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Preliminaries

The theory of matrix valued orthogonal polynomials (MOP) on the real line
was introduced by Krein in 1949
Equivalence between (Pn)n, orthonormal with respect to a (positive
definite) weight matrix W

〈Pn,Pm〉W =

∫b
a
Pn(t)dW (t)P∗m(t) = δnmI , n,m > 0

and a three term recurrence relation

tPn(t) = An+1Pn+1(t) + BnPn(t) + A∗nPn−1(t), n > 0

det(An+1) 6= 0, Bn = B∗n

Systematic study: Asymptotics, zeros of MOP, quadrature formulae...
Applications: scattering theory, times series and signal processing...
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Durán (1997): characterize orthonormal (Pn)n satisfying

P ′′n (t)F2(t) + P ′n(t)F1(t) + Pn(t)F0(t) = ΛnPn(t), n > 0

gradFi 6 i , Λn Hermitian

Equivalent to the symmetry of

D = ∂2F2(t) + ∂1F1(t) + ∂1F0(t), ∂ =
d
dt

with PnD = ΛnPn

D is symmetric with respect to W if 〈PD,Q〉W = 〈P,QD〉W

It has not been until very recently when the first examples appeared.
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How to get examples

Matrix spherical functions associated to Pn(C) = SU(n + 1)/U(n)
Grünbaum-Pacharoni-Tirao (2003)

Durán-Grünbaum (2004):

Symmetry equations

F2W = WF ∗2

2(F2W ) ′ = F1W + WF ∗1

(F2W ) ′′ − (F1W ) ′ + F0W = WF ∗0

lim
t→x

F2(t)W (t) = 0 = lim
t→x

(F1(t)W (t) − W (t)F ∗1 (t)), for x = a, b
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Algebra of differential operators: For a fixed family (Pn)n of MOP we
consider the algebra over C

D(W ) =

{
D =

k∑
i=0

∂iFi (t) : PnD = Λn(D)Pn, n = 0, 1, 2, . . .
}

Scalar case: If F is the second order differential operator (Hermite,
Laguerre or Jacobi), then any operator U such that Upn = λnpn

U =

k∑
i=0

ciFi , ci ∈ C

⇒ D(ω) ' C[t]
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Matrix case: This algebra can be noncommutative and generated by several
elements

Existence of several linearly independent second order differential
operators having a fixed family of MOP as eigenfunctions

Existence of families of MOP satisfying odd order differential equations

Algebras: conjectures (Castro, Durán, Grünbaum, MdI)
except one (Tirao) due to Castro–Grünbaum (2006)
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Convex cone of weight matrices

Dual situation to D(W ): given a fixed differential operator D we study:

Υ(D) = {W : 〈PD,Q〉W = 〈P,QD〉W , for all P,Q}

If Υ(D) 6= ∅, it is a convex cone:
W1,W2 ∈ Υ(D)⇒ γW1 + ζW2 ∈ Υ(D), γ, ζ > 0 (one of them 6= 0)

The weight matrices W going along with a symmetric second order
differential operator D give examples where Υ(D) 6= ∅ (one dimensional)
We show the first examples of symmetric second order differential operators
D for which Υ(D) is a two dimensional convex cone.
⇒ New phenomenon: (Monic) MOP Pn,ζ/γ with respect to γW1 + ζW2

Pn,ζ/γD = ΓnPn,ζ/γ
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Adding a Dirac delta distribution

All examples we consider are of the form

γW + ζM(t0)δt0 , γ > 0, ζ > 0, t0 ∈ R,

where W is a weight matrix having several linearly independent symmetric second
order differential operators and M(t0) certain positive semidefinite matrix.

Scalar case (ω+ mδt0)

Second order: there are NOT symmetric second order differential operators.

Fourth order: t0 at the endpoints of the support, which is NOT symmetric
with respect to the original weight (Krall, 1941):

Laguerre type e−t + Mδ0
Legendre type 1 + M(δ−1 + δ1)

Jacobi type (1 − t)α + Mδ0
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Method to find examples

Theorem (Durán–MdI, 2008)

Let W be a weight matrix and D = ∂2F2(t) + ∂1F1(t) + ∂0F0. Assume
that associated with the real point t0 ∈ R there exists a Hermitian positive
semidefinite matrix M(t0) satisfying

F2(t0)M(t0) = 0,

F1(t0)M(t0) = 0,

F0M(t0) = M(t0)F ∗0

Then
D is symmetric with respect to W

⇔
D is symmetric with respect to γW + ζM(t0)δt0
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Example where t0 ∈ R

W (t) = e−t2
(
1 + a2t2 at

at 1

)
, t ∈ R, a ∈ R \ {0}

Durán–Grünbaum (2004): weight matrix
Castro–Grünbaum (2006): Algebra of differential operators

Symmetry equations ⇒ Expression for the 5-dimensional (real) linear space
of symmetric differential operators of order at most two

Constraints:

F2(t0)M(t0) = 0,

F1(t0)M(t0) = 0,

F0M(t0) = M(t0)F ∗0
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t0 = 0

D = ∂2F2(t) + ∂1F1(t) + ∂0F0(t),

F2(t) =

(
1 − at −1 + a2t2

−1 1 + at

)
F1(t) =

(
−2a − 2t 2a + 2(2 + a2)t

0 −2t

)
F0(t) =

(
−1 2 2+a2

a2
4
a2 1

)

M =

(
1 1
1 1

)
⇒ D is symmetric with respect to the family of weight matrices

Υ(D) =

{
γe−t2

(
1 + a2t2 at

at 1

)
+ ζ

(
1 1
1 1

)
δ0(t), γ > 0, ζ > 0

}
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D = ∂2F2(t) + ∂1F1(t) + ∂0F0(t),

F2(t) =

(
−ξ∓a,t0 + at0 − at −1 − (a2t0)t + a2t2

−1 −ξ∓a,t0 + at

)
F1(t) =

(
−2a + 2ξ∓a,t0t −2t0 − 2aξ∓a,t0 + 2(2 + a2)t

2t0 2(ξ∓a,t0 − at0)t

)
F0(t) =

(
ξ∓a,t0 + 2 t0

a 22+a2
a2

4
a2 −ξ∓a,t0 − 2 t0

a

)

M(t0) =

(
(ξ±t0,a)

2 ξ±t0,a
ξ±t0,a 1

)
, ξ±a,t0 =

at0 ±
√

4 + a2t20
2

⇒ Υ(D) = {γW + ζM(t0)δt0 , γ > 0, ζ > 0}
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Another example where t0 ∈ R

W (t) = tαe−t
(
t2 + a2(t − 1)2 a(t − 1)

a(t − 1) 1

)
, t > 0, α > −1

Durán–Grünbaum (2004)

t0 = −1,α = 0, a = 1

D = ∂2

(
−
√

2(
√

2+2t)
2 −1 + 2t2

1
√

2(
√

2−2t)
2

)
+

∂1
(

(1 −
√
2)(5 + 2

√
2 − t) −2

√
2 + 6t

−2 (1 +
√
2)(t − 1)

)
+∂0

(
−1 +

√
2

2
3
2

1
2 1 −

√
2

2

)

M =

(
3 + 2

√
2 −1 −

√
2

−1 −
√
2 1

)
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Another example where t0 ∈ R

W (t) = tαe−t
(
t2 + a2(t − 1)2 a(t − 1)

a(t − 1) 1

)
, t > 0, α > −1

Durán–Grünbaum (2004)

t0 = −1,α = 0, a = 1
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Example where δ0 of size N × N

Wα,ν1,...,νN−1(t) = tαe−teAtt
1
2 Jt

1
2 J∗eA∗t , α > −1, t > 0

A =


0 ν1 0 · · · 0
0 0 ν2 · · · 0
...

...
...

. . .
...

0 0 0 · · · νN−1

0 0 0 · · · 0

 ,νi ∈ R\{0}, J =


N − 1 0 · · · 0 0
0 N − 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 0


Durán–MdI (2008)

Second order differential operators
D1 = ∂2tI + ∂1[(α+ 1)I + J + t(A − I )] + ∂0[(J + αI )A − J]

D2 = ∂2t(J − At) + ∂1((1 + α)I + J)J + Y − t(J + (α+ 2)A + Y ∗ − adAY )

+ ∂0 N − 1
ν2

N−1
[J − (αI + J)A]
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Example where δ0 of size N × N

Symmetry equations ⇒ Expression for the 3-dimensional (real) linear space
of symmetric differential operators of order at most two

t0 = 0

D = −(N − 1)D1 + D2

M = v∗v

v =

N−1∑
j=1

( N−j∏
k=1

νN−k(α+ k)

k

)
ej + eN

⇒ D is symmetric with respect to the family of weight matrices

Υ(D) = {γWα,ν1,...,νN−1(t) + ζMδ0(t), γ > 0, ζ > 0}
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Quantum mechanics
[Durán–Grünbaum] P A M Dirac meets M G Krein: matrix orthogonal
polynomials and Dirac´s equation, J. Phys. A: Math. Gen. (2006).

Time-and-band limiting
[Durán–Grünbaum] A survey on orthogonal matrix polynomials satisfying
second order differential equations, J. Comput. Appl. Math. (2005).

Quasi-birth-and-death processes
[Grünbaum–MdI] Matrix valued orthogonal polynomials arising from group
representation theory and a family of quasi-birth-and-death processes,
SIMAX (2008).
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