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A disclaimer

▶ I don't really know what I'm talking about!

▶ I'm a mathematician.

▶ My coauthor Daniel Sheinbaum is the one who understands
the physics.

▶ He's kindly agreed to help me answer questions.



The homotopy model of adiabatic evolution

We will work only with gapped Hamiltonians �that's already a
strong(ish) restriction!

We will de�ne phases for a class of gapped Hamiltonians as follows:

Two systems are said to be in the same phase if there is a
continuous one-parameter family of gapped Hamiltonians in the
given class H(s), 0 ≤ s ≤ 1 connecting the Hamiltonians H(0) and
H(1) of the two systems.

Note that this says two things:

1. During adiabatic evolution Hamiltonians vary continuously.

2. Any continuous variation of Hamiltonians can be realized
physically as adiabatic evolution.

Condition 1 is widely accepted, condition 2 less so.



This is already a bit of topology!

What that the de�nition says is that the set of phases for a class of
Hamiltonians is given by what topologists would call π0(H), where
H is the space of Hamiltonians in the given class.

π0(H) denotes the set of path components of the space H. A path
component is a subset of H consisting of all points that can be
connected to a �xed one via a continuous path.

We can think of a Hamiltonian for a single-particle d-dimensional
system as an operator on the complex Hilbert space L2(Rd ;C). So
spaces of Hamiltonians are spaces of operators on a Hilbert space
and much is known about them.



A single particle on a crystal

Now let's restrict to in�nite crystals.

This means the Hamiltonian commutes with translations from a
lattice: [H,Tr ] = 0 for all r ∈ Λ, where Tr (f )(x) = f (x − r).

For example, a Hamiltonian for a single particle might look like
H = −∇2 + V (x) where the potential satis�es V (x + r) = V (x)
whenever r ∈ Λ.

Bloch's theorem
There is a basis of wave functions that are energy eigenstates of the
form ψ(x) = e ik·xu(x) for some function u(x) with periods given
by Λ, that is, such that u(x + r) = u(x) for r ∈ Λ.



A functional analysis view of Bloch's theorem
Using ideas from functional analysis, we can interpret Bloch's
theorem in the following way:

▶ For each k the functions of the form e ik·xu(x) for some
Λ-periodic u form a Hilbert subspace hk of the Hilbert h space
on which the Hamiltonian acts.

▶ These �small� Hilbert spaces form a direct integral

decomposition of h over the space of all possible k , the
Brillouin zone Λ̂, which is a torus, Td !

h =

∫ ⊕

Λ̂
hk dk.

▶ Bloch's theorem then says that a translation-invariant
Hamiltonian H has a direct integral decomposition too, in
terms of the Bloch Hamiltonians Hk acting on the hk , which
are also (almost all) gapped:

H ≃
∫ ⊕

Λ̂
Hk dk.



Symmetry begets topology

Bloch's theorem brought with it the gift of a torus, but that torus
has nothing to do with the Hamiltonian, it came just from the
translation symmetries. What to do with the Hamiltonian?

Kuiper's theorem implies any bundle of Hilbert spaces is trivial. So
we can identify all the �small� Hilbert spaces hk with a single one h′.

Now, for every point k in the Brillouin zone, we can take the ground
state Gk of the Bloch Hamiltonian Hk . This is an m-dimensional
subspace of h′, where m is the ground state degeneracy.

The space of all m-dimensional subspaces of h′ is called a
Grassmanian and is denoted by Grm(h

′).

Thus to any translation-invariant Hamiltonian H we have
associated a �Bloch ground state map� gH : Td → Grm(h

′), given
by gH(k) = Gk .



Phases are homotopy classes of maps

We're now working with ground state maps gH : Td → Grm(h
′) in

place of the original Hamiltonian. What does adiabatic evolution
mean for them?

Same as before! They live in a space Map(Td ,Grm(h
′)) and two

are in the same phase if they can be connected by a continuous
path in that space.

But paths in spaces of maps can be confusing and there's a more
down-to-earth way to think of them, as homotopies.

A homotopy between two maps H0,H1 : Td → Grm(h
′) is a single

map H̄ : Td × [0, 1] → Grm(h
′) such that H̄(x , 0) = H0(x) and

H̄(x , 1) = H1(x).

The set of homotopy classes of maps is denoted by
[Td ,Grm(h

′)] = π0(Map(Td ,Grm(h
′))).



Homotopies are a central concept in algebraic topology
Exaggerating only a little, you could say that algebraic topology is
the study of continuous functions up to homotopy.

Homotopy groups

▶ The homotopy groups of a space X are πn(X ) := [Sn,X ]•.

▶ There are groups, that is, they come with an addition
operation that is associative and, for n > 1, commutative, and
has a corresponding operation of subtraction.

▶ They are very hard to compute, even for spheres!

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10
S1 Z 0 0 0 0 0 0 0 0 0
S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S4 0 0 0 Z Z2 Z2 Z× Z12 Z2

2
Z2

2
Z24 × Z3

S5 0 0 0 0 Z Z2 Z2 Z24 Z2 Z2

S6 0 0 0 0 0 Z Z2 Z2 Z24 0
S7 0 0 0 0 0 0 Z Z2 Z2 Z24



Systems with interaction

Traditionally the Brillouin zone is only used for single-particle
systems, but there's no mathematical reason to stop there!

A Hamiltonian for a many-particle system with interaction, it will
still operate on a Hilbert space: a Fock space, or a bosonic or
fermionic variant. If h1 is the Hilbert space for the single-particle
Hamiltonian, the Hilbert space for the many-particle system will be⊕

n≥0
h⊗n
1

,
⊕

n≥0
Symn(h1) or

⊕
n≥0

Λn(h1).

All separable Hilbert spaces are isomorphic and so the direct integral
decomposition in Bloch's theorem can be adapted�∗ to Fock space.

This means our homotopy classes of maps, [Td ,Grm(h
′)], are also

invariants for crystalline many-particle systems with interaction!



A subtle point about translation for interacting systems
Consider a typical Hamiltonian for a system with N particles wit a
periodic potential V :

H =
∑

1≤i≤N

(
−∇2

i + V (xi )
)
+

∑
1≤i<j≤N

e2

|xi − xj |2
.

Translating a single xi is not a symmetry of that Hamiltonian: the
Laplacian and potential remain unchanged, but the Coulomb
interaction terms change.

Translating all xi simultaneously by the same vector is a symmetry.

When we say a Hamiltonian on Fock space is translation invariant
we mean with respect to this action of simultaneous translation.
This is required for the direct integral decomposition of the
Hamiltonian in our extension of the Bloch decomposition to Fock
space.



Crystallographic groups

We can require our systems and adiabatic evolution to preserve a
larger group of symmetry than just the translations.

The possible symmetry groups of crystals have been widely studied.
It's a hard problem. There are very many groups even in low
dimensions.

dim Groups Year Authors

2 17 1891 Fedorov
3 230 1891 Fedorov, Schön�ies
4 4783 1973 Brown, Bülow, Neubüser,

Wondratschek, Zassenhaus
5 222018 2000 Plesken, Schulz
6 28927922 2000 Plesken, Schulz

I believe the number is not known for any higher dimension.



Wallpaper groups

Dror Bar-Natan's variant of Brian Sanderson's algorithm for
identifying 2-dimensional crystallographic groups.



More symmetry begets equivariant topology

Let G be a symmorphic crystallographic symmetry group. This
means the point group P = G/Λ is a subgroup of G .

If the Hamiltonian for a system is G -invariant, then we have:

▶ an action of P on the Brillouin zone,

▶ an action of P on the Hilbert space h′ in the Bloch
decomposition,

▶ a corresponding action of P on the Grassmannian Grm(h
′), and

▶ the ground state map gH : Td → Grm(h
′) is P-equivariant,

meaning that for a point symmetry γ ∈ P , we have
gH(γ · k) = γ · gH(k).



Main theoretical result

Daniel Sheinbaum, Omar Antolín Camarena. Crystallographic
Interacting Topological Phases and Equivariant Cohomology: To

assume or not to assume. JHEP (2021)
https://doi.org/10.1007/JHEP07(2021)139

Result
Given a symmorphic crystallographic G with point group P , the
phases of gapped interacting systems with symmetry group G are
given by P-equivariant homotopy classes of maps, from the
Brillouin zone to the Grassmannian of m-dimensional subspaces of
a Hilbert space, [Td ,Grm(h

′)]P , where m is the degeneracy of the
ground state.

Calculations?
Computing homotopy classes of maps is di�cult in general, and
equivariant homotopy classes maps are typically harder still. But in
the non-degenerate case we can express our answer in terms of
group cohomology, which is much easier to compute.



de Rham Cohomology

The invariant that we'll use later on in this talk is cohomology. It
may be most familiar through de Rham cohomology.

Whether an integral over a closed submanifold is 0 or not depends
on topology!

∫
S1

dz

z
= 2πi

De�ne Hd
dR(X ) = {ω ∈ Ωd(X ) : dω = 0}/{dα : α ∈ Ωd−1(X )}.

This knows about the hole in C \ {0}:

H1

dR(C \ {0}) = R, while H1

dR(C) = 0.



Cohomology as homotopy classes of maps
There are some special, quite ungeometrical spaces, called
Eilenberg�MacLane spaces.

πk(K (A, n)) =

{
A if k = n

0 if not

They can be used to de�ne cohomology: Hd(X ;A) := [X ,K (A, n)].

In these terms, Hd
dR(X ) ∼= Hd(X ;R).

Hd(X ;R) is a real vector space, but algebraic topologists tend to
be more interested in Hd(H;Z) which is just an abelian group.

The space K (Z, 2) which gives H2(X ;Z) happens to be the
Grassmannian of 1-dimensional subspaces of a complex Hilbert
space!



The non-degenerate case, m = 1

Recall that phases of gapped interacting crystalline d-dimensional
systems with only translation symmetry were given by [Td ,Gm(h

′)].

When m = 1, the Grassmannian Gm(h
′) is a K (Z, 2), so those

homotopy classes of maps are in bijection with H2(Td ;Z) ∼= Z(
d
2
).

Similarly, for systems with symmetry given by a symmorphic
crystallographic group G with point group P , phases are given by
H2

P(Td ;Z), which is a Borel equivariant cohomology group.

This turns out to always agree with H2(G ∗;Z), the second group
cohomology of the reciprocal group G ∗: the group generated by the
point group P together with translations in the reciprocal lattice Λ∗.

Obtaining cohomology groups is great news, because algebraic
topologists have many more tools for computing those than general
sets of homotopy classes of maps.



A comparison for the non-degenerate bosonic case

H2

P(T2;Z) m = 1, d = 2 phases.

H4(G ;Z) d = 2 SPT phases (Thorngren�Else).

G P H2

P(T2;Z) H4(G ;Z)
p2 Z2 Z⊕ Z3

2
> Z4

2

p3 Z3 Z⊕ Z2

3
> Z3

3

p4 Z4 Z⊕ Z2 ⊕ Z4 > Z2 ⊕ Z2

4

p6 Z6 Z⊕ Z6 > Z2

2
⊕ Z2

3

pm Z2 Z2

2
= Z2

2

cm Z2 Z2 = Z2

pmm D2 Z4

2
< Z8

2

cmm D2 Z3

2
< Z5

2

p31m D3 Z2 < Z2 ⊕ Z3

p3m1 D3 Z2 ⊕ Z3 > Z2

p4m D4 Z3

2
< Z6

2

p6m D6 Z2

2
< Z4

2



Why are the results di�erent?

R. Thorngren and D. V. Else, Gauging Spatial Symmetries and the

Classi�cation of Topological Crystal line Phases, Phys. Rev. X 8
(2018). https://doi.org/10.1103/PhysRevX.8.011040

There are several possible reasons, and we don't know which of
them actually matter!

Unlike our classi�cation, the classi�cation of SPT phases:

▶ is for systems with short-range entanglement,

▶ declares that stacking with a trivial phase does not change the
phase, and

▶ counts phases of relativistic topological �elds theories.



But why sometimes more phases and sometimes fewer?

Short-range entanglement

Two states in distinct SPT phases cannot be connected via
adiabatic evolution through states with short-range entanglement,
but they might still be connected through unconstrained adiabatic
evolution. Those two SPT phases would merge into a single phase
in our classi�cation.

Stacking

Our classi�cation may include fragile phases, which become trivial
after stacking with systems in the trivial phase, but which cannot
adiabatically evolve to the trivial phase (without stacking). These
are considered to be trivial in the SPT classi�cation.

Relativistic TFTs
If there is a genuine physical di�erence between emergent
relativistic topological �eld theories and gapped topological phases,
then all bets are o�!.



That's all systems, what about my system?

With our approach it's hard to answer questions about speci�c
systems:

▶ Given a Hamiltonian, which phase does it belong to?

▶ Or even: given two Hamiltonians, do they belong to the same
phase?

And we can't easily give examples of the di�erent phases.

Daniel likens the situation to the Fundamental Theorem of Algebra:

▶ The theorem tells you how many roots a polynomial has: the
number of roots equals the degree of the polynomial.

▶ But it is of no help if you want to �nd the roots!



The end

Thank you!


