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1 Overview

The iteration of rational maps on the Riemann sphere is one of the most
attractive topics in the theory of dynamical systems. These maps are holo-
morphic which opens the door to study them with a rich set of tools from
complex analysis, analysis and algebraic geometry. All rational maps of a
�xed degree form a �nite dimensional space, easily parametrized by the co-
e�cients, which makes dealing with the totality of rational maps pleasantly
approachable. Much is known about the iteration of rational maps and here
we will describe the basic features of the dynamics. The remainder of this
section is an informal overview of the topics covered. The reader can look
ahead to �nd de�nitions of most unfamiliar terms.

Let f : Ĉ → Ĉ be a rational function, where Ĉ denotes the Riemann
sphere, or complex projective line, obtained by adding a single point at
in�nity to C. From the point of view of the dynamics of f , the �rst distinction
to make between points of the sphere is whether the point is �stable�, i.e.,
nearby points behave similarly under iteration, or not, i.e., arbitrary close
points can have drastically di�erent fates. The set of stable points is called
the Fatou set, F (f), and the complement is the Julia set, J(f). The Fatou
set can be de�ned as the largest open set on which the collection of iterates
of f is normal1. Both the Fatou and Julia sets are fully invariant meaning
that they are closed under both forward and backward iteration; this in turn
means that, at least set-theoretically, the dynamical system given by f on the
sphere is the disjoint union of the dynamical systems given by f restricted
to the Julia and Fatou sets.

The behavior of points in the Julia set is indeed �chaotic�, for example,
given any point z0 in it, the set of its iterated preimages or backward orbit,
{z ∈ Ĉ : f◦n(z0) = z for some n}, is dense in J(f). Something similar is
true for forward orbits2: a generic point of the Julia set has a dense forward
orbit3, where �generic� means that the set of points having this property
is an intersection of countably many dense open subsets of J(f) �and by
Baire's theorem, therefore dense.

The behavior on the open Fatou set is much more regular. Every con-
nected component of the Fatou set, a Fatou component, is mapped onto
another Fatou component, and one can study the dynamics induced by f
on the collection of Fatou components. The remarkable No Wandering Do-
mains Theorem, conjectured by Fatou and proved by Sullivan in (Sullivan

1See the next section for a brief reminder about normal families and Montel's theorem.
2The forward orbit of z is {f◦n(z) : n ≥ 0}.
3Dense in J(f), that is.
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1985) says that every Fatou component is eventually periodic meaning that
some iterate of it is periodic. Moreover, it can be shown there are at most
�nitely many periodic Fatou components. In fact, Shishikura (Shishikura
1987) has shown there are at most 2d − 2 such components for a rational
map of degree d. There are usually in�nitely many Fatou components4, but
all of them are preimages, under some iterate of f , of one of the at most
2d− 2 periodic ones.

Given a Fatou component U of period p, fp can be studied as a dynamical
system on U in its own right and is always of one of the following types:

1. An attractive basin: fp has a �xed point z0 ∈ U , with |(fp)′(z0)| < 1,
that attracts all points of U under iteration. If |(fp)′(z0)| = 0, U is
called a super-attractive basin.

2. A parabolic basin: some point z0 on the boundary of U attracts all
points of U , in which case, necessarily (fp)′(z0) = 1.

3. A Siegel disk : the dynamical system (U, fp) is conformally isomorphic
to an irrational rotation on the unit disk.

4. A Herman ring : the dynamical system (U, fp) is conformally isomor-
phic to an irrational rotation on some annulus. It is not trivial that
Herman rings exist and, for example, no polynomial map can have one.

Iteration of rational maps is a large subject and we can only cover the
basic features mentioned above. Good places to start reading further are
(Blanchard 1984), (Milnor 2006), (McMullen 2011) and (Beardon 1991).

2 A few tools from complex analysis and hyperbolic

geometry

Here we gather some important notions and results from complex analysis
and hyperbolic geometry that we will need.

2.1 Normal families and Montel's theorem

Recall that a set of holomorphic functions with a common domain is called
normal if it has compact closure in the topology of uniform convergence

4A rational map can have 0, 1, 2 or in�nitely many Fatou components, see Theorem
5.6.2 from (Beardon 1991).
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on compact subsets, i.e., if every sequence of functions from the set has a
subsequence that converges to some function uniformly on compact subsets
of the domain. The limit function is necessarily holomorphic. We will use
this de�nition for both holomorphic and meromorphic functions. In the
meromorphic case, we regard the functions as taking values in the Riemann
sphere and take uniform convergence with respect to the usual spherical
metric on C = S2.

There are many tests for normality of a family of functions, but we won't
bother with them and go straight for the big gun:

Theorem 1 (Montel's fundamental normality criterion). Any family of holo-
morphic functions from a domain U ⊆ C to C \ {a, b} (a and b two distinct
points) is normal.

2.2 Riemann surfaces and Uniformization

A Riemann surface is a connected one-dimensional complex manifold. Com-
plex manifolds are de�ned in the same fashion as other sorts of manifolds
with the transition functions between di�erent charts required to be holo-
morphic. We won't really need much about Riemann surfaces that is not a
straight forward extension of classical results from the theory of functions
of one complex variable. In fact, for the most part we will just work with
the Riemann sphere and its open subsets. Recall that the Riemann sphere,
Ĉ := C∪{∞}, is topologically the one point compacti�cation of the complex
numbers (that is, homeomorphic to S2), and is made into a one-dimensional
complex analytic manifold by declaring that in a neighborhood of the point
at in�nity, the function 1/z is a holomorphic chart. Omitting any point
from the Riemann sphere leaves you with a copy of C, so many results ex-
tend quite simply to Ĉ. Also, holomorphic functions from domains U ⊆ C
to Ĉ, apart from the constant function with value ∞, are the same thing as
meromorphic functions on U (extended to take the value ∞ at the poles).

The one major result about Riemann surfaces we will use is the Uni-
formization Theorem that generalizes the Riemann mapping theorem to clas-
sify all simply connected Riemann surfaces.

Theorem 2 (Uniformization). Any simply connected Riemman surface is
isomorphic to either C, Ĉ or D = {z ∈ C : |z| < 1}.

This result can be used to study an arbitrary Riemann surface through its
universal cover. Start with any Riemann surface X and let π : Y → X be its
universal cover. Initially Y is only a topological space, but one can use π to
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give Y the structure of a complex manifold by locally copying the structure
from X. Then by the uniformization theorem, Y must be Ĉ, C or D and X
is the quotient of Y by the action of the fundamental group of X as deck
transformations (which are easily seen to be holomorphic automorphisms of
Y ).

� If Y = Ĉ, then all the automorphisms of Y are given by Möbius trans-
formations5, all of which have �xed points and thus cannot be deck
transformations of a cover. It follows that then X = Ĉ as well.

� If Y = C, the automorphisms are the a�ne transformations z 7→ az+b
(a ̸= 0) and the ones with a ̸= 1 have a �xed point. So, in this case
X = C/Γ where Γ is a subgroup of R2. It must be discrete because
deck transformation groups act properly discontinuously. So we get
X = C, C/Z or a torus6 depending on whether Γ has zero, one or two
generators.

� If Y = D, X is called hyperbolic. From the previous discussion we see
almost all Riemann surfaces are hyperbolic. In particular, we'll use
later on that any open U ⊂ Ĉ whose complement contains at least
three points is hyperbolic. Indeed any map C → U is constant by the
Little Picard theorem, so the universal cover of U can be neither C nor
S.

2.3 The hyperbolic metric

The hyperbolic metric on the unit disk D is given by the formula |dz|/(1−|z|2)
and is characterized, up to multiplication by positive scalars, as the unique
Riemannian metric on D invariant under all holomorphic automorphisms of
D.

This metric gives us a corresponding metric on any Riemann surface
whose universal cover is D: if π : D → X is a covering map, we can �push
forward� the hyperbolic metric on D to get a metric on X that is locally
isometric to the hyperbolic metric. Normally one cannot push a metric
forward since, given a point x ∈ X, there is an ambiguity in the choice of
preimage of x to copy the metric from. In our case this is not a problem,
because given any two preimages there is a deck transformation ϕ taking one
to the other and the hyperbolic metric on D is invariant under ϕ. We call the

5We will show this in the next section, on rational maps.
6All the tori C/Γ are homeomorphic to each other but they are not isomorphic as

Riemann surfaces.
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Riemannian metric constructed in this fashion the hyperbolic metric on X.
Note that while all geodesics in D go o� to in�nity (i.e., ∂D), a hyperbolic X
can have closed geodesics: the projection to X of any geodesic of D passing
through two points with the same image under π is a closed geodesic.

The main result about the hyperbolic metric we need is the following
theorem, which is essentially a geometric manifestation of Schwarz's lemma:

Theorem 3 (Pick). Let f : X → X ′ be a holomorphic map between two
hyperbolic Riemann surfaces. Then either

� f is a covering map and a local isometry for the hyperbolic metric, or

� f strictly decreases all distances and on any compact subset of X, f is
Lipschitz with Lipschitz constant less than one.

See Theorem 2.11 in (Milnor 2006) for a proof.
Finally, we also need a result comparing the hyperbolic distance for a

hyperbolic U ⊂ Ĉ with the spherical distance as we approach the boundary
of U , which lies at in�nite distance for the hyperbolic metric.

Proposition 1 (Hyperbolic vs spherical distance). Let U be an open subset
of Ĉ which is hyperbolic and let zn ∈ U be a sequence all of whose accumula-
tion points lie on ∂U . Then for any r > 0, the diameter in the usual spherical
distance on Ĉ = S2 of the hyperbolic ball B(zn, r) of radius r around zn tends
to 0.

Proof. Let pn : D → U be a covering map such that pn(0) = zn. Since pn is
a local isometry, pn(B(0, r)) = B(zn, r). Assume the spherical diameter of
B(zn, r) does not tend to 0. Then, passing to a subsequence of zn, there is
some δ > 0 such that diamĈ(B(zn, r)) ≥ δ. Since U is hyperbolic, it must

be missing at least three points of Ĉ and therefore we can apply Montel's
theorem to the family {pn}. So after passing again to a subsequence, we can
assume the pn converge uniformly to some holomorphic function f : D → Ū .
If we showed that f is constant, we'd be done for then B(zn, r) for large n
would lie in the spherical ball of radius δ/3 around the value of f .

If f were not constant, f(B(0, r)) would be open and thus meet U . But if
f(w) ∈ U for some w ∈ B(0, r) ⊂ D, we'd have that for large n, d(zn, f(w)) ≤
d(zn, pn(w)) + d(pn(w), f(w)) < r + 1, where d is the hyperbolic distance
on U . (We are using that d and the spherical distance dĈ give the same
topology on U , so that dĈ(pn(w), f(w)) → 0 implies d(pn(w), f(w)) → 0.)
This contradicts that zn goes o� to the boundary of U .
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3 Rational maps as holomorphic dynamical systems

We want to study rational functions with complex coe�cients as dynamical
systems, that is, as mappings from some space to itself. To handle poles
gracefully we must regard rational functions as taking values not in the
complex numbers, C, but in the Riemann sphere. We can also include ∞
in the domain of a rational map in the usual way, to get a continuous map
Ĉ → Ĉ, readily seen to be holomorphic.

Moreover, rational maps are all the holomorphic maps Ĉ → Ĉ other than
the constant function with value ∞. Indeed, a non-constant holomorphic
map can only take the value ∞ �nitely many times, by the identity theorem
and compactness of Ĉ. The restriction of f to C \ f−1(∞) is holomorphic,
and f only has poles at points of f−1(∞), because 1/f is holomorphic on
C \ f−1(0). So, if f is not identically ∞, it is a meromorphic function on
the plane with �nitely many poles. Multiplying by a polynomial vanishing
su�ciently at those poles we get an entire function, which must still have at
worst a pole at ∞, forcing it to be a polynomial and thus forcing f to be
rational.

Two basic things to know about a (smooth) dynamical system one is
studying are the degree and the critical points. Let's say a few words about
these for rational maps.

If f(z) = p(z)/q(z) is a quotient of polynomial without any common
roots, we say that f is a rational function of degree d = max(deg p,deg q).
This agrees with the topological notion of degree, i.e., almost every point on
C has d preimages, since the roots of the equation f(z) = w are the roots
of p(z) − wq(z) which for almost all w is a polynomial of degree d without
multiple roots. With slightly more care about the point at in�nity one can
show that every single value is taken d times counted with multiplicity.

It follows from this discussion about degree that the only automorphisms
of the Riemann sphere are the rational maps of degree 1, the Möbius trans-
formations. We will often slightly simplify a situation by conjugating f by an
appropriate Möbius transformation, usually to place some important point,
such as a �xed point, at in�nity.

Any rational map of degree d has 2d − 2 critical points counted with
appropriate multiplicity. This is usually one of the �rst examples given of
the Riemann-Hurwitz formula, but of course can easily be proved directly.
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3.1 Iteration of Möbius transformations

The dynamics of a rational map of degree one is much, much simpler than
that of rational maps of higher degree. Let's dispose of it �rst and consider
maps of degree at least two in the sequel.

Looking at the equation z = (az + b)/(cz + d) makes it clear that a
Möbius transformation f(z) has either one or two �xed points.

1. If f has only one �xed point z0 conjugating, if necessary, by 1/(z−z0),
we can assume that the unique �xed point is ∞ and therefore f is a
translation. The orbit of every point tends to ∞.

2. If f has two �xed points, conjugating by an appropriate Möbius trans-
formation we can assume that the �xed points are 0 and ∞. Then f
must be of the form f(z) = az for some complex number a. If |a| ≠ 1,
all the orbits of points in C \ {0,∞} tends to the same �xed point of
f . If |a| = 1 there are two cases: either a is an n-th root of unity for
some (minimal) n and every point that is not �xed has period n; or
the orbit of any point z0 ̸= 0,∞ is dense on the circle |z| = |z0| �in
this case, f is called an irrational rotation.

4 The Julia and Fatou sets

Let's start by formally de�ning the Fatou and Julia sets of a map:

De�nition 1. Let f : S → S be a non-constant holomorphic map from a
compact Riemann surface S to itself. The Fatou set of f , denoted F (f) is
the domain of normality of {f◦n : n ≥ 0}, i.e., the largest open subset of S
on which the family of iterates of f is normal. The Julia set J(f) is de�ned
simply to be the complement of F (f).

Except for a few examples, we will only be interested in the case where
f is a rational map of degree at least 2 on S = Ĉ, the Riemann sphere.

Proposition 2. Both the Fatou and Julia sets of f are fully invariant mean-
ing that z belongs to one of them if and only if f(z) belongs to it too.

Proof. Since they are complementary, it is enough to show this for the Fatou
set. A point z ∈ F (f) if and only if there is a neighborhood U of z on
which {f◦n|U : n ≥ 1} is a normal family. This happens if and only if
{f◦n|f(U) : n ≥ 0} is normal.
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Proposition 3. For a rational map of degree d ≥ 2, the Julia set is never
empty.

Proof. If the iterates of f were normal on the whole Riemann sphere, we'd
have a subsequence f◦nj converging uniformly on all of C to some holo-
morphic function g. Once j is large enough, f◦nj and g are homotopic (by
going along the shortest arc of a great circle connecting their values), so
dnj = deg(f◦nj ) = deg g, which is impossible if d > 1.

We will call the connected components of F (f), Fatou components of f .

Proposition 4. For every Fatou component U of a rational map f , f(U) is
another Fatou component.

Proof. Since f is open and the Fatou set is invariant, f(U) is a connected
open7 domain of normality for the iterates of f and, as such, is contained
in a single Fatou component V . Consider the closure Ū of U . It consists of
U together with some points of the Julia set (because U is a component of
the Fatou set), so f(Ū) consists of f(U) with some points of the Julia set.
In particular, f(U) = f(Ū) ∩ F (f). But Ū is compact, and so f(Ū) is also
compact and thus closed. So we have that f(U) is closed in F (f) showing it
must be the whole component V .

Remark 1. For holomorphic maps C → C, the image of a Fatou component
need not be a whole Fatou component. For example, for z 7→ 1

2e
z−1 one

can check that 0 is in the Fatou set, but it's not in the image of the map
at all. (The proof above is not applicable because f(Ū) is not closed, a
manifestation of the lack of compactness.) And it need not even be the case
that, in the notation of the proof above, V \ f(U) consists of values that f
does not take. See Section 4.1 of (Bergweiler 1993) for more information.

4.1 Periodic points

Let's start our study of the Julia and Fatou sets of rational maps by �guring
out in which of the two lie the �xed points and, more generally, the periodic
points.

A periodic point of f is a point z such that for some n > 0, f◦n(z) = z.
Of course, for n = 1 these are called �xed points. Many notions related to
points of period n are simply the corresponding notions for �xed points of
f◦n. For example, the multiplier of a point z of period n is (f◦n(z))′. If

7Recall that holomorphic maps are open.

9

http://en.wikipedia.org/wiki/Open_mapping_theorem_(complex_analysis)


the orbit of z is z = z1 7→ z2 7→ · · · zn+1 = z, then the chain rule gives
(f◦n(z))′ = f ′(z1)f

′(z2) · · · f ′(zn), showing the multiplier of a periodic point
depends only on its orbit. By de�nition a periodic orbit is attracting, repelling
or indi�erent according to whether the absolute value of its multiplier is less
than 1, greater than 1 or equal to 1. If the multiplier is 0, the orbit is called
superattracting.

The basin of attraction of a periodic orbit of period n is the set of all
points z for which limk→∞ f◦nk(z) is a point of the orbit.

Proposition 5. The basin of attraction of any attracting periodic orbit is
contained in the Fatou set, but all repelling periodic points lie in the Julia
set.

Proof. It is enough to prove the statements for �xed points, since it is easy
to check that J(f◦n) = J(f).8 Let z0 be a �xed point of f and let λ =
f ′(z0). If |λ| > 1, no sequence of iterates of f can converge uniformly on a
neighborhood of z0 as |(f◦nj )′|(z0) = λnj → ∞.

Now assume |λ| < c < 1, so that |f(z)− z0| = |f(z)− f(z0)| < c|z − z0|
on some neighborhood U of z0. Then the iterates of f converge uniformly
on U to the constant function with value z0, so U ⊆ F (f). Since F (f) is
fully invariant and some iterate of any point in the basin of attraction of z0
will fall in U , we are done.

The case of indi�erent periodic points is more complicated, and will not
be dealt with here. We are also not including the local theory of �xed points
which gives a complete description of a rational map in a neighborhood of the
�xed point, up to the natural notion of isomorphism for dynamical systems:
an isomorphism or conjugacy between two dynamical systems f : X → X
and g : Y → Y is an invertible map ϕ : X → Y such that g = ϕ ◦ f ◦ ϕ−1.
In our case f and g are holomorphic, so we ask ϕ to be holomorphic as well,
and refer to it as a conformal isomorphism or conformal conjugacy. Some
basic results are as follows, stated for simplicity assuming the �xed point is
0:

� K÷nigs' Linearization: if 0 is not superattracting or repelling, f is
conjugate to multiplication by its derivative in a neighborhood of 0.

� Böttcher's Theorem: if 0 is superattracting but f (n)(0) ̸= 0, f is con-
jugate to zn.

8Basically, this is because if {f◦nk : k > 0} has compact closure K, then every iterate
of f belongs to the compact set of maps

⋃n−1
j=0 {g ◦ f◦i : g ∈ K} �each term in the union

is a continuous image of K, as composition from the right is clearly continuous in L∞.
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Again the case of indi�erent �xed point is more complicated, and perhaps
surprisingly number theoretic properties of the argument of the multiplier
play a role. See chapter 11 of (Milnor 2006).

4.2 The Julia set is complicated

We will focus on the components of the Fatou set here, but here is a small
taste of what happens on the Julia set.

Lemma 1. Let f be a rational of degree at least two. Any �nite set S ⊂ Ĉ
that is closed under taking preimages under f is contained in the Fatou set.

Proof. Let z0 ∈ S. Any sequence z0, z−1, z−2, . . . where each point is a
preimage of the previous one is contained in S and thus must repeat a point.
That repeated point is then periodic, and its orbit includes z0, showing that
S is also closed under forward iteration. Since f : S → S is surjective and S
is �nite, f must be a permutation of S. Now, counting multiplicities, every
point has d preimages, so for z0 ∈ S, the equation f(z) = f(z0) must have
a root of multiplicity d > 1 at z = z0, making z0 a critical point of f and
thus a superattracting periodic point �and we've seen all of those are in the
Fatou set.

Corollary 1. The Julia set of a rational map of degree at least two is in�nite.

Proposition 6. For any point z0 ∈ J(f), the backward orbit of z0, O−(z) :=
{z : f◦n(z) = z0 for some n ≥ 0} is dense in J(f).

Proof. Let z1 ∈ J(f) be arbitrary. We must show that any open neighbor-
hood U of z1 contains points of O−(z). Let V :=

⋃
n≥0 f

◦n(U), then we
must show that V ⊃ J(f). Notice that f(V ) ⊆ V by de�nition, so if C \ V
contained three or more points, by Montel's theorem we would have that the
iterates of f are normal on V and so V ⊆ F (f), contradicting that z1 ∈ V .
So C \ V contains at most two points and we need only check that neither
of them is in J(f). Let z ∈ C \ V , if there is such a point. No preimage w
of z can lie in V , for then z = f(w) would be in f(V ) ⊆ V . By the lemma
above C \ V ⊂ F (f).

Corollary 2. The Julia set of a rational map of degree at least two has no
isolated points.

Proof. We've seen that J(f) must be in�nite. It therefore has at least one
accumulation point z0. Now O−(z0) is a dense set of non-isolated points in
J(f).
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Corollary 3. The set of points of the Julia set whose forward orbit is dense
(in J(f)) is a countable intersection of dense open subsets of J(f), and
therefore, by the Baire category theorem, dense in J(f).

Proof. Consider a countable basis for the topology of C and consider the
collection U of those basic sets that meet J(f). By the previous proposition,
for every U ∈ U we have that J(f) ∩

⋃
n≥0 f

◦−n(U) is a dense open subset
of the Julia set. If z is any point in the intersection of these countably many
dense open subsets, then the forward orbit of z intersects every single U ∈ U
and is therefore dense.

We will need the following result later on, in the proofs of the No Wan-
dering Domains Theorem:

Theorem 4. The Julia set is the closure of the set of repelling periodic
points.

For two interesting proofs, one due to Julia and one to Fatou, see chapter
14 of (Milnor 2006). There are many more basic facts about the Julia and
Fatou sets that could be mentioned here. The reader is encouraged to look
at the references.

5 No wandering domains

In this section we will prove the No Wandering Domains theorem, which
says that every connected component of the Fatou set is eventually periodic.
We'll start with a very rough sketch of the proof.

The idea is to attempt to modify the conformal structure9 of the sphere
on the Fatou component U so that the map f is still holomorphic in the new
structure. Think of changing the conformal structure on U arbitrarily. To
keep f holomorphic will require changing the conformal structure on f(U) as
well, and then on f◦2(U), and so on. If U is a periodic component, or even
just an eventually periodic one, these changes will not be independent of
one another and in fact there are strong conditions imposed on the allowable
conformal strutures. But if U is a wandering component, that is one none of
whose iterates is periodic, then the conformal structure on U can be chosen
arbitrarily and then the conformal structures on the iterates of U can be
repaired one at a time.

9A conformal structure on a manifold is roughly a way to measure angles, we will
discuss them later on.
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But C really only has one conformal structure, that is, any two conformal
structures for C are isomorphic. Let X be S2 with some other conformal
structure for which f is holomorphic, and let ϕ : X → Ĉ be an isomorphism
from X to S2 with the standard complex structure. Since f : X → X is
holomorphic, we have that ϕ◦f ◦ϕ−1 : Ĉ → Ĉ is holomorphic too. Therefore
ϕ ◦ f ◦ ϕ−1 is some rational map on the Riemann sphere, and, moreover, it
must be of the same degree as f since topological degree is clearly preserved
by conjugation.

This means that we get a map from the space of conformal structures on
U to the space of rational maps with the same degree as f . The space of
complex structures on U is in�nite dimensional while the space of rational
maps of some �xed degree is clearly �nite dimensional. So, if we can show
that this map is injective, or at least injective on a subspace with high enough
dimension, we are done.

Of course, we have glossed over many di�culties in this sketchiest of
sketches:

� Conformal structures want to be pulled back, not pushed forward, so
it's not that easy to start with one on U and then adjust it on f(U),
f◦2(U), etc. We will deal with this by �nding a wandering component
that maps isomorphically to its forward iterates. Related to this is the
issue that to keep f holomorphic in the new conformal structure, we
also need to modify it along iterated preimages of U . That is not a
problem: we just pull back.

� A more serious issue is that at a limit point of
⋃

n∈Z f
◦n(U) it won't be

possible to keep the modi�ed conformal structure smooth or even con-
tinuous. To address this we will use a theory of measurable conformal
structures (and just leave ours unde�ned at these limit points) devel-
oped by Ahlfors and Bers (Ahlfors and Bers 1960). Bers later noticed
that part of their main result, a measurable version of the Riemann
mapping theorem, was contained in previous work of Morrey (Morrey
1938). There is also an expository article on this topic (Zakeri and
Zeinalian 1996).

� We haven't said anything about how to prove �su�cient injectivity�
of the map from conformal structures on U to rational maps. In fact,
we won't really prove the theorem using that map directly. Instead,
following (McMullen 2011) we will look at the derivative of this map,
whose target is then the space deformations of f . Sullivan's original
proof goes along the lines suggested above.
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Remark 2. Transcendental maps C → C can have wandering domains. See,
for instance, section 4.5 of (Bergweiler 1993) where, among other things,
Herman's examples from (Herman 1984), z 7→ z − 1 + e−z + 2πi and z 7→
z + λ sin(2πz) + 1 (for appropriate λ), are described.

5.1 Reduction to simply connected wandering domains

The following observation of Baker's shows we need only worry about simply
connected wandering domains.

Lemma 2 (Baker). If U is a wandering domain for a rational map f , then
f◦n(U) is simply connected for all large n. Furthermore, each su�ciently
high iterate of U is mapped homeomorphically onto the next.

Our �rst step will be the following lemma:

Lemma 3. If U is a wandering domain for f , and K ⊂ U is compact, the
diameter (in the spherical distance) of f◦n(K) tends to zero.

Proof. Suppose not. Then there is a positive ϵ and an in�nite sequence of
numbers (nj) such that diam(f◦nj (K)) ≥ ϵ. Since the iterates of f are a
normal family on U , passing to a subsequence of nj we can assume that the
f◦nj converges uniformly on K to some holomorphic function g.

This g cannot be a constant function, since if it had constant value w0,
for large enough j, f◦nj (K) would lie in the ball of radius ϵ/3 around w0

forcing its diameter to be smaller than ϵ.
Take any point z0 ∈ U and consider some small circle γ around z0 whose

interior is contained in U and on which g does not take the value g(z0) again.
Then |g(z)− g(z0)| attains some positive minimum δ on γ and for large
enough j we have |f◦nj (z)− g(z)| < δ ≤ |g(z)− g(z0)| on γ. By Rouché's
theorem, this implies all f◦nj for large j take the value g(z0) somewhere
inside Γ, contracting the fact that the iterates of U are disjoint.

Now we can prove Baker's lemma:

Proof. Since f has only �nitely many critical points, we can replace U by
a high enough iterate to get that neither U nor any of its iterates contains
a critical point. Then all the maps f◦n : U → f◦n(U) and f : f◦n(U) →
f◦(n+1)(U) are covering maps.

Now take any simple closed curve γ ⊂ U and consider its iterates γn :=
f◦n(γ). By the above lemma, diam(γn) → 0, as does diam(An) where An

is the union of the components of Ĉ \ γn that don't meet U , or, if we take
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∞ ∈ U , then we mean the bounded components of Ĉ \ γn ⊂ C. Consider
the open set f(An). Its boundary is contained in γn+1 = f(γn) and thus
diamf(An) → 0. This means that the components of f(An) must be among
the bounded components of C \ γn+1, and so f(An) ⊆ An+1, in particular,
all iterates of f(An) are contained in C \ U . By Montel's theorem, this
means the iterates of f are normal on An and so An ⊆ F (f) and necessarily,
An ⊆ f◦n(U). But this says that γn is null-homotopic inside f◦n(U), and
since f◦n : U → Un is a covering map, the null-homotopy can be lifted to U .

Thus, we have proved all high enough iterates of U are simply connected.
And, since all of the maps f : f◦n(U) → f◦(n+1)(U), for large n, are now
covering maps between simply connected domains, they are isomorphisms.

5.2 Measurable Conformal Structures

In this section we describe measurable conformal structures, Beltrami dif-
ferentials and the Measurable Riemann Mapping Theorem, but let's �rst
discuss smooth conformal structures.

A conformal structure on a smooth manifold is a way of measuring angles
without a speci�ed companion way to measure distance. More precisely, it
is a choice of conformal class of Riemannian metrics on the manifold, where
two metrics g and h are conformally equivalent if h = λg for some positive
smooth function λ. A map between two Riemannian manifolds f : M → N
is conformal if the pull back of the metric on N is conformally equivalent
to the metric on M . This means that f preserves oriented angles between
tangent vectors.

For surfaces, a conformal structure is the same as giving a complex struc-
ture, because a function U ⊂ C → C is conformal if and only if it is holo-
morphic and has non-vanishing derivative on U . But the two notions di�er
in every other dimension and in particular, conformal structures exist on
manifolds with odd real dimension.

How can we specify a conformal class of inner products in R2? Well, we
need only specify the unit ball of the inner product, up to scaling, and this is
some ellipse with center at the origin. To get a handy description of ellipses
using complex coordinates, we can think of an ellipse as the inverse image of
a circle under a linear transformation and notice that every linear function
R2 → R2 can be written in the form z 7→ az + bz̄ for some a, b ∈ C. So any
ellipse centered at the origin can be described, up to scaling, by an equation
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of the form |az + bz̄| = 1, or even just10 |z + µz̄| = 1 for some µ ∈ C.
Let's compute the eccentricity of this ellipse. We want the maximum and
minimum of |z| when z satis�es |z + µz̄| = 1. Well |z| = |1 + µ(z̄/z)|−1 and
z̄/z is an arbitrary complex number on the unit circle, so assuming |µ| < 1,
the maximum and minimum are 1/(1 − |µ|) and 1/(1 + |µ|), making the
eccentricity (1 + |µ|)/(1− |µ|).

So to specify a conformal structure on an open domain U ⊂ C, it is
enough to give a complex number µ(z) for each z ∈ U . When is a smooth
map f : U → C conformal from the new conformal structure described by µ
on U to the standard structure on C? It's derivative must send the ellipses
in the tangent space to U given by the choice of µ to circles in the tangent
space to C. In terms of the di�erential operators

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
,

we can write the linear operator Df (at some implied point z) as

Df(w) = w
∂f

∂z
+ w̄

∂f

∂z̄
.

Comparing to the description above of the ellipses, we see that f will be
conformal from the µ-structure on U to the standard structure on C if the
Beltrami equation is satis�ed:

∂f

∂z̄
= µ(z)

∂f

∂z
.

Note that µ ≡ 0 corresponds to the usual structure on U , and that then
the Beltrami equation, reasonably enough, reduces to the Cauchy-Riemann
equation. Solutions to the Cauchy-Riemann equation are conformal11, so we
will call a solution to the Beltrami equation for some µ satisfying µ(z) < c <
1 (some constant c), a quasiconformal map U → C with multiplier µ.

We can also �gure out when a map f : U → V is conformal for conformal
structure given by µ : U → C and ν : V → C. We need Df |z to take
ellipses |w + µ(z)w̄| = const to ellipses |w + ν(f(z))w̄| = const. Plugging
the formula for Df into the equation of the target ellipse and comparing
with the equation for the domain ellipse, we get that f is µ-ν-conformal if

10The case a = 0 gives a circle, same as µ = 0, so we don't need it.
11Well, when they are locally injective at least.
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and only if12

∂f

∂z̄
+ ν(f(z))

∂f̄

∂z̄
= µ(z)

(
∂f

∂z
+ ν(f(z))

∂f̄

∂z

)
.

Notice that when ν ≡ 0 this reduces, as it should, to the Beltrami equation.
Now we need to generalize in two directions: we need to globalize, that

is describe conformal structures on Riemann surfaces, not just domains in
C; and we need to weaken the smoothness assumption, which we will do by
considering distributional derivatives. Let's handle the second direction �rst:

De�nition 2. A continuous function f : U → C has distributional deriva-
tives in L1 if there are functions fz and fz̄ in L1(U) so that for any smooth
function g : U → C with compact support we have∫∫

U

(
fz(z)g(z) + h(z)

∂g

∂z

)
dx dy = 0,

and the analogous equation for z̄

Of course fz is meant to stand for ∂f
∂z , and indeed, if f is C1, we can take

it to be so: the integrand is just the partial derivative ∂
∂z (fg), the integral

vanishes because fg has compact support.
For any bounded measurable function µ, we can pose the Beltrami equa-

tion for this more general kind of derivative: fz̄(z) = µ(z)fz. (The product
of a bounded measurable fucntion and an L1 function is L1, so this is a rea-
sonable equation.) The fundamental result about solutions to this equations
is the following:

Theorem 5 (Measurable Riemann mapping theorem). Let U ⊂ C be open,
and let µ : U → C be a measurable function satisfying |µ(z)| < c < 1 for
some constant c almost everywhere. Then there is a solution f : U → C to
the Beltrami equation fz̄ = µfz. Any solution is a homeomorphism onto its
image, and for any two solutions f1 and f2, f2 ◦ f−1

1 is holomorphic.

Notice that the condition |µ(z)| < c < 1, says that the eccentricities of
the ellipses giving the conformal structure are bounded.

Now, to describe a conformal structure on a Riemann surface X, we
can give bounded measurable functions on patches of X, but they need to
satisfy some compatibility on overlapping patches which we will see shortly.

12The reader checking the computation should remember the identities ∂f
∂z

= ∂f̄
∂z̄

and
∂f
∂z̄

= ∂f̄
∂z
.
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We want to build a new Riemann surface Xµ re�ecting the new conformal
structures on the patches of X, so we take Xµ to be the same topological
space as X but use the solutions to the Beltrami equations on individual
patches as charts. Let z and z′ two holomorphic coordinates on overlapping
patches where we have given the conformal structure by functions µ and µ′

respectively. From our equation above for µ-µ′-conformal maps we see that
for the change of coordinate map (f = z′ ◦ z−1) to be holomorphic we must
have

µ′(z′) = µ(z)
∂z′

∂z

∂z̄

∂z′
.

Such a collection of measurable functions will be called a Beltrami di�erential
(it transforms as a (−1, 1)-form would, in some sense). Notice that just to
de�ne a Beltrami di�erential on X we don't really need to worry about this
compatibility condition if we de�ne it on a single coordinate patch that covers
all of X except for a set of measure 0.

So given a Beltrami di�erential µ on X we obtain a new Riemannian
surface homeomorphic to X but in general, conformally di�erent. However,
in the special case of X = Ĉ, it follows from the Uniformization theorem that
Ĉµ actually does have to be conformally isomorphic to Ĉ, and in particular,

there is a unique conformal isomorphism f : Ĉµ → Ĉ �xing 0, 1 and ∞. As

above we will also say that f : Ĉ → Ĉ is quasiconformal, without the µ on
the �rst Ĉ. We will need one further result: the theorem of Ahlfors and Bers
that this isomorphism varies holomorphically in an appropriate sense:

Theorem 6 (Ahlfors-Bers). For any Beltrami di�erential µ on Ĉ with |µ|∞ <
1, there is a unique quasiconformal homeomorphism f : C → C with fz̄ = µfz
and such that f �xes 0, 1 and ∞. Moreover, the mapping ft(z) obtained for
the Beltrami di�erential tµ (for small enough complex t), depends holomor-
phically on t for �xed z.

5.3 The space of rational maps of a �xed degree

A rational map p(z)/q(z) of degree d has 2d+ 2 coe�cients, but these only
matter up to rescaling, so we can regard rational maps as points in projective
space CP2d+1. Not all points there correspond to a rational map of degree d:
at least one of p and q must have non-zero leading coe�cient, and they must
be relatively prime. Both of these are open conditions13 (and even Zariski
open), so that Ratd is an open subset of CP2d+1.

13Being relative prime means having disjoint sets of roots, which is clearly preserved
under slight perturbations.
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Now let's �gure out how to represent tangent vectors to Ratd. A holo-
morphic curve in Ratd is a family of rational maps gt(z) that depend holo-
morphically on t. The derivative w(z) = ∂

∂t |t=0ft(z) is a tangent vector to

Ĉ at the point f(z), so w is a global holomorphic section of the pull back
bundle f∗(T Ĉ). Thus TfRatd = Γ(Ĉ, f∗(T Ĉ)).

5.4 The proof

Now we can prove the No Wandering Domains theorem!
The setup. Assume f is a rational map of degree at least two with

a wandering domain U . We've already seen that we can assume that U is
simply-connected and that f maps each iterate f◦n(U) isomorphically onto
the next iterate. Let V be the set of all points such that some iterate of
them lies in some iterate of U , this is the set along which we wil varying the
conformal structure of Ĉ. By our assumption on U , V is the disjoint union
∪n∈Zf

◦n(U). We will assume ∞ ∈ J(f) and freely regard V ⊂ C.
Spreading Beltrami forms from U to all of Ĉ. Given any measurable

µ : U → C with ∥µ∥∞ < ∞, we can de�ne a Beltrami di�erential µ̂ on all
of Ĉ that is f -invariant, that is, for which f : Ĉµ̂ → Ĉµ̂ is conformal. Using
the equation from the previous section that tells when maps are conformal
for structures given by Beltrami di�erentials, we see that for a holomorphic
map f , we just need to ensure µ̂(f(z))f ′(z) = µ̂(z)f ′(z). To accomplish this
we set

� µ̂ = 0 outside V

� µ̂ = µ on U ,

� de�ne µ̂ on the forward iterates of U recursively: µ̂(z) := µ(w)f ′(w)/f ′(w)
for z ∈ f◦(n+1)(U) where w = f−1(z) ∈ f◦n(U),

� de�ne µ̂ on (most of the points in) the iterated preimages of U again
recursively: µ̂(z) := µ(f(z))f ′(z)/f ′(z) for z ∈ f◦−n(U).

Note that this de�nes µ̂ at all points except those that are precritical,
i.e., some of iterate of which is a critical point of f . This doesn't matter, we
can just leave µ̂ unde�ned at those countably many points since Beltrami
di�erentials are only de�ned up to sets of measure zero.

The formulas above make it clear that ∥µ̂∥∞ = ∥µ∥∞ < ∞. So we have
de�ned an injective linear map M(U) ↪→ M(Ĉ)f where M(X) is the space of
essentially bounded Beltrami di�erentials on X and M(C)f is the subspace
of f -invariant Beltrami di�erentials.
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Constructing deformations of f . Now we de�ne a map M(Ĉ)f →
TfRatd. Let µ ∈ M(Ĉ)f . Then for small enough t, ∥tµ∥∞ < 1 and by
the Measureable Riemann Mapping Theorem, we get a familiy of quasi-
conformal maps ϕt : Ĉ → Ĉ solving the Beltrami equation for tµ and de-
pending holomorphically on t. Since the equation for f -invariance is linear
in µ, tµ will also be f -invariant, so f : Ĉtµ → Ĉtµ is conformal. Con-

jugating by the conformal isomorphism ϕt : Ĉtµ → Ĉ, gives the rational

map ft := ϕt ◦ f ◦ ϕ−1
t : Ĉ → Ĉ, depending holomorphically on t. Then

wµ(z) :=
∂
∂t |t=0ft(z) can be identi�ed with a tangent vector in TfRatd.

It is not immediately clear from this description that this map M(Ĉ)f →
TfRatd is in fact linear. Let vµ(z) :=

∂
∂t |t=0ϕt(z), which is a (merely) con-

tinuous vector �eld on Ĉ. Then

� wµ depends linearly on vµ, because wµ(z) = vµ(f(z)) − f ′(z)vµ(z),
and,

� vµ depends linearly on µ, because it is the unique solution to the equa-
tion ∂̄v = µ that vanishes at 0, 1 and ∞.

The proof of both of these equations is a simple calculation involving
the chain rule. The uniqueness in the second statement is an in�nitesimal
version of the Measurable Riemann Mapping Theorem (see theorem 5.28 in
(McMullen 2011)).

The �su�ciently injective� bit. Now let's �nd this large dimensional
subspace on which our map will be injective.

Lemma 4. There is an in�nite dimensional subspace V of M(U) of com-
pactly supported Beltrami di�erentials with the following property: if µ ∈ V
satis�es ∂̄v = µ for some continuous vector �eld with v|∂U = 0, then µ = 0.

Proof. Let's consider an analogous problem for M(D) �rst. Consider the
subspace V ′ ⊂ M(D) spanned by the Beltrami di�erentials

µk(z) =

{
z̄k if |z| ≤ 1/2

0 if |z| > 1/2.

for k ≥ 0. These have the following particular solutions for the ∂̄ equation:

vk(z) =

{
1

k+1 z̄
k+1 ∂

∂z if |z| ≤ 1/2
1

k+1(4z)
−(k+1) ∂

∂z if |z| > 1/2
.
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Suppose µ = ∂̄v ∈ V ′ with v|∂D = 0. Then v is holomorphic on 1/2 <
|z| < 1, so being zero on |z| = 1, it is also zero on |z| = 1/2. Let w =

∑
λkvk

where the λk are the coe�cients in µ =
∑

λkµk. Since ∂̄(w − v) = 0, w − v
is holomorphic throughout D, but it also agrees with w on |z| = 1/2, which
is a contradiction, since there w is a polynomial in z−1.

Now let's deal with U . Take a conformal isomorphism π : D → U . Let V
the subspace ofM(U) corresponding to the above subspace V ′ ofM(D) under
the induced isomorphism M(D) ≃ M(U). Suppose µ = ∂̄v ∈ V ⊂ M(U)

for some v = v(z) ∂
∂z with v|∂U = 0. Then (π−1)∗(v) = v(π(z))

π′(z)
∂
∂z and the

numerator, v(π(z)) is holomorphic outside a compact subset of D and tends
to zero as z → ∂D. By the Schwarz re�ection principle, v(π(z)) is identically
zero outside that compact subset of D, and therefore (π−1)∗v is a compactly
supported vector �eld on D, which by consruction satis�es ∂̄(π−1)∗v = π∗µ.
Thus π∗µ = 0, which forces µ = 0.

Concluding. We can now �nish the proof. Consider the composition
V ↪→ M(U) ↪→ M(Ĉ)f → TfRatd. If some µ ∈ V maps to 0 under the
composition, i.e., if wµ = 0, we'd have vµ(f(z)) = f ′(z)vµ(z) for all z. Let
z be a periodic point of period n with multiplier λ, and multiply14 the n
equations vµ(f

◦(j+1)(z)) = f ′(f◦j(z))vµ(f
◦j(z)) for j = 0, . . . , n− 1. We get

(λ− 1)
n−1∏
j=0

v(f◦j(z)) = 0.

So, if we had chosen z to be a repelling periodic point, we'd get that one,
and therefore all, of the v(f◦j(z)) (j = 0, 1, . . . , n − 1) are 0. As the Julia
set is the closure of the repelling periodic points and v is continuous, we see
that v vanishes on J(f) and, in particular, on ∂U . By the lemma, µ = 0.
Thus the composite map V ↪→ TfRatd is injective and this is the desired
contradiction: V is in�nite-dimensional and TfRatd has dimension 2d+ 1.

5.5 Sullivan's original proof

The original proof in (Sullivan 1985) was a little more complicated for two
reasons. First, it does not use Baker's observation; instead, Sullivan splits
the proof into cases. If the wandering domain doesn't have the property that
for all large n the restriction f : f◦n(U) → f◦(n+1)(U) is an isomorphism,
he takes the direct limit of the system U → f(U) → f◦2(U) → · · ·, shows

14Here we take v(z) to be, not quite a tangent vector, but the coe�cient of ∂
∂z

in such
a vector.
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it is a Riemann surface of in�nite type and that then it has an in�nite di-
mensional family of (conformal equivalence classes of) conformal structures
quasi-conformally equivalent to each other. Even if f is eventually an iso-
morphism on iterates of U , U still might not be simply connected and small
modi�cations of the argument are required.

Second, the original proof does not use McMullen's linearized argument
with deformations. Instead it shows, as we mentioned in the sketch, �su�-
cient injectivity� of the map from conformal structures to rational maps of
degree d. This can be done relatively easily if ∂U is a Jordan curve, but in
general deals with the boundary of U using Caratheodory's theory of prime
ends. See either (Sullivan 1985) directly or appendix F of (Milnor 2006).

6 Classi�cation of periodic domains

Here we prove the classi�cation of periodic Fatou components stated in the
overview. Recall the di�erent types:

De�nition 3. A periodic Fatou component U of f with period p is called

� an attractive basin if fp has a �xed point z0 ∈ U , with |(fp)′(z0)| < 1,
that attracts all points of U under iteration,

� a parabolic basin if some point z0 on the boundary of U attracts all
points of U , in which case, necessarily (fp)′(z0) = 1,

� Siegel disk if the dynamical system (U, fp) is conformally isomorphic
to an irrational rotation on the unit disk, and

� A Herman ring if the dynamical system (U, fp) is conformally isomor-
phic to an irrational rotation on some annulus

Theorem 7. Every periodic Fatou component of a rational map of degree
at least two is either an attractive basin, a parabolic basin, a Siegel disk or a
Herman ring.

Proof. Replacing f by fp, where p is the period of the Fatou component U ,
we can assume that f(U) = U . Considered as a Riemann surface in its own
right, U is hyperbolic (because the Julia set is in�nite), so by Pick's theorem,
f does not increase the hyperbolic distance on U , which we will denote d.
We will also use the usual spherical distance on C and denote it dĈ.

For any point z ∈ U , let A(z) ⊆ Ū be the set of accumulation points of
the orbit of z. We say that the orbit of z tends to in�nity if A(z) ⊆ ∂U .
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Proposition HvsS implies that if one orbit tends to in�nity, then all do,
because d(f◦n(z), f◦n(w)) is bounded by d(z, w) which does not depend on
n. So we have two cases:

Case 1: All orbits tend to in�nity. Let z0 ∈ U and zn = f◦n(z0).
Then we must have dĈ(zn, zn+1) → 0 by Proposition HvsS, which is ap-
plicable since d(zn, zn+1) is bounded by d(z0, z1). This tells us something
about A(z0). First, it consists of �xed points of f lying on ∂U . Second, it
must be connected, for if it had at least two components A1 and A2, these
would be two disjoint compact subsets of Ĉ and therefore some (spherical)
distance δ > 0 apart; for large n, dĈ(zn, zn+1) < δ, contradicting that the
orbit accumulates on both components. Since f is not the identity the only
connected sets of �xed points it can have are singletons, A = {p}. This �xed
point p attracts every point in w ∈ U , because d(f◦n(w), zn) is bounded so,
again by Proposition HvsS, dĈ(f

◦n(w), zn) → 0. Since p attracts U but is in
the Julia set it must be an indi�erent �xed point. It still remains to show
that λ := f ′(p) = 1. This should be geometrically plausible by the following
argument:

Choose a path connecting z0 and z1. Its image under f connects z1
and z2, and its image under f◦2 connects z2 and z3, etc. Glueing all of
these pieces together, taking a unit of time for each piece, we get a path
α : [0,∞) → U \ {p} such that α(t+ 1) = f(α(t)) and α(t) → p. The closer
we get to p the closer f is to multiplication by λ, so, if λ ̸= 1, this path
looks more and more like a simple spiral: α(t + 1) ∼ λα(t). Assume this
picture is accurate: that α really does like a spiral around p, and that it has
no self-intersections. De�ne a region W by making a �cross-cut�: start at a
point α(t0) near p, walk radially away from p until you meet α again, and
then follow α back to where you started. This region W gets mapped by f
onto the analogous region starting at α(t0 + 1) which is properly contained
in W . By the Schwarz Lemma, the �xed point must be attracting, which is
a contradiction.

This is just a sketch of the proof of a result called the Snail Lemma, which
says that given a �xed point p with multiplier λ and a path α satisfying i)
and ii), then either |λ| < 1 or λ = 1. See Lemma 16.2 in (Milnor 2006).

Case 2: Every orbit has an accumulation point in U . By Pick's
theorem there are just these two subcases:

Case 2a: f decreases hyperbolic distance. As before, let zn be an
orbit in U . There is some compact K ⊂ U such that zn ∈ K for in�nitely
many n. This is called recurrence. Recall that in this subcase, f is Lipschitz
on the compact set K ∪ f(K) with Lipschitz constant c < 1. We claim that
d(zn, zn+1) → 0. Indeed, it a decreasing sequence of numbers and addition-
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ally, whenever zn ∈ K, we have d(zn+1, zn+2) ≤ c d(zn, zn+1). Therefore
any point p ∈ A(z0)∩K must be a �xed point and, because f decreases the
hyperbolic distance, it must be the only one in U . It attracts every point
because all hyperbolic balls B(p, r) are invariant, and in fact, f is Lipschitz
on such a ball with some constant less than 1, so that p attracts the whole
ball uniformly.

Finally we prove that |f ′(p)| < 1. Consider a small spherical disk D
around p: it is contained in some hyperbolic ball B(p,R) and contains some
hyperbolic ball B(p, r). Say f is Lipschitz on B(p,R) with constant k < 1.
Then, as soon as kn < r/R, f◦n(D) ⊂ B(p, r) ⊂ D. By Schwarz's Lemma,
|(f◦n)′(p)| < 1, so |f ′(p)| < 1 as well.

Case 2b: f is a covering map and a local isometry. If π1(U) is
abelian, then U is a disk, a punctured disk or an annulus. Since the Julia
set has no isolated points, the case of a punctured disk cannot occur. By
explicitly looking at the self-coverings of disks and annuli it is easy to check
that the only recurrent ones are rotations. Since the iterate of f have larger
and larger degree, f cannot be of �nite order, and thus the rotation must be
irrational.

If π1(U) is nonabelian, then U = D/Γ where π1(U) ∼= Γ ⊂ Aut(D) is
the group of deck transformations of the universal cover π : D → U . Let
gn : D → D be a lift of f◦n. There is freedom in choosing the gn: namely
we can pick gn(0) ∈ π−1(f◦n(π(0))) arbitrarily; let's pick it to lie as close
to 0 in the hyperbolic metric as possible. This ensures that the gn lie in a
compact subset of Aut(D), since whenever the n-th iterate of π(0) under f
returns to some compact set, so does gn(0).

Now notice that for every γ ∈ Γ and every n ≥ 0, gn ◦ γ ◦ g−1
n covers

the identity on U , and thus is a deck transformation and belongs to Γ. But
it turns out the set E := {h ∈ Aut(D) : hΓh−1 ⊂ Γ} is discrete by a
very clever argument from (McMullen and Sullivan 1998). Indeed, if hn →
h is a convergent sequence of elements in that set, look at the sequence
kn := h−1 ◦ hn: it converges to the identity and has the property that
knΓk

−1
n ⊂ h−1Γh =: Γ′. Since Γ is discrete, so is its conjugate Γ′. Now,

for any γ ∈ Γ, the sequence kn ◦ γ ◦ k−1
n ∈ Γ′ converges to γ (because

kn → id) and thus γ commutes with kn for large enough n. Finally given
two elements γ1, γ2 ∈ Γ, they both commute with the same kn (for any n
large enough) which implies they commute with each other by the following
classical result: /two elements of Aut(D) commute with each other if and only
if their extensions to D have the same �xed point set/. But since Γ ∼= π1(U)
is nonabelian, this is a contradiction and we conclude E is discrete.

Now we know that the gn lie in a compact subset of Aut(D) and also in
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E, a discrete subset. It follows there are only �nitely many distinct gn, which
means there are only �nitely many distinct iterates of f , i.e., f is of �nite
order. This contradiction shows that nonabelian π1(U) cannot occur.

6.1 There are �nitely many periodic domains

As mentioned in the overview, Shishikura has proved a sharp bound of 2d−2
for the number of periodic Fatou components. It is easier to show just
�niteness and this is done, for example, in (McMullen and Sullivan 1998).
We won't show even this here, but we will very brie�y describe their proof.
There are classical results saying that each attracting, superattracting and
parabolic cycle attracts a critical point, so there are at most 2d− 2 of those.
Also, Fatou showed the number of Siegel disks is bounded by 4d − 4 (the
proof is roughly that a suitable perturbation of f makes at least half of the
indi�erent cycles attracting).

So it remains to bound the Herman rings. In their paper, they study the
Teichmüller space Teich(Ĉ, f) of a rational map f , which is the quotient of
the space M1(Ĉ)f := {µ ∈ M(Ĉ)f : ∥µ∥∞ < 1} of conformal structures on Ĉ
for which f is holomorphic, modulo the group QC0(Ĉ, f), which very roughly
consists of quasiconformal conjugacies isotopic to the identity15. They prove
that Teich(C, f) is a connected complex manifold of dimension at most 2d−2
(where d = deg f), and that each Herman ring contributes a one dimensional
factor to Teich(Ĉ, f), so there are at most 2d− 2 Herman rings.
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