The convex cone of weight matrices associated with a symmetric second order differential operator: some examples¹

Manuel Domínguez de la Iglesia

Department of Mathematics, K. U. Leuven

Workshop on Orthogonal Polynomials and Special Functions May 19-20, 2008, K. U. Leuven, Belgium

< □ > < 個 > < 注 > < 注 > ... 注

¹joint work with A. J. Durán

Outline

- Preliminaries
- New phenomena

2 Convex cone of weight matrices

- Definition
- Method to find examples
- Examples

3 New applications

伺 ト イヨト イヨト

Preliminaries New phenomena

Outline

- Preliminaries
- New phenomena

Convex cone of weight matrices

- Definition
- Method to find examples
- Examples

New applications

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminaries New phenomena

Preliminaries

The theory of matrix valued orthogonal polynomials (MOP) on the real line was introduced by Krein in 1949

Equivalence between $(P_n)_n$, orthonormal with respect to a (positive definite) weight matrix W

$$\langle P_n, P_m \rangle_W = \int_a^b P_n(t) \mathrm{d}W(t) P_m^*(t) = \delta_{nm}I, \quad n, m \ge 0$$

and a three term recurrence relation

$$tP_n(t) = A_{n+1}P_{n+1}(t) + B_nP_n(t) + A_n^*P_{n-1}(t), \quad n \ge 0$$
$$det(A_{n+1}) \ne 0, \quad B_n = B_n^*$$

• Systematic study: Asymptotics, zeros of MOP, quadrature formulae... Applications: scattering theory, times series and signal processing...

Manuel Domínguez de la Iglesia The convex cone of weight matrices

Preliminaries New phenomena

Preliminaries

The theory of matrix valued orthogonal polynomials (MOP) on the real line was introduced by Krein in 1949 Equivalence between $(P_n)_n$, orthonormal with respect to a (positive definite) weight matrix W

$$\langle P_n, P_m \rangle_W = \int_a^b P_n(t) \mathrm{d}W(t) P_m^*(t) = \delta_{nm}I, \quad n, m \ge 0$$

and a three term recurrence relation

$$\begin{split} t P_n(t) &= A_{n+1} P_{n+1}(t) + B_n P_n(t) + A_n^* P_{n-1}(t), \quad n \ge 0\\ \det(A_{n+1}) &\neq 0, \quad B_n = B_n^* \end{split}$$

Systematic study: Asymptotics, zeros of MOP, quadrature formulae...
 Applications: scattering theory, times series and signal processing...

Manuel Domínguez de la Iglesia The convex cone of weight matrices

Preliminaries New phenomena

Preliminaries

The theory of matrix valued orthogonal polynomials (MOP) on the real line was introduced by Krein in 1949 Equivalence between $(P_n)_n$, orthonormal with respect to a (positive definite) weight matrix W

$$\langle P_n, P_m \rangle_W = \int_a^b P_n(t) \mathrm{d}W(t) P_m^*(t) = \delta_{nm}I, \quad n, m \ge 0$$

and a three term recurrence relation

$$\begin{split} t P_n(t) &= A_{n+1} P_{n+1}(t) + B_n P_n(t) + A_n^* P_{n-1}(t), \quad n \ge 0 \\ \det(A_{n+1}) \neq 0, \quad B_n &= B_n^* \end{split}$$

• Systematic study: Asymptotics, zeros of MOP, quadrature formulae... Applications: scattering theory, times series and signal processing...

Preliminaries New phenomena

Durán (1997): characterize orthonormal $(P_n)_n$ satisfying

$$\begin{aligned} P_n''(t)F_2(t) + P_n'(t)F_1(t) + P_n(t)F_0(t) &= \Lambda_n P_n(t), \quad n \ge 0\\ \text{grad } F_i \leqslant i, \quad \Lambda_n \quad \text{Hermitian} \end{aligned}$$

Equivalent to the symmetry of

$$D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^1 F_0(t), \quad \partial = \frac{d}{dt}$$

with $P_n D = \Lambda_n P_n$

D is symmetric with respect to W if $\langle PD, Q \rangle_W = \langle P, QD \rangle_W$

It has not been until very recently when the first examples appeared.

Preliminaries New phenomena

Durán (1997): characterize orthonormal $(P_n)_n$ satisfying

$$\begin{aligned} P_n''(t)F_2(t) + P_n'(t)F_1(t) + P_n(t)F_0(t) &= \Lambda_n P_n(t), \quad n \ge 0\\ \text{grad} \ F_i \leqslant i, \quad \Lambda_n \quad \text{Hermitian} \end{aligned}$$

Equivalent to the symmetry of

$$D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^1 F_0(t), \quad \partial = \frac{d}{dt}$$

with $P_n D = \Lambda_n P_n$

D is symmetric with respect to W if $\langle PD, Q \rangle_W = \langle P, QD \rangle_W$

It has not been until very recently when the first examples appeared.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Preliminaries New phenomena

Durán (1997): characterize orthonormal $(P_n)_n$ satisfying

$$\begin{aligned} P_n''(t)F_2(t) + P_n'(t)F_1(t) + P_n(t)F_0(t) &= \Lambda_n P_n(t), \quad n \ge 0\\ \text{grad} \ F_i \leqslant i, \quad \Lambda_n \quad \text{Hermitian} \end{aligned}$$

Equivalent to the symmetry of

$$D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^1 F_0(t), \quad \partial = \frac{d}{dt}$$

with $P_n D = \Lambda_n P_n$

D is symmetric with respect to W if $\langle PD, Q \rangle_W = \langle P, QD \rangle_W$

It has not been until very recently when the first examples appeared.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preliminaries New phenomena

How to get examples

- Matrix spherical functions associated to $P_n(\mathbb{C}) = SU(n+1)/U(n)$ Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004):

Symmetry equations

 $F_2 W = WF_2^*$ 2(F_2W)' = F_1W + WF_1^* (F_2W)'' - (F_1W)' + F_0W = WF_0^*

 $\lim_{t \to x} F_2(t) W(t) = 0 = \lim_{t \to x} (F_1(t) W(t) - W(t) F_1^*(t)), \text{ for } x = a, b$

< ロ > (同 > (回 > (回 >))

Preliminaries New phenomena

How to get examples

• Matrix spherical functions associated to $P_n(\mathbb{C}) = SU(n+1)/U(n)$ Grünbaum-Pacharoni-Tirao (2003)

• Durán-Grünbaum (2004):

Symmetry equations

 $F_2 W = WF_2^*$ 2(F_2W)' = F_1W + WF_1^* (F_2W)'' - (F_1W)' + F_0W = WF_0^*

 $\lim_{t \to x} F_2(t) W(t) = 0 = \lim_{t \to x} (F_1(t) W(t) - W(t) F_1^*(t)), \text{ for } x = a, b$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries New phenomena

How to get examples

- Matrix spherical functions associated to $P_n(\mathbb{C}) = SU(n+1)/U(n)$ Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004):

Symmetry equations

 $F_2 W = WF_2^*$ 2(F_2W)' = F_1W + WF_1^* (F_2W)'' - (F_1W)' + F_0W = WF_0^*

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

$$\lim_{t \to x} F_2(t)W(t) = 0 = \lim_{t \to x} (F_1(t)W(t) - W(t)F_1^*(t)), \text{ for } x = a, b$$

Preliminaries New phenomena

New phenomena

Algebra of differential operators: For a fixed family $(P_n)_n$ of MOP we consider the algebra over \mathbb{C}

$$\mathcal{D}(W) = \left\{ D = \sum_{i=0}^{k} \partial^{i} F_{i}(t) : P_{n}D = \Lambda_{n}(D)P_{n}, \ n = 0, 1, 2, \dots \right\}$$

Scalar case: If \mathcal{F} is the second order differential operator (Hermite, Laguerre or Jacobi), then any operator \mathcal{U} such that $\mathcal{U}p_n = \lambda_n p_n$

$$egin{aligned} & \mathcal{U} = \sum_{i=0}^k c_i \mathcal{F}^i, \quad c_i \in \mathbb{C} \ & \Rightarrow \mathcal{D}(\omega) \simeq \mathbb{C}[t] \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preliminaries New phenomena

New phenomena

Algebra of differential operators: For a fixed family $(P_n)_n$ of MOP we consider the algebra over \mathbb{C}

$$\mathcal{D}(W) = \left\{ D = \sum_{i=0}^{k} \partial^{i} F_{i}(t) : P_{n}D = \Lambda_{n}(D)P_{n}, \ n = 0, 1, 2, \dots \right\}$$

Scalar case: If \mathcal{F} is the second order differential operator (Hermite, Laguerre or Jacobi), then any operator \mathcal{U} such that $\mathcal{U}p_n = \lambda_n p_n$

$$egin{aligned} & \mathcal{U} = \sum_{i=0}^k c_i \mathfrak{F}^i, \quad c_i \in \mathbb{C} \ & \Rightarrow \mathcal{D}(oldsymbol{\omega}) \simeq \mathbb{C}[t] \end{aligned}$$

• Existence of several linearly independent second order differential operators having a fixed family of MOP as eigenfunctions

• Existence of families of MOP satisfying odd order differential equations

Algebras: conjectures (Castro, Durán, Grünbaum, Mdl) except one (Tirao) due to Castro–Grünbaum (2006)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Existence of several linearly independent second order differential operators having a fixed family of MOP as eigenfunctions
- Existence of families of MOP satisfying odd order differential equations

Algebras: conjectures (Castro, Durán, Grünbaum, Mdl) except one (Tirao) due to Castro–Grünbaum (2006)

- Existence of several linearly independent second order differential operators having a fixed family of MOP as eigenfunctions
- Existence of families of MOP satisfying odd order differential equations

Algebras: conjectures (Castro, Durán, Grünbaum, Mdl) except one (Tirao) due to Castro–Grünbaum (2006)

イロト イポト イヨト イヨト

- Existence of several linearly independent second order differential operators having a fixed family of MOP as eigenfunctions
- Existence of families of MOP satisfying odd order differential equations Algebras: conjectures (Castro, Durán, Grünbaum, MdI) except one (Tirao) due to Castro–Grünbaum (2006)

Definition Method to find examples Examples

Outline

Introduction

- Preliminaries
- New phenomena

2 Convex cone of weight matrices

- Definition
- Method to find examples
- Examples

New applications

・ 同 ト ・ ヨ ト ・ ヨ ト

Convex cone of weight matrices

Dual situation to $\mathcal{D}(W)$: given a fixed differential operator D we study:

 $\Upsilon(D) = \{ W: \ \langle PD, Q \rangle_W = \langle P, QD \rangle_W, \quad \text{for all} \quad P, Q \}$

• If $\Upsilon(D) \neq \emptyset$, it is a convex cone: $W_1, W_2 \in \Upsilon(D) \Rightarrow \gamma W_1 + \zeta W_2 \in \Upsilon(D), \ \gamma, \zeta \ge 0$ (one of them $\neq 0$)

The weight matrices W going along with a symmetric second order differential operator D give examples where $\Upsilon(D) \neq \emptyset$ (one dimensional) We show the first examples of symmetric second order differential operators D for which $\Upsilon(D)$ is a two dimensional convex cone.

 \Rightarrow New phenomenon: (Monic) MOP $P_{n,\zeta/\gamma}$ with respect to $\gamma W_1 + \zeta W_2$

$$P_{n,\zeta/\gamma}D=\Gamma_nP_{n,\zeta/\gamma}$$

æ

Convex cone of weight matrices

Dual situation to $\mathcal{D}(W)$: given a fixed differential operator D we study:

 $\Upsilon(D) = \{ W: \langle PD, Q \rangle_W = \langle P, QD \rangle_W, \text{ for all } P, Q \}$

• If $\Upsilon(D) \neq \emptyset$, it is a convex cone: $W_1, W_2 \in \Upsilon(D) \Rightarrow \gamma W_1 + \zeta W_2 \in \Upsilon(D), \ \gamma, \zeta \ge 0$ (one of them $\neq 0$)

The weight matrices W going along with a symmetric second order differential operator D give examples where $\Upsilon(D) \neq \emptyset$ (one dimensional) We show the first examples of symmetric second order differential operators D for which $\Upsilon(D)$ is a two dimensional convex cone.

 \Rightarrow New phenomenon: (Monic) MOP $P_{n,\zeta/\gamma}$ with respect to $\gamma W_1 + \zeta W_2$

$$P_{n,\zeta/\gamma}D=\Gamma_nP_{n,\zeta/\gamma}$$

æ

Convex cone of weight matrices

Dual situation to $\mathcal{D}(W)$: given a fixed differential operator D we study:

 $\Upsilon(D) = \{ W: \langle PD, Q \rangle_W = \langle P, QD \rangle_W, \text{ for all } P, Q \}$

• If $\Upsilon(D) \neq \emptyset$, it is a convex cone: $W_1, W_2 \in \Upsilon(D) \Rightarrow \gamma W_1 + \zeta W_2 \in \Upsilon(D), \ \gamma, \zeta \ge 0$ (one of them $\neq 0$)

The weight matrices W going along with a symmetric second order differential operator D give examples where $\Upsilon(D) \neq \emptyset$ (one dimensional) We show the first examples of symmetric second order differential operators D for which $\Upsilon(D)$ is a two dimensional convex cone.

 \Rightarrow New phenomenon: (Monic) MOP $P_{n,\zeta/\gamma}$ with respect to $\gamma W_1 + \zeta W_2$

$$P_{n,\zeta/\gamma}D=\Gamma_nP_{n,\zeta/\gamma}$$

-

Convex cone of weight matrices

Dual situation to $\mathcal{D}(W)$: given a fixed differential operator D we study:

 $\Upsilon(D) = \{ W: \langle PD, Q \rangle_W = \langle P, QD \rangle_W, \text{ for all } P, Q \}$

• If $\Upsilon(D) \neq \emptyset$, it is a convex cone: $W_1, W_2 \in \Upsilon(D) \Rightarrow \gamma W_1 + \zeta W_2 \in \Upsilon(D), \ \gamma, \zeta \ge 0$ (one of them $\neq 0$)

The weight matrices W going along with a symmetric second order differential operator D give examples where $\Upsilon(D) \neq \emptyset$ (one dimensional) We show the first examples of symmetric second order differential operators D for which $\Upsilon(D)$ is a two dimensional convex cone.

 \Rightarrow New phenomenon: (Monic) MOP $P_{n,\zeta/\gamma}$ with respect to $\gamma W_1 + \zeta W_2$

$$P_{n,\zeta/\gamma}D=\Gamma_nP_{n,\zeta/\gamma}$$

-

Convex cone of weight matrices

Dual situation to $\mathcal{D}(W)$: given a fixed differential operator D we study:

 $\Upsilon(D) = \{ W: \langle PD, Q \rangle_W = \langle P, QD \rangle_W, \text{ for all } P, Q \}$

• If $\Upsilon(D) \neq \emptyset$, it is a convex cone: $W_1, W_2 \in \Upsilon(D) \Rightarrow \gamma W_1 + \zeta W_2 \in \Upsilon(D), \ \gamma, \zeta \ge 0$ (one of them $\neq 0$)

The weight matrices W going along with a symmetric second order differential operator D give examples where $\Upsilon(D) \neq \emptyset$ (one dimensional) We show the first examples of symmetric second order differential operators D for which $\Upsilon(D)$ is a two dimensional convex cone.

 \Rightarrow New phenomenon: (Monic) MOP $P_{n,\zeta/\gamma}$ with respect to $\gamma W_1 + \zeta W_2$

$$P_{n,\zeta/\gamma}D=\Gamma_nP_{n,\zeta/\gamma}$$

Definition Method to find examples Examples

Adding a Dirac delta distribution

All examples we consider are of the form

 $\gamma W + \zeta M(t_0) \delta_{t_0}, \quad \gamma > 0, \zeta \ge 0, \quad t_0 \in \mathbb{R},$

where W is a weight matrix having several linearly independent symmetric second order differential operators and $M(t_0)$ certain positive semidefinite matrix.

Scalar case $(\omega + m\delta_{t_0})$

Second order: there are NOT symmetric second order differential operators.

 Fourth order: t₀ at the endpoints of the support, which is NOT symmetric with respect to the original weight (Krall, 1941):

> Laguerre type $e^{-t} + M\delta_0$ Legendre type $1 + M(\delta_{-1} + \delta_1)$ Jacobi type $(1 - t)^{\alpha} + M\delta_0$

Definition Method to find examples Examples

Adding a Dirac delta distribution

All examples we consider are of the form

 $\gamma W + \zeta M(t_0) \delta_{t_0}, \quad \gamma > 0, \zeta \ge 0, \quad t_0 \in \mathbb{R},$

where W is a weight matrix having several linearly independent symmetric second order differential operators and $M(t_0)$ certain positive semidefinite matrix.

Scalar case $(\omega + m\delta_{t_0})$

• Second order: there are NOT symmetric second order differential operators.

• Fourth order: t₀ at the endpoints of the support, which is NOT symmetric with respect to the original weight (Krall, 1941):

Laguerre type $e^{-t} + M\delta_0$ Legendre type $1 + M(\delta_{-1} + \delta_1)$ Jacobi type $(1 - t)^{\alpha} + M\delta_0$

Definition Method to find examples Examples

Adding a Dirac delta distribution

All examples we consider are of the form

 $\gamma W + \zeta M(t_0) \delta_{t_0}, \quad \gamma > 0, \zeta \ge 0, \quad t_0 \in \mathbb{R},$

where W is a weight matrix having several linearly independent symmetric second order differential operators and $M(t_0)$ certain positive semidefinite matrix.

Scalar case $(\omega + m\delta_{t_0})$

• Second order: there are NOT symmetric second order differential operators.

• Fourth order: t₀ at the endpoints of the support, which is NOT symmetric with respect to the original weight (Krall, 1941):

Laguerre type $e^{-t} + M\delta_0$ Legendre type $1 + M(\delta_{-1} + \delta_1)$ Jacobi type $(1 - t)^{\alpha} + M\delta_0$

Definition Method to find examples Examples

Adding a Dirac delta distribution

All examples we consider are of the form

 $\gamma W + \zeta M(t_0) \delta_{t_0}, \quad \gamma > 0, \zeta \ge 0, \quad t_0 \in \mathbb{R},$

where W is a weight matrix having several linearly independent symmetric second order differential operators and $M(t_0)$ certain positive semidefinite matrix.

Scalar case $(\omega + m\delta_{t_0})$

- Second order: there are NOT symmetric second order differential operators.
- Fourth order: t₀ at the endpoints of the support, which is NOT symmetric with respect to the original weight (Krall, 1941):

```
Laguerre type e^{-t} + M\delta_0
Legendre type 1 + M(\delta_{-1} + \delta_1)
Jacobi type (1 - t)^{\alpha} + M\delta_0
```

Method to find examples

Theorem (Durán-Mdl, 2008)

Let W be a weight matrix and $D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^0 F_0$. Assume that associated with the real point $t_0 \in \mathbb{R}$ there exists a Hermitian positive semidefinite matrix $M(t_0)$ satisfying

 $F_{2}(t_{0})M(t_{0}) = 0,$ $F_{1}(t_{0})M(t_{0}) = 0,$ $F_{0}M(t_{0}) = M(t_{0})F_{0}^{*}$

Then

D is symmetric with respect to W

 \Leftrightarrow

D is symmetric with respect to $\gamma W + \zeta M(t_0) \delta_{t_0}$

Definition Method to find examples Examples

Example where $t_0 \in \mathbb{R}$

$$W(t)=e^{-t^2}egin{pmatrix}1+a^2t^2&at\at&1\end{pmatrix},\quad t\in\mathbb{R},\quad a\in\mathbb{R}\setminus\{0\}$$

Durán–Grünbaum (2004): weight matrix Castro–Grünbaum (2006): Algebra of differential operators

Symmetry equations \Rightarrow Expression for the 5-dimensional (real) linear space of symmetric differential operators of order at most two

Constraints:

$$F_{2}(t_{0})M(t_{0}) = 0,$$

$$F_{1}(t_{0})M(t_{0}) = 0,$$

$$F_{0}M(t_{0}) = M(t_{0})F_{0}^{*}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition Method to find examples Examples

Example where $t_0 \in \mathbb{R}$

$$W(t)=e^{-t^2}egin{pmatrix}1+a^2t^2&at\at&1\end{pmatrix}$$
, $t\in\mathbb{R}$, $a\in\mathbb{R}\setminus\{0\}$

Durán–Grünbaum (2004): weight matrix Castro–Grünbaum (2006): Algebra of differential operators

Symmetry equations \Rightarrow Expression for the 5-dimensional (real) linear space of symmetric differential operators of order at most two

Constraints:

$$F_{2}(t_{0})M(t_{0}) = 0,$$

$$F_{1}(t_{0})M(t_{0}) = 0,$$

$$F_{0}M(t_{0}) = M(t_{0})F_{0}^{*}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition Method to find examples Examples

Example where $t_0 \in \mathbb{R}$

$$W(t)=e^{-t^2}egin{pmatrix}1+a^2t^2&at\at&1\end{pmatrix}$$
, $t\in\mathbb{R}$, $a\in\mathbb{R}\setminus\{0\}$

Durán–Grünbaum (2004): weight matrix Castro–Grünbaum (2006): Algebra of differential operators

Symmetry equations \Rightarrow Expression for the 5-dimensional (real) linear space of symmetric differential operators of order at most two

Constraints:

$$F_2(t_0)M(t_0) = 0,$$

 $F_1(t_0)M(t_0) = 0,$
 $F_0M(t_0) = M(t_0)F_0^*$

(日本) (日本) (日本)

Definition Method to find examples Examples

 $t_0 = 0$

$$D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^0 F_0(t),$$

$$F_2(t) = \begin{pmatrix} 1 - at & -1 + a^2 t^2 \\ -1 & 1 + at \end{pmatrix}$$

$$F_1(t) = \begin{pmatrix} -2a - 2t & 2a + 2(2 + a^2)t \\ 0 & -2t \end{pmatrix}$$

$$F_0(t) = \begin{pmatrix} -1 & 2\frac{2+a^2}{a^2} \\ \frac{4}{a^2} & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

 \Rightarrow D is symmetric with respect to the family of weight matrices

$$\Upsilon(D) = \left\{ \gamma e^{-t^2} \begin{pmatrix} 1 + a^2 t^2 & at \\ at & 1 \end{pmatrix} + \zeta \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \delta_0(t), \quad \gamma > 0, \, \zeta \ge 0 \right\}$$

Manuel Domínguez de la Iglesia

The convex cone of weight matrices

Definition Method to find examples **Examples**

 $t_0 = 0$

$$D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^0 F_0(t),$$

$$F_2(t) = \begin{pmatrix} 1 - at & -1 + a^2 t^2 \\ -1 & 1 + at \end{pmatrix}$$

$$F_1(t) = \begin{pmatrix} -2a - 2t & 2a + 2(2 + a^2)t \\ 0 & -2t \end{pmatrix}$$

$$F_0(t) = \begin{pmatrix} -1 & 2\frac{2+a^2}{a^2} \\ \frac{4}{a^2} & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

 \Rightarrow D is symmetric with respect to the family of weight matrices

$$\Upsilon(D) = \left\{ \gamma e^{-t^2} \begin{pmatrix} 1 + a^2 t^2 & at \\ at & 1 \end{pmatrix} + \zeta \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \delta_0(t), \quad \gamma > 0, \, \zeta \ge 0 \right\}$$

Manuel Domínguez de la Iglesia

The convex cone of weight matrices

Definition Method to find examples **Examples**

$$D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^0 F_0(t),$$

$$F_2(t) = \begin{pmatrix} -\xi_{a,t_0}^{\mp} + at_0 - at & -1 - (a^2 t_0)t + a^2 t^2 \\ -1 & -\xi_{a,t_0}^{\mp} + at \end{pmatrix}$$

$$F_1(t) = \begin{pmatrix} -2a + 2\xi_{a,t_0}^{\mp}t & -2t_0 - 2a\xi_{a,t_0}^{\mp} + 2(2 + a^2)t \\ 2t_0 & 2(\xi_{a,t_0}^{\mp} - at_0)t \end{pmatrix}$$

$$F_0(t) = \begin{pmatrix} \xi_{a,t_0}^{\mp} + 2\frac{t_0}{a} & 2\frac{2+a^2}{a^2} \\ \frac{4}{a^2} & -\xi_{a,t_0}^{\mp} - 2\frac{t_0}{a} \end{pmatrix}$$

$$M(t_0) = \begin{pmatrix} (\xi_{t_0,a}^{\pm})^2 & \xi_{t_0,a}^{\pm} \\ \xi_{t_0,a}^{\pm} & 1 \end{pmatrix}, \quad \xi_{a,t_0}^{\pm} = \frac{at_0 \pm \sqrt{4 + a^2 t_0^2}}{2}$$

 $\Rightarrow \Upsilon(D) = \{ \gamma W + \zeta M(t_0) \delta_{t_0}, \quad \gamma > 0, \zeta \ge 0 \}$

Definition Method to find examples **Examples**

$$D = \partial^2 F_2(t) + \partial^1 F_1(t) + \partial^0 F_0(t),$$

$$F_2(t) = \begin{pmatrix} -\xi_{a,t_0}^{\mp} + at_0 - at & -1 - (a^2 t_0)t + a^2 t^2 \\ -1 & -\xi_{a,t_0}^{\mp} + at \end{pmatrix}$$

$$F_1(t) = \begin{pmatrix} -2a + 2\xi_{a,t_0}^{\mp}t & -2t_0 - 2a\xi_{a,t_0}^{\mp} + 2(2 + a^2)t \\ 2t_0 & 2(\xi_{a,t_0}^{\mp} - at_0)t \end{pmatrix}$$

$$F_0(t) = \begin{pmatrix} \xi_{a,t_0}^{\mp} + 2\frac{t_0}{a} & 2\frac{2+a^2}{a^2} \\ \frac{4}{a^2} & -\xi_{a,t_0}^{\mp} - 2\frac{t_0}{a} \end{pmatrix}$$

$$M(t_0) = \begin{pmatrix} (\xi_{t_0,a}^{\pm})^2 & \xi_{t_0,a}^{\pm} \\ \xi_{t_0,a}^{\pm} & 1 \end{pmatrix}, \quad \xi_{a,t_0}^{\pm} = \frac{at_0 \pm \sqrt{4 + a^2 t_0^2}}{2}$$

 $\Rightarrow \Upsilon(D) = \{ \gamma W + \zeta M(t_0) \delta_{t_0}, \quad \gamma > 0, \, \zeta \ge 0 \}$

Definition Method to find examples Examples

Another example where $t_0 \in \mathbb{R}$

$$W(t) = t^{\alpha} e^{-t} \begin{pmatrix} t^2 + a^2(t-1)^2 & a(t-1) \\ a(t-1) & 1 \end{pmatrix}, \quad t > 0, \quad \alpha > -1$$

Durán-Grünbaum (2004)

$t_{0} = -1, \alpha = 0, a = 1$ $D = \partial^{2} \begin{pmatrix} -\frac{\sqrt{2}(\sqrt{2}+2t)}{2} & -1+2t^{2} \\ 1 & \frac{\sqrt{2}(\sqrt{2}-2t)}{2} \end{pmatrix} +$ $\partial^{1} \begin{pmatrix} (1-\sqrt{2})(5+2\sqrt{2}-t) & -2\sqrt{2}+6t \\ -2 & (1+\sqrt{2})(t-1) \end{pmatrix} + \partial^{0} \begin{pmatrix} -1+\frac{\sqrt{2}}{2} & \frac{3}{2} \\ \frac{1}{2} & 1-\frac{\sqrt{2}}{2} \end{pmatrix}$ $M = \begin{pmatrix} 3+2\sqrt{2} & -1-\sqrt{2} \\ -1-\sqrt{2} & 1 \end{pmatrix}$

Manuel Domínguez de la Iglesia

The convex cone of weight matrices

Definition Method to find examples Examples

Another example where $t_0 \in \mathbb{R}$

$$W(t) = t^{\alpha} e^{-t} \begin{pmatrix} t^2 + a^2(t-1)^2 & a(t-1) \\ a(t-1) & 1 \end{pmatrix}, \quad t > 0, \quad \alpha > -1$$

Durán–Grünbaum (2004)

$$\begin{split} t_0 &= -1, \, \alpha = 0, \, a = 1 \\ D &= \partial^2 \begin{pmatrix} -\frac{\sqrt{2}(\sqrt{2}+2t)}{2} & -1+2t^2 \\ 1 & \frac{\sqrt{2}(\sqrt{2}-2t)}{2} \end{pmatrix} + \\ \partial^1 \begin{pmatrix} (1-\sqrt{2})(5+2\sqrt{2}-t) & -2\sqrt{2}+6t \\ -2 & (1+\sqrt{2})(t-1) \end{pmatrix} + \partial^0 \begin{pmatrix} -1+\frac{\sqrt{2}}{2} & \frac{3}{2} \\ \frac{1}{2} & 1-\frac{\sqrt{2}}{2} \end{pmatrix} \\ M &= \begin{pmatrix} 3+2\sqrt{2} & -1-\sqrt{2} \\ -1-\sqrt{2} & 1 \end{pmatrix} \end{split}$$

Manuel Domínguez de la Iglesia

The convex cone of weight matrices

Definition Method to find examples Examples

Example where δ_0 of size $N \times N$

$$W_{\alpha,\nu_{1},\ldots,\nu_{N-1}}(t) = t^{\alpha}e^{-t}e^{At}t^{\frac{1}{2}J}t^{\frac{1}{2}J^{*}}e^{A^{*}t}, \ \alpha > -1, \ t > 0$$

$$A = \begin{pmatrix} 0 & v_1 & 0 & \cdots & 0 \\ 0 & 0 & v_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & v_{N-1} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, v_i \in \mathbb{R} \setminus \{0\}, J = \begin{pmatrix} N-1 & 0 & \cdots & 0 & 0 \\ 0 & N-2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Durán-MdI (2008)

Second order differential operators

 $D_1 = \partial^2 t I + \partial^1 [(\alpha + 1)I + J + t(A - I)] + \partial^0 [(J + \alpha I)A - J]$

 $D_2 = \partial^2 t (J - At) + \partial^1 ((1 + \alpha)I + J)J + Y - t (J + (\alpha + 2)A + Y^* - ad_A Y)$

$$+ \partial^0 \frac{N-1}{v_{N-1}^2} [J - (\alpha I + J)A]$$

Definition Method to find examples Examples

Example where δ_0 of size $N \times N$

$$W_{\alpha,\nu_{1},\ldots,\nu_{N-1}}(t) = t^{\alpha} e^{-t} e^{At} t^{\frac{1}{2}J} t^{\frac{1}{2}J^{*}} e^{A^{*}t}, \ \alpha > -1, \ t > 0$$

$$A = \begin{pmatrix} 0 & v_1 & 0 & \cdots & 0 \\ 0 & 0 & v_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & v_{N-1} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, v_i \in \mathbb{R} \setminus \{0\}, J = \begin{pmatrix} N-1 & 0 & \cdots & 0 & 0 \\ 0 & N-2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Durán-MdI (2008)

Second order differential operators

$$\begin{split} D_1 &= \partial^2 t I + \partial^1 [(\alpha + 1)I + J + t(A - I)] + \partial^0 [(J + \alpha I)A - J] \\ D_2 &= \partial^2 t (J - At) + \partial^1 ((1 + \alpha)I + J)J + Y - t (J + (\alpha + 2)A + Y^* - \mathsf{ad}_A Y) \\ &+ \partial^0 \frac{N - 1}{\nu_{N-1}^2} [J - (\alpha I + J)A] \end{split}$$

Manuel Domínguez de la Iglesia

The convex cone of weight matrices

Definition Method to find examples Examples

Example where δ_0 of size $N \times N$

Symmetry equations \Rightarrow Expression for the 3-dimensional (real) linear space of symmetric differential operators of order at most two

$$t_0 = 0$$

$$D = -(N-1)D_1 + D_2$$

$$M = v^* v$$

$$v = \sum_{j=1}^{N-1} \left(\prod_{k=1}^{N-j} \frac{v_{N-k}(\alpha+k)}{k}\right) e_j + e_N$$

 \Rightarrow D is symmetric with respect to the family of weight matrices

 $\Upsilon(D) = \{ \gamma W_{\alpha, \nu_1, \dots, \nu_{N-1}}(t) + \zeta M \delta_0(t), \quad \gamma > 0, \zeta \ge 0 \}$

Definition Method to find examples Examples

Example where δ_0 of size $N \times N$

Symmetry equations \Rightarrow Expression for the 3-dimensional (real) linear space of symmetric differential operators of order at most two

$$t_0 = 0$$

$$D = -(N-1)D_1 + D_2$$

$$M = v^* v$$

$$v = \sum_{j=1}^{N-1} \left(\prod_{k=1}^{N-j} \frac{v_{N-k}(\alpha+k)}{k}\right) e_j + e_N$$

 \Rightarrow D is symmetric with respect to the family of weight matrices

 $\Upsilon(D) = \{ \gamma W_{\alpha, \nu_1, \dots, \nu_{N-1}}(t) + \zeta M \delta_0(t), \quad \gamma > 0, \zeta \ge 0 \}$

Manuel Domínguez de la Iglesia

The convex cone of weight matrices

・ 「 ・ ・ ・ ・ ・ ・ ・ ・

Definition Method to find examples Examples

Example where δ_0 of size $N \times N$

Symmetry equations \Rightarrow Expression for the 3-dimensional (real) linear space of symmetric differential operators of order at most two

$$t_0 = 0$$

$$D = -(N-1)D_1 + D_2$$

$$M = v^* v$$

$$v = \sum_{j=1}^{N-1} \left(\prod_{k=1}^{N-j} \frac{v_{N-k}(\alpha+k)}{k}\right) e_j + e_N$$

 \Rightarrow D is symmetric with respect to the family of weight matrices

$$\Upsilon(D) = \{ \gamma W_{\alpha, \nu_1, \dots, \nu_{N-1}}(t) + \zeta M \delta_0(t), \quad \gamma > 0, \zeta \ge 0 \}$$

イロン 不得と イヨン イヨン

Outline

Introduction

- Preliminaries
- New phenomena

Convex cone of weight matrices

- Definition
- Method to find examples
- Examples

3 New applications

・ 同 ト ・ ヨ ト ・ ヨ ト

New applications

Quantum mechanics

[Durán–Grünbaum] *P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac 's equation*, J. Phys. A: Math. Gen. (2006).

Time-and-band limiting

[Durán–Grünbaum] *A survey on orthogonal matrix polynomials satisfying second order differential equations*, J. Comput. Appl. Math. (2005).

Quasi-birth-and-death processes

[Grünbaum–Mdl] Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, SIMAX (2008).

< □ > < □ > < □ >

New applications

Quantum mechanics

[Durán–Grünbaum] *P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac 's equation*, J. Phys. A: Math. Gen. (2006).

Time-and-band limiting

[Durán–Grünbaum] A survey on orthogonal matrix polynomials satisfying second order differential equations, J. Comput. Appl. Math. (2005).

Quasi-birth-and-death processes

[Grünbaum–Mdl] Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, SIMAX (2008).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

New applications

Quantum mechanics

[Durán–Grünbaum] *P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac 's equation*, J. Phys. A: Math. Gen. (2006).

Time-and-band limiting

[Durán–Grünbaum] A survey on orthogonal matrix polynomials satisfying second order differential equations, J. Comput. Appl. Math. (2005).

Quasi-birth-and-death processes

[Grünbaum–Mdl] Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, SIMAX (2008).

ヘロト ヘポト ヘヨト ヘヨト