \(\mathcal{D}\) with respect to the inner product, i.e.
\((\mathcal{D}P, Q)_W = (P, \mathcal{D}Q)_W\), for all matrix polynomials \(P, Q\).

Symmetry equations or matrix Pearson equations

\[
\begin{align*}
A_2^*(x)W(x) & = W(x)A_2(x) \\
A_1^*(x)W(x) & = (W(x)A_2(x))' - W(x)A_1(x) \\
A_0^*(x)W(x) & = \frac{1}{2} (W(x)A_2(x))'' - (W(x)A_1(x))' + W(x)A_0(x)
\end{align*}
\]

- New phenomena: MOP satisfying *odd* order differential equations, several second-order differential operators for a fixed family of MOP and viceversa, *family* of ladder operators...
Durán (1997): characterize families of MOP \((Q_n)_n\) satisfying

\[
\mathcal{D}Q_n(x) \equiv F_2(x)Q''_n(x) + F_1(x)Q'_n(x) + F_0(x)Q_n(x) = Q_n(x)\Gamma_n
\]

where \(\deg(F_j(x) \leq j)\) and \(\Gamma_n \in \mathbb{R}^{N \times N}\).

Equivalent to the symmetry of \(\mathcal{D}\) with respect to the inner product, i.e.
\((\mathcal{D}P, Q)_W = (P, \mathcal{D}Q)_W\), for all matrix polynomials \(P, Q\).

Symmetry equations or matrix Pearson equations

\[
\begin{align*}
A_2^*(x)W(x) &= W(x)A_2(x) \\
A_1^*(x)W(x) &= (W(x)A_2(x))' - W(x)A_1(x) \\
A_0^*(x)W(x) &= \frac{1}{2}(W(x)A_2(x))'' - (W(x)A_1(x))' + W(x)A_0(x)
\end{align*}
\]

- New phenomena: MOP satisfying odd order differential equations, several second-order differential operators for a fixed family of MOP and viceversa, family of ladder operators...
Durán (1997): characterize families of MOP \((Q_n)_n\) satisfying

\[\mathcal{D}Q_n(x) \equiv F_2(x)Q''_n(x) + F_1(x)Q'_n(x) + F_0(x)Q_n(x) = Q_n(x)\Gamma_n \]

where \(\text{deg}(F_j(x)) \leq j\) and \(\Gamma_n \in \mathbb{R}^{N \times N}\).

Equivalent to the symmetry of \(\mathcal{D}\) with respect to the inner product, i.e.

\((\mathcal{D}P, Q)_W = (P, \mathcal{D}Q)_W\), for all matrix polynomials \(P, Q\).

Symmetry equations or matrix Pearson equations

\[
\begin{align*}
A_2^*(x)W(x) &= W(x)A_2(x) \\
A_1^*(x)W(x) &= (W(x)A_2(x))' - W(x)A_1(x) \\
A_0^*(x)W(x) &= \frac{1}{2} (W(x)A_2(x))'' - (W(x)A_1(x))' + W(x)A_0(x)
\end{align*}
\]

- **New examples and methods:** Since 2002, Durán, Grünbaum, Pacharoni, Tirao, Castro, Román, MdI...

- **New phenomena:** MOP satisfying odd order differential equations, several second-order differential operators for a fixed family of MOP and viceversa, family of ladder operators...
Durán (1997): characterize families of MOP $\left(Q_n \right)_n$ satisfying

$$\mathcal{D}Q_n(x) \equiv F_2(x)Q''_n(x) + F_1(x)Q'_n(x) + F_0(x)Q_n(x) = Q_n(x)\Gamma_n$$

where $\text{deg}(F_j(x) \leq j)$ and $\Gamma_n \in \mathbb{R}^{N \times N}$.

Equivalent to the symmetry of \mathcal{D} with respect to the inner product, i.e.

$$(\mathcal{D}P, Q)_W = (P, \mathcal{D}Q)_W$$

for all matrix polynomials P, Q.

Symmetry equations or matrix Pearson equations

$$A_2^*(x)W(x) = W(x)A_2(x)$$

$$A_1^*(x)W(x) = (W(x)A_2(x))' - W(x)A_1(x)$$

$$A_0^*(x)W(x) = \frac{1}{2}(W(x)A_2(x))'' - (W(x)A_1(x))' + W(x)A_0(x)$$

- **New examples and methods**: Since 2002, Durán, Grünbaum, Pacharoni, Tirao, Castro, Román, MdI...

- **New phenomena**: MOP satisfying *odd* order differential equations, *several* second-order differential operators for a fixed family of MOP and viceversa, *family* of ladder operators...
Bivariate Markov processes

Now we have a bivariate or 2-component Markov process of the form

\[\{(X_t, Y_t) : t \in T\} \]

indexed by time \(T \) (time) and with state space \(\mathcal{S} \times \{1, 2, \ldots, N\} \), \(\mathcal{S} \subset \mathbb{R} \). The first component is the level while the second component is the phase. Now the transition probabilities are matrix-valued.

- \(\mathcal{S} \) discrete: block transition probabilities

 \[(P_{ij})_{i'j'}(t) \equiv \Pr(X_t = j, Y_t = j' | X_0 = i, Y_0 = i') \]

 The block matrix is stochastic.

- \(\mathcal{S} \) continuous: matrix transition density

 \[P_{ij}(t; x, y) = \frac{\partial}{\partial y} \Pr(X_t \leq y, Y_t = j | X_0 = x, Y_0 = i) \]

 Every entry must be nonnegative and

 \[P(t; x, A)e_N \leq e_N, \quad e_N = (1, 1, \ldots, 1)^T \]

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
Bivariate Markov processes

Now we have a bivariate or 2-component Markov process of the form

\[\{(X_t, Y_t) : t \in T\} \]

indexed by time \(T \) (time) and with state space \(S \times \{1, 2, \ldots, N\}, \ S \subset \mathbb{R} \). The first component is the **level** while the second component is the **phase**.

Now the transition probabilities are **matrix-valued**.

- **S DISCRETE**: block transition probabilities

 \[(P_{ij})_{j,j'}(t) \equiv \Pr(X_t = j, Y_t = j'|X_0 = i, Y_0 = i') \]

 The block matrix is stochastic.

- **S CONTINUOUS**: matrix transition density

 \[P_{ij}(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \leq y, Y_t = j|X_0 = x, Y_0 = i) \]

 Every entry must be nonnegative and

 \[P(t; x, A)e_N \leq e_N, \quad e_N = (1, 1, \ldots, 1)^T \]

 Ideas behind: *random evolutions* (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
Bivariate Markov processes

Now we have a bivariate or 2-component Markov process of the form
\[\{(X_t, Y_t) : t \in \mathcal{T}\} \]
indexed by time \(\mathcal{T} \) (time) and with state space \(S \times \{1, 2, \ldots, N\} \), \(S \subset \mathbb{R} \). The first component is the level while the second component is the phase. Now the transition probabilities are matrix-valued.

- **S discrete**: block transition probabilities

\[
(P_{ij})_{i,j'}(t) \equiv \Pr(X_t = j, Y_t = j' | X_0 = i, Y_0 = i')
\]

The block matrix is stochastic.

- **S continuous**: matrix transition density

\[
P_{ij}(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \leq y, Y_t = j | X_0 = x, Y_0 = i)
\]

Every entry must be nonnegative and
\[
P(t; x, A)e_N \leq e_N, \quad e_N = (1, 1, \ldots, 1)^T
\]

Ideas behind: *random evolutions* (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).
Bivariate Markov processes

Now we have a bivariate or 2-component Markov process of the form

\[\{(X_t, Y_t) : t \in \mathcal{T}\} \]

indexed by time \(\mathcal{T} \) (time) and with state space \(S \times \{1, 2, \ldots, N\}, \ S \subset \mathbb{R} \). The first component is the level while the second component is the phase. Now the transition probabilities are matrix-valued.

- **S DISCRETE**: block transition probabilities

\[(P_{ij})_{i'j'}(t) \equiv \Pr(X_t = j, Y_t = j' | X_0 = i, Y_0 = i') \]

The block matrix is stochastic.

- **S CONTINUOUS**: matrix transition density

\[P_{ij}(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \leq y, Y_t = j | X_0 = x, Y_0 = i) \]

Every entry must be nonnegative and

\[P(t; x, A)e_N \leq e_N, \quad e_N = (1, 1, \ldots, 1)^T \]

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).
Bivariate Markov processes

Now we have a bivariate or 2-component Markov process of the form
\[(X_t, Y_t) : t \in \mathcal{T}\]
indexed by time \(\mathcal{T}\) (time) and with state space \(S \times \{1, 2, \ldots, N\}, \ S \subset \mathbb{R}\). The first component is the level while the second component is the phase. Now the transition probabilities are matrix-valued.

- **\(S\) discrete**: block transition probabilities

\[\begin{align*}
(P_{ij})_{i'j'}(t) &\equiv \Pr(X_t = j, Y_t = j'|X_0 = i, Y_0 = i') \\
\end{align*}\]

The block matrix is stochastic.

- **\(S\) continuous**: matrix transition density

\[\begin{align*}
P_{ij}(t; x, y) &\equiv \frac{\partial}{\partial y} \Pr(X_t \leq y, Y_t = j|X_0 = x, Y_0 = i) \\
\end{align*}\]

Every entry must be nonnegative and
\[\begin{align*}
P(t; x, A)e_N &\leq e_N, \quad e_N = (1, 1, \ldots, 1)^T \\
\end{align*}\]

Ideas behind: *random evolutions* (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).
QUASI-BIRTH-AND-DEATH PROCESSES

- **Discrete time**: State space \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\} \), time \(T = \{0, 1, 2, \ldots\} \) and

\[
(P_{ij})_{i'j'} = \Pr(X_{n+1} = j, Y_{n+1} = j' | X_n = i, Y_n = i') = 0 \quad \text{for} \quad |i - j| > 1.
\]
i.e. a \(N \times N \) block tridiagonal transition probability matrix (stochastic)

\[
P = \begin{pmatrix} B_0 & A_0 \\ C_1 & B_1 & A_1 \\ & \ddots & \ddots & \ddots \end{pmatrix}
\]

- **Continuous time**: State space \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\} \), time \(T = [0, +\infty) \). The matrix \(P \) is now given by

\[
(P_{ij})_{i'j'}(t) = \Pr(X_t = j, Y_t = j' | X_0 = i, Y_0 = i')
\]
and will satisfy the so-called **backward and forward equations**

\[
P'(t) = AP(t), \quad P'(t) = P(t)A
\]

In both cases, the **invariant distribution** \((n, t \to \infty) \) is

\[
\pi = (\pi_0; \pi_1; \cdots) \geq 0, \quad \pi_i \in \mathbb{R}^N
\]
such that \(\pi P = \pi \) (discrete case) or \(\pi A = 0 \) (continuous case).
Quasi-birth-and-death processes

- **Discrete time**: State space $\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}$, time $\mathcal{T} = \{0, 1, 2, \ldots\}$ and

$$(P_{ij})_{i'j'} = \Pr(X_{n+1} = j, Y_{n+1} = j'|X_n = i, Y_n = i') = 0 \quad \text{for} \quad |i - j| > 1.$$

i.e. a $N \times N$ block tridiagonal transition probability matrix (stochastic)

$$P = \begin{pmatrix} \mathbf{B}_0 & \mathbf{A}_0 \\ \mathbf{C}_1 & \mathbf{B}_1 & \mathbf{A}_1 \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

- **Continuous time**: State space $\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}$, time $\mathcal{T} = [0, +\infty)$. The matrix P is now given by

$$(P_{ij})_{i'j'}(t) \equiv \Pr(X_t = j, Y_t = j'|X_0 = i, Y_0 = i')$$

and will satisfy the so-called *backward and forward equations*

$$P'(t) = AP(t), \quad P'(t) = P(t)A$$

In both cases, the **invariant distribution** $(n, t \to \infty)$ is

$$\pi = (\pi_0; \pi_1; \cdots) \geq 0, \quad \pi_i \in \mathbb{R}^N$$

such that $\pi P = \pi$ (discrete case) or $\pi A = 0$ (continuous case).
QUASI-BIRTH-AND-DEATH PROCESSES

- **Discrete time**: State space \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\} \), time \(T = \{0, 1, 2, \ldots\} \) and
 \[
 (P_{ij})_{i'j'} = \Pr(X_{n+1} = j, Y_{n+1} = j' | X_n = i, Y_n = i') = 0 \quad \text{for} \quad |i - j| > 1.
 \]
i.e. a \(N \times N \) block tridiagonal transition probability matrix (stochastic)

\[
P = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
& \ddots & \ddots \\
& & \ddots & \ddots
\end{pmatrix}
\]

- **Continuous time**: State space \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\} \), time \(T = [0, +\infty) \). The matrix \(P \) is now given by
 \[
 (P_{ij})_{i'j'}(t) = \Pr(X_t = j, Y_t = j' | X_0 = i, Y_0 = i')
 \]
 and will satisfy the so-called *backward and forward equations*

 \[
P'(t) = AP(t), \quad P'(t) = P(t)A
 \]

In both cases, the *invariant distribution* \((n, t \to \infty) \) is
\[
\pi = (\pi_0; \pi_1; \cdots) \geq 0, \quad \pi_i \in \mathbb{R}^N
\]
such that \(\pi P = \pi \) (discrete case) or \(\pi A = 0 \) (continuous case).
STOCHASTIC REPRESENTATION \((N = 4 \text{ PHASES}) \)

Special case of \(A_n, B_n, C_n \) tridiagonal:
STOCHASTIC REPRESENTATION ($N = 4$ PHASES)

Special case of A_n, B_n, C_n tridiagonal:
STOCHASTIC REPRESENTATION \((N = 4 \text{ PHASES}) \)

Special case of \(A_n, B_n, C_n \) tridiagonal:
STOCHASTIC REPRESENTATION \((N = 4 \text{ PHASES}) \)

Special case of \(A_n, B_n, C_n \) tridiagonal:
STOCHASTIC REPRESENTATION ($N = 4$ PHASES)

Special case of A_n, B_n, C_n tridiagonal:
Special case of A_n, B_n, C_n tridiagonal:
STOCHASTIC REPRESENTATION ($N = 4$ PHASES)

Special case of A_n, B_n, C_n tridiagonal:
STOCHASTIC REPRESENTATION \((N = 4\) PHASES\)
STOCHASTIC REPRESENTATION \((N = 4 \text{ PHASES})\)

Special case of \(A_n, B_n, C_n\) tridiagonal:
STOCHASTIC REPRESENTATION ($N = 4$ PHASES)

Special case of A_n, B_n, C_n tridiagonal:

![Graph diagram with nodes and arrows representing transitions between phases.]

- Node labels: 1, 5, 9, 13, 17, 21, 2, 6, 10, 14, 18, 22, 3, 7, 11, 15, 19, 23, 4, 8, 12, 16, 20, 24, and a red arrow indicating a special transition.
Stochastic representation \((N = 4\) phases\)

Special case of \(A_n, B_n, C_n\) tridiagonal:
STOCHASTIC REPRESENTATION \((N = 4 \text{ PHASES}) \)

Special case of \(A_n, B_n, C_n \) tridiagonal:
Special case of A_n, B_n, C_n tridiagonal:
Switching diffusion processes

The state space is now \((a, b) \times \{1, 2, \ldots, N\}\) and time \(\mathcal{T} = [0, \infty)\).

The density matrix \(P(t; x, y)\) satisfies the \textit{backward and forward equations}

\[
\frac{\partial}{\partial t} P(t; x, y) = \mathcal{A} P(t; x, y), \quad \frac{\partial}{\partial t} P(t; x, y) = P(t; x, y) A^*
\]

where \(\mathcal{A}\) is a matrix-valued differential operator

\[
\mathcal{A} = \frac{1}{2} A(x) \frac{d^2}{dx^2} + B(x) \frac{d^1}{dx^1} + Q(x) \frac{d^0}{dx^0}
\]

We have that \(A(x)\) and \(B(x)\) are diagonal matrices and \(Q(x)\) is the infinitesimal operator of a continuous time Markov chain, i.e.

\[
Q_{ii}(x) \leq 0, \quad Q_{ij}(x) \geq 0, \quad i \neq j, \quad Q(x)e_N = 0
\]

The \textit{row vector-valued invariant distribution} \((t \to \infty)\)

\[
\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y)), \quad 0 \leq \psi_j(y) \leq 1, \quad \left(\int_a^b \psi(y)dy\right) e_N = 1
\]

satisfies

\[
\psi(y) A^* \equiv \frac{1}{2} (\psi(y)A(y))'' - (\psi(y)B(y))' + \psi(y)Q(y) = 0
\]
SWITCHING DIFFUSION PROCESSES

The state space is now \((a, b) \times \{1, 2, \ldots, N\}\) and time \(T = [0, \infty)\).

The density matrix \(P(t; x, y)\) satisfies the backward and forward equations

\[
\frac{\partial}{\partial t} P(t; x, y) = \mathcal{A} P(t; x, y), \quad \frac{\partial}{\partial t} P(t; x, y) = P(t; x, y) \mathcal{A}^*
\]

where \(\mathcal{A}\) is a matrix-valued differential operator

\[
\mathcal{A} = \frac{1}{2} A(x) \frac{d^2}{dx^2} + B(x) \frac{d^1}{dx^1} + Q(x) \frac{d^0}{dx^0}
\]

We have that \(A(x)\) and \(B(x)\) are diagonal matrices and \(Q(x)\) is the infinitesimal operator of a continuous time Markov chain, i.e.

\[
Q_{ii}(x) \leq 0, \quad Q_{ij}(x) \geq 0, \ i \neq j, \quad Q(x)e_N = 0
\]

The row vector-valued invariant distribution \((t \to \infty)\)

\[
\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y)), \quad 0 \leq \psi_j(y) \leq 1, \quad \left(\int_a^b \psi(y)dy \right) e_N = 1
\]

satisfies

\[
\psi(y) \mathcal{A}^* \equiv \frac{1}{2} (\psi(y)A(y))'' - (\psi(y)B(y))' + \psi(y)Q(y) = 0
\]
Switching diffusion processes

The state space is now \((a, b) \times \{1, 2, \ldots, N\}\) and time \(T = [0, \infty)\). The density matrix \(P(t; x, y)\) satisfies the **backward and forward equations**

\[
\frac{\partial}{\partial t} P(t; x, y) = AP(t; x, y), \quad \frac{\partial}{\partial t} P(t; x, y) = P(t; x, y)A^*
\]

where \(A\) is a matrix-valued differential operator

\[
A = \frac{1}{2} A(x) \frac{d^2}{dx^2} + B(x) \frac{d^1}{dx^1} + Q(x) \frac{d^0}{dx^0}
\]

We have that \(A(x)\) and \(B(x)\) are **diagonal** matrices and \(Q(x)\) is the **infinitesimal operator** of a continuous time Markov chain, i.e.

\[
Q_{ii}(x) \leq 0, \quad Q_{ij}(x) \geq 0, \quad i \neq j, \quad Q(x) e_N = 0
\]

The **row vector-valued invariant distribution** \((t \to \infty)\)

\[
\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y)), \quad 0 \leq \psi_j(y) \leq 1, \quad \left(\int_a^b \psi(y) dy\right) e_N = 1
\]

satisfies

\[
\psi(y) A^* = \frac{1}{2} (\psi(y) A(y))'' - (\psi(y) B(y))' + \psi(y) Q(y) = 0
\]
Stochastic representation \((N = 3 \text{ phases})\)

\(N = 3\) phases and \(S = \mathbb{R}\) with

\[
A_{ii}(x) = i^2, \quad B_{ii}(x) = -ix, \quad i = 1, 2, 3
\]
Stochastic representation \((N = 3 \text{ phases})\)

\(N = 3\) phases and \(S = \mathbb{R}\) with

\[
A_{ii}(x) = i^2, \quad B_{ii}(x) = -ix, \quad i = 1, 2, 3.
\]
Stochastic representation ($N = 3$ phases)

$N = 3$ phases and $S = \mathbb{R}$ with

$$A_{ii}(x) = i^2, \quad B_{ii}(x) = -ix, \quad i = 1, 2, 3$$
STOCHASTIC REPRESENTATION \((N = 3 \text{ phases}) \)

\[N = 3 \text{ phases and } S = \mathbb{R} \text{ with} \]

\[
\begin{align*}
A_{ii}(x) &= i^2, & B_{ii}(x) &= -ix, & i = 1, 2, 3
\end{align*}
\]
Stochastic representation ($N = 3$ phases)

$N = 3$ phases and $S = \mathbb{R}$ with

$$A_{ii}(x) = i^2, \quad B_{ii}(x) = -ix, \quad i = 1, 2, 3$$
Spectral methods

Now, given a matrix-valued infinitesimal operator \mathcal{A}, if we can find a weight matrix $\mathbf{W}(x)$ associated with \mathcal{A}, and a set of orthogonal matrix eigenfunctions $\mathbf{F}(i, x)$ such that

$$\mathcal{A}\mathbf{F}(i, x) = \mathbf{F}(i, x)\Lambda(i, x)$$

then it is possible to find spectral representations of

- Transition probabilities
 - Discrete case: transition probability matrix $\mathbf{P}(t)$
 - Continuous case: transition density $\mathbf{P}(t; x, y)$.

- Invariant measure or distribution
 - Discrete case: $\pi = (\pi_0, \pi_1, \ldots) \geq 0$ with
 $$\pi_j = \lim_{t \to \infty} \mathbf{P}_{ij}(t) \in \mathbb{R}^N$$
 - Continuous case: $\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y))$ with
 $$\psi_j(y) = \lim_{t \to \infty} \mathbf{P}_{ij}(t; x, y)$$
Now, given a matrix-valued infinitesimal operator \mathcal{A}, if we can find a weight matrix $W(x)$ associated with \mathcal{A}, and a set of orthogonal matrix eigenfunctions $F(i, x)$ such that

$$\mathcal{A}F(i, x) = F(i, x)\Lambda(i, x)$$

then it is possible to find spectral representations of

- **Transition probabilities**
 - Discrete case: transition probability matrix $P(t)$
 - Continuous case: transition density $P(t; x, y)$.

- **Invariant measure or distribution**
 - Discrete case: $\pi = (\pi_0, \pi_1, \ldots) \geq 0$ with
 $$\pi_j = \lim_{t \to \infty} P_{ij}(t) \in \mathbb{R}^N$$
 - Continuous case: $\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y))$ with
 $$\psi_j(y) = \lim_{t \to \infty} P_{ij}(t; x, y)$$
Spectral methods

Now, given a matrix-valued infinitesimal operator \mathcal{A}, if we can find a weight matrix $W(x)$ associated with \mathcal{A}, and a set of orthogonal matrix eigenfunctions $F(i, x)$ such that

$$\mathcal{A}F(i, x) = F(i, x)\Lambda(i, x)$$

then it is possible to find spectral representations of

- Transition probabilities
 - Discrete case: transition probability matrix $P(t)$
 - Continuous case: transition density $P(t; x, y)$.

- Invariant measure or distribution
 - Discrete case: $\pi = (\pi_0, \pi_1, \ldots) \geq 0$ with
 $$\pi_j = \lim_{t \to \infty} P_j(t) \in \mathbb{R}^N$$
 - Continuous case: $\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y))$ with
 $$\psi_j(y) = \lim_{t \to \infty} P_j(t; x, y)$$
QUASI-BIRTH-AND-DEATH PROCESSES

Discrete time: \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, \ T = \{0, 1, 2, \ldots\}\).

Spectral theorem (Grünbaum, Dette et al., 2006): \(\exists^* W\) on \([-1, 1]\) associated with \(P\) which MOP \((Q_n)_n\) satisfy \(PQ = xQ\) \((Q_{-1} = 0, Q_0 = I)\)

\[
P_{ij}^n = \left(\int_{-1}^{1} x^n Q_i(x)W(x)Q_j^*(x)dx\right)\left(\int_{-1}^{1} Q_j(x)W(x)Q_j^*(x)dx\right)^{-1}
\]

Continuous time: \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, \ T = [0, \infty)\)

Spectral theorem (Detter-Reuther, 2010): \(\exists^* W\) on \([0, \infty)\) associated with \(A\) which MOP \((Q_n)_n\) satisfy \(AQ = -xQ\) \((Q_{-1} = 0, Q_0 = I)\)

\[
P_{ij}(t) = \left(\int_{0}^{\infty} e^{-xt} Q_i(x)W(x)Q_j^*(x)dx\right)\left(\int_{0}^{\infty} Q_j(x)W(x)Q_j^*(x)dx\right)^{-1}
\]

Invariant measure (MdI, 2011)

\(\pi = (\pi_0; \pi_1; \cdots) \equiv (\Pi_0 e_N; \Pi_1 e_N; \cdots)\) such that \(\pi P = \pi\) (discrete time) or \(\pi A = 0\) (continuous time)

\[
\Pi_n = (C_n^T \cdots C_1^T)^{-1} \Pi_0 (A_0 \cdots A_{n-1}) = \left(\int_{\text{supp}(w)} Q_n(x)W(x)Q_n^*(x)dx\right)^{-1}
\]
Quasi-birth-and-death processes

- **Discrete time**: \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, \mathcal{T} = \{0, 1, 2, \ldots\}\).
 Spectral theorem (Grünbaum, Dette et al., 2006): \(\exists^* \mathbf{W}\) on \([-1, 1]\) associated with \(\mathbf{P}\) which MOP \((\mathbf{Q}_n)_n\) satisfy \(\mathbf{P}\mathbf{Q} = \mathbf{x}\mathbf{Q}\ (\mathbf{Q}_{-1} = 0, \mathbf{Q}_0 = \mathbf{I})\)

\[
P_{ij}^n = \left(\int_{-1}^{1} x^n Q_i(x)W(x)Q_j^*(x)dx\right)\left(\int_{-1}^{1} Q_j(x)W(x)Q_j^*(x)dx\right)^{-1}
\]

- **Continuous time**: \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, \mathcal{T} = [0, \infty)\)
 Spectral theorem (Detter-Reuther, 2010): \(\exists^* \mathbf{W}\) on \([0, \infty)\) associated with \(\mathcal{A}\) which MOP \((\mathbf{Q}_n)_n\) satisfy \(\mathcal{A}\mathbf{Q} = -\mathbf{x}\mathbf{Q}\ (\mathbf{Q}_{-1} = 0, \mathbf{Q}_0 = \mathbf{I})\)

\[
P_{ij}(t) = \left(\int_{0}^{\infty} e^{-xt} Q_i(x)W(x)Q_j^*(x)dx\right)\left(\int_{0}^{\infty} Q_j(x)W(x)Q_j^*(x)dx\right)^{-1}
\]

Invariant measure (MdI, 2011)

\[
\pi = (\pi_0; \pi_1; \cdots) \equiv (\Pi_0 e_N; \Pi_1 e_N; \cdots) \text{ such that } \pi\mathbf{P} = \pi \text{ (discrete time)} \text{ or } \pi\mathcal{A} = 0 \text{ (continuous time)}
\]

\[
\Pi_n = (\mathbf{C}_1^T \cdots \mathbf{C}_n^T)^{-1} \Pi_0 (\mathbf{A}_0 \cdots \mathbf{A}_{n-1}) = \left(\int_{\text{supp}(W)} Q_n(x)W(x)Q_n^*(x)dx\right)^{-1}
\]
QUASI-BIRTH-AND-DEATH PROCESSES

- **Discrete time**: \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, \mathcal{T} = \{0, 1, 2, \ldots\} \).

 Spectral theorem (Grüenbaum, Dette et al., 2006): \(\exists^* W \) on \([-1, 1]\) associated with \(P \) which MOP \((Q_n)_n \) satisfy \(PQ = xQ \) \((Q_{-1} = 0, Q_0 = I) \)

 \[
P^n_{ij} = \left(\int_{-1}^{1} x^n Q_i(x) W(x) Q^*_j(x) \, dx \right) \left(\int_{-1}^{1} Q_j(x) W(x) Q^*_j(x) \, dx \right)^{-1}
 \]

- **Continuous time**: \(\{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, \mathcal{T} = [0, \infty) \).

 Spectral theorem (Detter-Reuther, 2010): \(\exists^* W \) on \([0, \infty)\) associated with \(A \) which MOP \((Q_n)_n \) satisfy \(AQ = -xQ \) \((Q_{-1} = 0, Q_0 = I) \)

 \[
P_{ij}(t) = \left(\int_{0}^{\infty} e^{-xt} Q_i(x) W(x) Q^*_j(x) \, dx \right) \left(\int_{0}^{\infty} Q_j(x) W(x) Q^*_j(x) \, dx \right)^{-1}
 \]

Invariant measure (MdI, 2011)

\(\pi = (\pi_0; \pi_1; \cdots) \equiv (\Pi_0 e_N; \Pi_1 e_N; \cdots) \) such that \(\pi P = \pi \) (discrete time) or \(\pi A = 0 \) (continuous time)

\[
\Pi_n = (C_1^T \cdots C_n^T)^{-1} \Pi_0 (A_0 \cdots A_{n-1}) = \left(\int_{\text{supp}(W)} Q_n(x) W(x) Q^*_n(x) \, dx \right)^{-1}
\]
SWITCHING DIFFUSION MODELS

State space: \((a, b) \times \{1, 2, \ldots, N\}\). Time: \(T = [0, \infty)\)
If there exists a weight matrix \(W\) symmetric with respect to \(A\) which matrix-valued orthonormal functions \((\Phi_n)_n\) satisfies

\[
A\Phi_n(x) = \frac{1}{2}A(x)\Phi''_n(x) + B(x)\Phi'_n(x) + Q(x)\Phi_n(x) = \Phi_n(x)\Gamma_n
\]

Transition probability density matrix (MdI, 2012)

\[
P(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x)e^{\Gamma_nt}\Phi^*_n(y)W(y)
\]

Invariant distribution (MdI, 2012)

\[
\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y)) \text{ such that } \psi(y)A^* = 0
\]

\[
\Rightarrow \psi(y) = \left(\int_a^b e_N^T W(x)e_N dx\right)^{-1} e_N^T W(y)
\]
Switching diffusion models

State space: \((a, b) \times \{1, 2, \ldots, N\}\). Time: \(\mathcal{T} = [0, \infty)\)

If there exists a weight matrix \(\mathbf{W}\) symmetric with respect to \(\mathcal{A}\) which matrix-valued orthonormal functions \((\Phi_n)_n\) satisfies

\[
\mathcal{A}\Phi_n(x) = \frac{1}{2}A(x)\Phi''_n(x) + B(x)\Phi'_n(x) + Q(x)\Phi_n(x) = \Phi_n(x)\Gamma_n
\]

Transition probability density matrix (MdI, 2012)

\[
P(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x)e^{\Gamma_n t}\Phi^*_n(y)\mathbf{W}(y)
\]

Invariant distribution (MdI, 2012)

\[
\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y)) \text{ such that } \psi(y)A^* = 0
\]

\[
\Rightarrow \psi(y) = \left(\int_a^b e^T_N\mathbf{W}(x)e_N dx\right)^{-1}e^T_N\mathbf{W}(y)
\]
Switching diffusion models

State space: \((a, b) \times \{1, 2, \ldots, N\}\). Time: \(\mathcal{T} = [0, \infty)\)
If there exists a weight matrix \(\mathbf{W}\) symmetric with respect to \(\mathcal{A}\) which matrix-valued orthonormal functions \((\Phi_n)_n\) satisfies

\[
\mathcal{A}\Phi_n(x) = \frac{1}{2} A(x) \Phi_n''(x) + B(x) \Phi_n'(x) + Q(x) \Phi_n(x) = \Phi_n(x) \Gamma_n
\]

Transition probability density matrix (MdI, 2012)

\[
\mathbf{P}(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi_n^*(y) \mathbf{W}(y)
\]

Invariant distribution (MdI, 2012)

\[
\psi(y) = (\psi_1(y), \psi_2(y), \ldots, \psi_N(y)) \text{ such that } \psi(y) \mathcal{A}^* = 0
\]

\[
\Rightarrow \psi(y) = \left(\int_a^b \mathbf{e}_N^T \mathbf{W}(x) \mathbf{e}_N \, dx \right)^{-1} \mathbf{e}_N^T \mathbf{W}(y)
\]
Outline

1. Markov processes
 - Preliminaries
 - Spectral methods

2. Bivariate Markov processes
 - Preliminaries
 - Spectral methods

3. An example
 - A quasi-birth-and-death process
 - A variant of the Wright-Fisher model

4. Future work
 - 3 years ahead
 - 5 years ahead
An example coming from group representation

Let \(N \in \{1, 2, \ldots\} \), \(\alpha, \beta > -1 \), \(0 < k < \beta + 1 \) and \(E_{ij} \) will denote the matrix with 1 at entry \((i, j)\) and 0 otherwise.

For \(x \in (0, 1) \), we have a symmetric pair \(\{W, A\} \) (Gr"unbaum-Pacharoni-Tirao, 2002) where

\[
W(x) = x^\alpha (1 - x)\beta \sum_{i=1}^{N} \binom{\beta - k + i - 1}{i - 1} \binom{N + k - i - 1}{N - i} x^{N-i} E_{ii}
\]

\[
A = \frac{1}{2} A(x) \frac{d^2}{dx^2} + B(x) \frac{d}{dx} + Q(x) \frac{d^0}{dx^0}
\]

\[
A(x) = 2x(1-x)I, \quad B(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)] E_{ii}
\]

\[
Q(x) = \sum_{i=2}^{N} \mu_i(x) E_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) E_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) E_{i,i+1},
\]

\[
\lambda_i(x) = \frac{1}{1-x} (N - i)(i + \beta - k), \quad \mu_i(x) = \frac{x}{1-x} (i - 1)(N - i + k).
\]
An example coming from group representation

Let $N \in \{1, 2, \ldots\}$, $\alpha, \beta > -1$, $0 < k < \beta + 1$ and E_{ij} will denote the matrix with 1 at entry (i,j) and 0 otherwise.

For $x \in (0, 1)$, we have a symmetric pair \{W, A\} (Grünbaum-Pacharoni-Tirao, 2002) where

$$W(x) = x^\alpha (1-x)^\beta \sum_{i=1}^{N} \binom{\beta - k + i - 1}{i-1} \binom{N + k - i - 1}{N - i} x^{N-i} E_{ii}$$

$$A = \frac{1}{2} A(x) \frac{d^2}{dx^2} + B(x) \frac{d}{dx} + Q(x) \frac{d^0}{dx^0}$$

$$A(x) = 2x(1-x)I, \quad B(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)] E_{ii}$$

$$Q(x) = \sum_{i=2}^{N} \mu_i(x) E_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) E_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) E_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x} (N-i)(i+\beta-k), \quad \mu_i(x) = \frac{x}{1-x} (i-1)(N-i+k).$$
An example coming from group representation

Let $N \in \{1, 2, \ldots\}$, $\alpha, \beta > -1$, $0 < k < \beta + 1$ and E_{ij} will denote the matrix with 1 at entry (i,j) and 0 otherwise.

For $x \in (0,1)$, we have a symmetric pair $\{W, A\}$ (Grünbaum-Pacharoni-Tirao, 2002) where

$$W(x) = x^\alpha (1-x)^\beta \sum_{i=1}^{N} \binom{\beta - k + i - 1}{i - 1} \binom{N + k - i - 1}{N - i} x^{N-i} E_{ii}$$

$$A = \frac{1}{2} A(x) \frac{d^2}{dx^2} + B(x) \frac{d}{dx} + Q(x) \frac{d^0}{dx^0}$$

$$A(x) = 2x(1-x)I, \quad B(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)]E_{ii}$$

$$Q(x) = \sum_{i=2}^{N} \mu_i(x) E_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) E_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) E_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x} (N - i)(i + \beta - k), \quad \mu_i(x) = \frac{x}{1-x} (i - 1)(N - i + k).$$
A QUASI-BIRTH-AND-DEATH PROCESS

It is possible to get (Grünbaum-Mdl, 2008) an equivalent symmetric pair \(\{ \tilde{W}, \tilde{A} \} \) and a family of MOP \((Q_n)_n\) such that \(Q_{-1} = 0, Q_0 = I \) and

\[
Q_n(1)e_N = e_N, \quad e_N = (1, 1, \ldots, 1)^T
\]

The family \((Q_n)_n\) satisfies a three-term recurrence relation

\[
xQ_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad n = 0, 1, \ldots,
\]

where \(B_n\) is tridiagonal, \(A_n\) is lower bidiagonal and \(C_n\) is upper bidiagonal. The corresponding Jacobi matrix \(P\) is stochastic

\[
P = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
C_2 & B_2 & A_2 \\
& \ddots & \ddots & \ddots
\end{pmatrix}
\]

\(n\)-step transition probability matrix \(P^n\) is terms of the Karlin-McGregor representation and the invariant measure \(\pi\).

We studied recurrence, the shape of the invariant distribution and other probabilistic aspects.
A QUASI-BIRTH-AND-DEATH PROCESS

It is possible to get (Grünbaum-Mdl, 2008) an equivalent symmetric pair \(\{\widetilde{W}, \widetilde{A}\} \) and a family of MOP \((Q_n)_n\) such that \(Q_{-1} = 0, Q_0 = I \) and

\[
Q_n(1)e_N = e_N, \quad e_N = (1, 1, \cdots, 1)^T
\]

The family \((Q_n)_n\) satisfies a three-term recurrence relation

\[
xQ_n(x) = A_nQ_{n+1}(x) + B_nQ_n(x) + C_nQ_{n-1}(x), \quad n = 0, 1, \ldots,
\]

where \(B_n\) is tridiagonal, \(A_n\) is lower bidiagonal and \(C_n\) is upper bidiagonal. The corresponding Jacobi matrix \(P\) is stochastic

\[
P = \begin{pmatrix}
B_0 & A_0 & & & \\
C_1 & B_1 & A_1 & & \\
C_2 & B_2 & A_2 & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
\end{pmatrix}
\]

\(n\)-step transition probability matrix \(P^n\) is terms of the Karlin-McGregor representation and the invariant measure \(\pi\).

We studied recurrence, the shape of the invariant distribution and other probabilistic aspects.
A QUASI-BIRTH-AND-DEATH PROCESS

It is possible to get (Grüenbaum-Mdl, 2008) an equivalent symmetric pair \(\{ \tilde{W}, \tilde{A} \} \) and a family of MOP \((Q_n)_n\) such that \(Q_{-1} = 0, Q_0 = I \) and

\[
Q_n(1)e_N = e_N, \quad e_N = (1, 1, \ldots, 1)^T
\]

The family \((Q_n)_n\) satisfies a three-term recurrence relation

\[
xQ_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad n = 0, 1, \ldots,
\]

where \(B_n\) is tridiagonal, \(A_n\) is lower bidiagonal and \(C_n\) is upper bidiagonal. The corresponding Jacobi matrix \(P\) is stochastic

\[
P = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
C_2 & B_2 & A_2 \\
& & & \ddots & \ddots & \ddots
\end{pmatrix}
\]

\(n\)-step transition probability matrix \(P^n\) is in terms of the Karlin-McGregor representation and the invariant measure \(\pi\).

We studied recurrence, the shape of the invariant distribution and other probabilistic aspects.
A QUASI-BIRTH-AND-DEATH PROCESS

It is possible to get (Grünbaum-Mdl, 2008) an equivalent symmetric pair \(\{\tilde{W}, \tilde{A}\} \) and a family of MOP \((Q_n)_n\) such that \(Q_{-1} = 0, Q_0 = I \) and

\[
Q_n(1)e_N = e_N, \quad e_N = (1, 1, \cdots, 1)^T
\]

The family \((Q_n)_n\) satisfies a three-term recurrence relation

\[
xQ_n(x) = A_n Q_{n+1}(x) + B_n Q_n(x) + C_n Q_{n-1}(x), \quad n = 0, 1, \ldots,
\]

where \(B_n\) is tridiagonal, \(A_n\) is lower bidiagonal and \(C_n\) is upper bidiagonal. The corresponding Jacobi matrix \(P\) is stochastic

\[
P = \begin{pmatrix}
B_0 & A_0 \\
C_1 & B_1 & A_1 \\
C_2 & B_2 & A_2 \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

- \(n\)-step transition probability matrix \(P^n\) is terms of the Karlin-McGregor representation and the invariant measure \(\pi\).
- We studied recurrence, the shape of the invariant distribution and other probabilistic aspects.
PARTicular case $\alpha = \beta = 0$, $k = 1/2$, $N = 2$

Pentadiagonal transition probability matrix:

$$
P = \begin{pmatrix}
\frac{5}{9} & \frac{2}{9} & \frac{2}{9} \\
\frac{2}{9} & \frac{7}{9} & \frac{4}{3} & \frac{3}{10} \\
\frac{9}{2} & \frac{18}{45} & \frac{45}{100} & \frac{3}{27} & \frac{2}{100} \\
\frac{5}{36} & \frac{18}{225} & \frac{107}{50} & \frac{3}{100} & \frac{27}{100} \\
\frac{1}{36} & \frac{4}{225} & \frac{23}{50} & \frac{6}{175} & \frac{2}{175} \\
\frac{6}{36} & \frac{75}{225} & \frac{50}{175} & \frac{175}{7} & \frac{3}{40} \\
\frac{14}{36} & \frac{2}{75} & \frac{597}{1225} & \frac{4}{147} & \frac{147}{147} \\
\frac{75}{36} & \frac{75}{75} & \frac{1225}{147} & \frac{147}{8} & \frac{5}{18} \\
\frac{1}{36} & \frac{6}{225} & \frac{47}{50} & \frac{8}{175} & \frac{5}{175} \\
\frac{5}{36} & \frac{245}{225} & \frac{98}{50} & \frac{441}{175} & \frac{18}{175} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}
$$

Invariant measure such that $\pi P = \pi$

$$
\pi = \begin{pmatrix}
\frac{2}{3} & \frac{2}{3} & \frac{16}{15} & \frac{6}{5} & \frac{54}{35} & \frac{12}{7} & \frac{128}{63} & \frac{20}{9} & \frac{250}{99} & \frac{30}{11} & \frac{432}{143} & \frac{42}{13} & \frac{686}{195} & \frac{56}{15} & \vdots \\
\end{pmatrix}
$$
PARTICULAR CASE \(\alpha = \beta = 0, \ k = 1/2, \ N = 2 \)

Pentadiagonal transition probability matrix:

\[
P = \begin{pmatrix}
5 & 2 & 2 \\
9 & 9 & 9 \\
2 & 7 & 4 & 3 \\
9 & 18 & 45 & 10 \\
5 & 1 & 107 & 3 & 27 \\
36 & 18 & 225 & 50 & 100 \\
1 & 4 & 23 & 6 & 2 \\
6 & 75 & 50 & 175 & 7 \\
14 & 2 & 597 & 4 & 40 \\
75 & 75 & 1225 & 147 & 147 \\
1 & 6 & 47 & 8 & 5 \\
5 & 245 & 98 & 441 & 18 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}
\]

Invariant measure such that \(\pi P = \pi \)

\[
\pi = \left(\frac{2}{3}, \frac{2}{3}, \frac{16}{15}, \frac{6}{5}, \frac{54}{35}, \frac{12}{7}, \frac{128}{63}, \frac{20}{9}, \frac{250}{99}, \frac{30}{11}, \frac{432}{143}, \frac{42}{13}, \frac{686}{195}, \frac{56}{15}, \ldots \right)
\]
ASSOCIATED NETWORK
A variant of the Wright-Fisher model

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M of two types A and B

\[
A \overset{1+\beta}{\underset{2}{\rightarrow}} B, \quad B \overset{1+\alpha}{\underset{2}{\rightarrow}} A, \quad \alpha, \beta > -1
\]

As $M \to \infty$, this model can be described by a diffusion process whose state space is $S = [0, 1]$ with drift and diffusion coefficient

\[
\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^2(x) = 2x(1 - x), \quad \alpha, \beta > -1
\]

The N phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

\[
B_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad A_{ii}(x) = 2x(1 - x)
\]

Now there is an extra parameter $k \in (0, \beta + 1)$ in $Q(x)$, which measures how the process moves through all the phases.
A variant of the Wright-Fisher model

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M of two types A and B

$$A \xrightarrow{\frac{1+\beta}{2}} B, \quad B \xrightarrow{\frac{1+\alpha}{2}} A, \quad \alpha, \beta > -1$$

As $M \to \infty$, this model can be described by a diffusion process whose state space is $S = [0, 1]$ with drift and diffusion coefficient

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^2(x) = 2x(1-x), \quad \alpha, \beta > -1$$

The N phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$B_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad A_{ii}(x) = 2x(1-x)$$

Now there is an extra parameter $k \in (0, \beta + 1)$ in $Q(x)$, which measures how the process moves through all the phases.
A variant of the Wright-Fisher model

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M of two types A and B:

$$A \xrightarrow{\frac{1+\beta}{2}} B, \quad B \xrightarrow{\frac{1+\alpha}{2}} A, \quad \alpha, \beta > -1$$

As $M \to \infty$, this model can be described by a diffusion process whose state space is $S = [0, 1]$ with drift and diffusion coefficient:

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^2(x) = 2x(1-x), \quad \alpha, \beta > -1$$

The N phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$B_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad A_{ii}(x) = 2x(1-x)$$

Now there is an extra parameter $k \in (0, \beta + 1)$ in $Q(x)$, which measures how the process moves through all the phases.
SOME SAMPLE PATHS

\(\alpha = 1, \beta = 2, k = 0.2, 7 \text{ changes} \)

\(\alpha = 0.5, \beta = 2, k = 2.8, 10 \text{ changes} \)
SPECTRAL ANALYSIS

There exists a family of orthonormal MOP \((\Phi_n)_n\) (matrix-valued spherical functions) such that

\[
\frac{1}{2}A(x)\Phi''_n(x) + B(x)\Phi'_n(x) + Q(x)\Phi_n(x) = \Phi_n(x)\Gamma_n
\]

Transition probability matrix (MdI, 2012)

\[
P(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x)e^{\Gamma_n t}\Phi_n^*(y)W(y)
\]

Invariant distribution (MdI, 2012)

\[
\Rightarrow \psi(y) = \left(\int_0^1 e_N^T W(x)e_N dx\right)^{-1} e_N^T W(y), \quad e^T = (1, 1, \ldots, 1)
\]

\[
\psi_j(y) = y^{\alpha+N-j}(1 - y)^{\beta \binom{N-1}{j-1}} \left(\frac{(\beta+N)(k)_{N-j}^j(\beta-k+1)_{j-1}}{((\alpha+\beta-k+2))_{N-1}}\right)
\]

In (MdI, 2012) I have studied the probabilistic aspects of this process in terms of the parameters, like waiting times, tendency, the invariant distribution or the probabilistic meaning of the new parameter.
Spectral analysis

There exists a family of orthonormal MOP \((\Phi_n)_n\) (matrix-valued spherical functions) such that

\[
\frac{1}{2}A(x)\Phi_n''(x) + B(x)\Phi_n'(x) + Q(x)\Phi_n(x) = \Phi_n(x)\Gamma_n
\]

Transition probability matrix (MdI, 2012)

\[
P(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x)e^{\Gamma nt}\Phi_n^*(y)W(y)
\]

Invariant distribution (MdI, 2012)

\[
\Rightarrow \psi(y) = \left(\int_0^1 e_N^T W(x)e_N dx\right)^{-1} e_N^T W(y), \quad e^T = (1, 1, \ldots, 1)
\]

\[
\psi_j(y) = y^{\alpha+N-j}(1-y)^{\beta}\binom{N-1}{j-1}\left(\frac{\alpha+\beta+N}{\alpha}\right)\frac{(\beta+N)(k)_{N-j}(\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}
\]

In (MdI, 2012) I have studied the probabilistic aspects of this process in terms of the parameters, like waiting times, tendency, the invariant distribution or the probabilistic meaning of the new parameter.
SPECTRAL ANALYSIS

There exists a family of orthonormal MOP \((\Phi_n)_n\) (matrix-valued spherical functions) such that

\[
\frac{1}{2} A(x) \Phi''_n(x) + B(x) \Phi'_n(x) + Q(x) \Phi_n(x) = \Phi_n(x) \Gamma_n
\]

Transition probability matrix (MdI, 2012)

\[
P(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi^*_n(y) W(y)
\]

Invariant distribution (MdI, 2012)

\[
\Rightarrow \psi(y) = \left(\int_0^1 e^T_N W(x) e_N dx \right)^{-1} e^T_N W(y), \quad e^T = (1, 1, \ldots, 1)
\]

\[
\psi_j(y) = y^{\alpha + N - j} (1 - y)^{\beta} \binom{N-1}{j-1} \binom{\alpha + \beta + N}{\alpha} \frac{(\beta + N)(k)_{N-j}(\beta - k + 1)_{j-1}}{(\alpha + \beta - k + 2)^{N-1}}
\]

In (MdI, 2012) I have studied the probabilistic aspects of this process in terms of the parameters, like waiting times, tendency, the invariant distribution or the probabilistic meaning of the new parameter \(k\).
Spectral analysis

There exists a family of orthonormal MOP \((\Phi_n)_n\) (matrix-valued spherical functions) such that

\[
\frac{1}{2} A(x) \Phi''_n(x) + B(x) \Phi'_n(x) + Q(x) \Phi_n(x) = \Phi_n(x) \Gamma_n
\]

Transition probability matrix (MdI, 2012)

\[
P(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi^*_n(y) W(y)
\]

Invariant distribution (MdI, 2012)

\[
\Rightarrow \psi(y) = \left(\int_0^1 e_N^T W(x) e_N dx \right)^{-1} e_N^T W(y), \quad e^T = (1, 1, \ldots, 1)
\]

\[
\psi_j(y) = y^{\alpha+N-j} (1 - y)^{\beta} \binom{N-1}{j-1} \binom{\alpha+\beta+N}{\alpha} \frac{(\beta+N)(k)_{N-j}(\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}
\]

In (MdI, 2012) I have studied the probabilistic aspects of this process in terms of the parameters, like waiting times, tendency, the invariant distribution or the probabilistic meaning of the new parameter \(k\).
1 Markov processes
 • Preliminaries
 • Spectral methods

2 Bivariate Markov processes
 • Preliminaries
 • Spectral methods

3 An example
 • A quasi-birth-and-death process
 • A variant of the Wright-Fisher model

4 Future work
 • 3 years ahead
 • 5 years ahead
Accommodate examples of MOP to bivariate Markov processes

- **Discrete case:** Find appropriate families of MOP for which the corresponding Jacobi matrix is either stochastic or the infinitesimal operator of a continuous-time quasi-birth-and-death process.
- **Continuous case:** Given a symmetric pair \(\{ \tilde{W}, \tilde{A} \} \), find an appropriate transformation (depending on \(x \)) \(\{ \tilde{W}, \tilde{A} \} \rightarrow \{ W, A \} \) such that the new \(A \) is the infinitesimal operator of a switching diffusion process.

Apply spectral methods to examples of real world bivariate Markov processes in the literature.

Main problem: Find eigenfunctions and the corresponding weight matrix \(W \) for a given infinitesimal operator \(A \).

Possible approach: Find weight matrices such that they are variations of continuous and scalar weights, or matrix-valued eigenfunctions combinations of scalar special functions.
3 YEARS AHEAD I

1. Accommodate examples of MOP to bivariate Markov processes
 - **Discrete case:** Find appropriate families of MOP for which the corresponding Jacobian matrix is either stochastic or the infinitesimal operator of a continuous-time quasi-birth-and-death process.
 - **Continuous case:** Given a symmetric pair \(\{ \tilde{W}, \tilde{A} \} \), find an appropriate transformation (depending on \(x \)) \(\{ \tilde{W}, \tilde{A} \} \rightarrow \{ W, A \} \) such that the new \(A \) is the infinitesimal operator of a switching diffusion process.

2. Apply spectral methods to examples of real world bivariate Markov processes in the literature.
 - **Main problem:** Find eigenfunctions and the corresponding weight matrix \(W \) for a given infinitesimal operator \(A \).
 - **Possible approach:** Find weight matrices such that they are variations of continuous and scalar weights, or matrix-valued eigenfunctions combinations of scalar special functions.
Accommodate examples of MOP to bivariate Markov processes

Discrete case: Find appropriate families of MOP for which the corresponding Jacobi matrix is either stochastic or the infinitesimal operator of a continuous-time quasi-birth-and-death process.

Continuous case: Given a symmetric pair \(\{\tilde{W}, \tilde{A}\} \), find an appropriate transformation (depending on \(x \)) \(\{\tilde{W}, \tilde{A}\} \rightarrow \{W, A\} \) such that the new \(A \) is the infinitesimal operator of a switching diffusion process.

Apply spectral methods to examples of real world bivariate Markov processes in the literature.

Main problem: Find eigenfunctions and the corresponding weight matrix \(W \) for a given infinitesimal operator \(A \).

Possible approach: Find weight matrices such that they are variations of continuous and scalar weights, or matrix-valued eigenfunctions combinations of scalar special functions.
Accommodate examples of MOP to bivariate Markov processes

- **Discrete case:** Find appropriate families of MOP for which the corresponding Jacobi matrix is either stochastic or the infinitesimal operator of a continuous-time quasi-birth-and-death process.

- **Continuous case:** Given a symmetric pair \(\{ \tilde{W}, \tilde{A} \} \), find an appropriate transformation (depending on \(x \)) \(\{ \tilde{W}, \tilde{A} \} \rightarrow \{ W, A \} \) such that the new \(A \) is the infinitesimal operator of a switching diffusion process.

Apply spectral methods to examples of real world bivariate Markov processes in the literature.

Main problem: Find eigenfunctions and the corresponding weight matrix \(W \) for a given infinitesimal operator \(A \).

Possible approach: Find weight matrices such that they are variations of continuous and scalar weights, or matrix-valued eigenfunctions combinations of scalar special functions.
3 YEARS AHEAD II

Noncommutative Integrable Systems

Some of the families of MOP are related to noncommutative Painlevé equations via Riemann-Hilbert problems (Cafasso-Mdi, 2013).

Main tool: Integral representations of some families of MOP. We plan to continue this work by considering connections of other families with some nonlinear differential equations, or with random matrices problems.

Other Open Problems

- Finding new examples and phenomena of some of these MOP.
- Electrostatic interpretation of the zeros of MOP (these are given by $\det(Q_n(x)) = 0$)
- Asymptotic analysis of some of these families.
- Principal dynamical components (MdI-Tabak, 2013).
3 YEARS AHEAD II

Noncommutative integrable systems

Some of the families of MOP are related to noncommutative Painlevé equations via Riemann-Hilbert problems (Cafasso-Mdi, 2013).

Main tool: Integral representations of some families of MOP. We plan to in continue this work by considering connections of other families with some nonlinear differential equations, or with random matrices problems.

Other open problems

- Finding new examples and phenomena of some of these MOP.
- Electrostatic interpretation of the zeros of MOP (these are given by $\det(Q_n(x)) = 0$)
- Asymptotic analysis of some of these families.
- Principal dynamical components (MdI-Tabak, 2013).
3 YEARS AHEAD II

Noncommutative integrable systems

Some of the families of MOP are related to noncommutative Painlevé equations via Riemann-Hilbert problems (Cafasso-Mdi, 2013).

Main tool: Integral representations of some families of MOP. We plan to continue this work by considering connections of other families with some nonlinear differential equations, or with random matrices problems.

Other open problems

- Finding new examples and phenomena of some of these MOP.
- Electrostatic interpretation of the zeros of MOP (these are given by \(\det(Q_n(x)) = 0 \))
- Asymptotic analysis of some of these families.
- Principal dynamical components (MdI-Tabak, 2013).
3 YEARS AHEAD II

3 Noncommutative integrable systems

Some of the families of MOP are related to noncommutative Painlevé equations via Riemann-Hilbert problems (Cafasso-Mdi, 2013).

Main tool: Integral representations of some families of MOP. We plan to continue this work by considering connections of other families with some nonlinear differential equations, or with random matrices problems.

4 Other open problems

- Finding new examples and phenomena of some of these MOP.
- Electrostatic interpretation of the zeros of MOP (these are given by \(\det(Q_n(x)) = 0 \)).
- Asymptotic analysis of some of these families.
- Principal dynamical components (MdI-Tabak, 2013).
3 YEARS AHEAD II

Noncommutative integrable systems

Some of the families of MOP are related to noncommutative Painlevé equations via Riemann-Hilbert problems (Cafasso-Mdi, 2013).

Main tool: Integral representations of some families of MOP. We plan to continue this work by considering connections of other families with some nonlinear differential equations, or with random matrices problems.

Other open problems

Finding new examples and phenomena of some of these MOP.

Electrostatic interpretation of the zeros of MOP (these are given by \(\det(Q_n(x)) = 0 \))

Asymptotic analysis of some of these families.

Principal dynamical components (MdI-Tabak, 2013).
Signal processing

Related to commuting integral and differential operators (for example prolate spheroidal wave functions).

From the discrete setting (Grünbaum, 1983), given a full matrix M (integral operator) one tries to find a tridiagonal matrix T (differential operator) with simple spectrum such that $MT = TM$. Something similar can be done in the matrix case (Durán-Grünbaum, 2005), but now with a 2×2 block matrix M. The reproducing kernel of M is given by

$$M_{ij} = \int_0^\Omega Q_i(x) \tilde{W}(x) Q_j^*(x) dx, \quad i, j = 0, 1, \ldots, T$$

Here the band limiting is the restriction to the interval $(0, \Omega)$ and the time limiting the restriction to the range $0, 1, \ldots, T$. They found a block tridiagonal T such that $MT = TM$.

Main goal: Explore this example in depth or find other examples.
Signal processing

Related to commuting integral and differential operators (for example prolate spheroidal wave functions).

From the discrete setting (Grünbaum, 1983), given a full matrix M (integral operator) one tries to find a tridiagonal matrix T (differential operator) with simple spectrum such that $MT = TM$.

Something similar can be done in the matrix case (Durán-Grünbaum, 2005), but now with a 2×2 block matrix M.

The reproducing kernel of M is given by

$$M_{ij} = \int_0^\Omega Q_i(x) \tilde{W}(x) Q_j^*(x) dx, \quad i, j = 0, 1, \ldots, T$$

Here the band limiting is the restriction to the interval $(0, \Omega)$ and the time limiting the restriction to the range $0, 1, \ldots, T$.

They found a block tridiagonal T such that $MT = TM$.

Main goal: Explore this example in depth or find other examples.
Signal processing

Related to commuting integral and differential operators (for example prolate spheroidal wave functions).

From the discrete setting (Grünbaum, 1983), given a full matrix \(M \) (integral operator) one tries to find a tridiagonal matrix \(T \) (differential operator) with simple spectrum such that \(MT = TM \).

Something similar can be done in the matrix case (Durán-Grünbaum, 2005), but now with a \(2 \times 2 \) block matrix \(\mathbf{M} \).

The reproducing kernel of \(\mathbf{M} \) is given by

\[
\mathbf{M}_{ij} = \int_0^\Omega Q_i(x) \tilde{W}(x) Q_j^*(x) dx, \quad i, j = 0, 1, \ldots, T
\]

Here the band limiting is the restriction to the interval \((0, \Omega)\) and the time limiting the restriction to the range \(0, 1, \ldots, T\).

They found a block tridiagonal \(\mathbf{T} \) such that \(\mathbf{MT} = \mathbf{TM} \).

Main goal: Explore this example in depth or find other examples.
Signal processing

Related to commuting integral and differential operators (for example prolate spheroidal wave functions).

From the discrete setting (Grünbaum, 1983), given a full matrix M (integral operator) one tries to find a tridiagonal matrix T (differential operator) with simple spectrum such that $MT = TM$.

Something similar can be done in the matrix case (Durán-Grünbaum, 2005), but now with a 2×2 block matrix M. The reproducing kernel of M is given by

$$M_{ij} = \int_0^\Omega Q_i(x) \tilde{W}(x) Q_j^*(x) dx, \quad i, j = 0, 1, \ldots, T$$

Here the *band limiting* is the restriction to the interval $(0, \Omega)$ and the *time limiting* the restriction to the range $0, 1, \ldots, T$.

They found a block tridiagonal T such that $MT = TM$.

Main goal: Explore this example in depth or find other examples.
Signal processing

Related to commuting integral and differential operators (for example, prolate spheroidal wave functions).

From the discrete setting (Grünbaum, 1983), given a full matrix M (integral operator) one tries to find a tridiagonal matrix T (differential operator) with simple spectrum such that $MT = TM$.

Something similar can be done in the matrix case (Durán-Grünbaum, 2005), but now with a 2×2 block matrix \mathbf{M}. The reproducing kernel of \mathbf{M} is given by

$$M_{ij} = \int_0^\Omega Q_i(x)\tilde{W}(x)Q_j^*(x)dx, \quad i, j = 0, 1, \ldots, T$$

Here the band limiting is the restriction to the interval $(0, \Omega)$ and the time limiting the restriction to the range $0, 1, \ldots, T$.

They found a block tridiagonal T such that $\mathbf{MT} = \mathbf{TM}$.

Main goal: Explore this example in depth or find other examples.
5 YEARS AHEAD II

2 Noncommutative harmonic oscillators

It is very well known that the quantum harmonic oscillator can be studied using Hermite or wave functions \(\psi_n(x) \). These functions are eigenfunctions of the Schrödinger equation

\[
\psi''(x) - x^2 \psi_n(x) = -(2n + 1) \psi_n(x)
\]

In the matrix case Parmeggiani-Wakayama, 2002 consider 2 \(\times \) 2 differential operators of the form

\[
A = \begin{pmatrix} A \left(-\frac{d^2}{dx^2} + \frac{x^2}{2} \right) + B \left(x \frac{d}{dx} + \frac{1}{2} \right) \end{pmatrix}, \quad x \in \mathbb{R}
\]

where \(A, B \in \mathbb{R}^{2 \times 2} \), \(A > 0 \), \(B = -B^T \) and \(A + iB > 0 \).

Main goal: relate these differential operators with MOP or switching diffusion models on \(\mathbb{R} \), or extend to \(N \times N \) examples.
Noncommutative harmonic oscillators

It is very well known that the quantum harmonic oscillator can be studied using Hermite or wave functions \(\psi_n(x) \). These functions are eigenfunctions of the Schrödinger equation

\[
\psi''_n(x) - x^2 \psi_n(x) = -(2n+1) \psi_n(x)
\]

In the matrix case Parmeggiani-Wakayama, 2002 consider 2 \(\times \) 2 differential operators of the form

\[
\begin{align*}
A &= A \left(-\frac{d^2}{dx^2} + \frac{x^2}{2}\right) + B \left(x \frac{d}{dx} + \frac{1}{2}\right), \quad x \in \mathbb{R}
\end{align*}
\]

where \(A, B \in \mathbb{R}^{2 \times 2} \), \(A > 0 \), \(B = -B^T \) and \(A + iB > 0 \).

Main goal: relate these differential operators with MOP or switching diffusion models on \(\mathbb{R} \), or extend to \(N \times N \) examples.
Noncommutative harmonic oscillators

It is very well known that the quantum harmonic oscillator can be studied using Hermite or wave functions \(\psi_n(x) \). These functions are eigenfunctions of the Schrödinger equation

\[
\psi_n''(x) - x^2\psi_n(x) = -(2n + 1)\psi_n(x)
\]

In the matrix case Parmeggiani-Wakayama, 2002 consider \(2 \times 2 \) differential operators of the form

\[
A = A \left(-\frac{d^2}{dx^2} + \frac{x^2}{2} \right) + B \left(x \frac{d}{dx} + \frac{1}{2} \right), \quad x \in \mathbb{R}
\]

where \(A, B \in \mathbb{R}^{2 \times 2}, A > 0, B = -B^T \) and \(A + iB > 0 \).

Main goal: relate these differential operators with MOP or switching diffusion models on \(\mathbb{R} \), or extend to \(N \times N \) examples.
Cafasso, M. and de la Iglesia, M. D., *Non-commutative Painlevé equations and Hermite type matrix orthogonal polynomials*, accepted for publication in Communications in Mathematical Physics (see also arXiv:1301.2116v1).

Kreĭn, M. G., *Fundamental aspects of the representation theory of hermitian operators with deficiency index* (m, m), AMS Translations, Series 2, **97** (1971), Providence, Rhode Island, pp. 75–143.