Tarea 2: Sucesión espectral de Serre

1 Espacios de lazos de esferas

- 1. Sea n > 1. En clase vimos que para $H_k(\Omega S^n; \mathbb{Z}) = \mathbb{Z}$ si k es múltiplo de n 1 y 0 si no. Por el teorema de coeficientes universales, los *grupos* de cohomología son esos mismos. Encuentra el *anillo* de cohomología de ΩS^n .
- 2. Considera la estructura CW usual en S^1 (con una 0-celda y una 1-celda) y la correspondiente estructura producto en $(S^1)^3$. Sea $q:(S^1)^3\to S^3$ la función que colapsa el 2-esqueleto y sea $\eta:S^3\to S^2$ la fibración de Hopf.
 - (a) Prueba que $\eta \circ q : (S^1)^3 \to S^3$ induce el homomorfismo cero tanto en homología (con cualquier grupo de coeficientes) como en grupos de homotopía, en todos los grados.
 - (b) Prueba que, a pesar de eso, $\eta \circ q : (S^1)^3 \to S^3$ no es homotópica a una constante. *Sugerencia*: calcula cohomología de la fibra homotópica de $\eta \circ q$ y prueba que no coincide con la cohomología de la fibra homotópica de la función constante.

2 Grupos de homotopía de las esferas

1. Calcula $\pi_4(S^2)$.

3 Operaciones de Steenrod

1. ¿Puede haber un espacio X tal que su anillo de cohomología con coeficientes en \mathbb{F}_2 es $\mathbb{F}_2[x]$ con deg x = 3? *Sugerencia*: La relación de Adem más simple dice que $Sq^3 = Sq^1Sq^2$.

4 Cohomología de grupos

- 1. Lista todas las clases de cohomología en $H^2(B\mathbb{Z}/2 \times B\mathbb{Z}/2; \mathbb{F}_2)$ con sus correspondientes extensiones centrales $1 \to \mathbb{Z}/2 \to E \to \mathbb{Z}/2 \times \mathbb{Z}/2 \to 1$. Sugerencia: Aprovecha los automorfismos de $\mathbb{Z}/2 \times \mathbb{Z}/2$ para reducir el trabajo.
- 2. Calcula el anillo de cohomología $H^*(BQ_8; \mathbb{F}_2)$. Aquí Q_8 es el grupo formado por los ocho cuaternios $\{\pm 1, \pm i, \pm j, \pm k\}$. Su centro es $\{\pm 1\}$ y $Q_8/\{\pm 1\} \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.
- 3. En clase vimos que $H^*(B\mathbb{Z}/4;\mathbb{F}_2) \cong \mathbb{F}_2[x,y]/(x^2)$ con deg x=1, deg y=2. Nótese que en cada grado $H^n(B\mathbb{Z}/4;\mathbb{F}_2) \cong \mathbb{F}_2$, así que $\mathbb{Z}/4$ tiene cohomología mod 2 isomorfa a la de $\mathbb{Z}/2$ como espacio vectorial graduado, pero **no** como anillo.
 - (a) Prueba que hay una cantidad no numerable de anillos graduados no isomorfos dos a dos tales que $A^n \cong \mathbb{F}_2$ para toda $n \ge 0$.
 - (b) Calcula $H^*(B/\mathbb{Z}/2^k;\mathbb{F}_2)$ como espacio vectorial graduado usando el teorema de coeficientes universales, recordando que calculamos el anillo de cohomología entera.

- (c) ¿Cuál es la estructura de anillo de $H^*(B/\mathbb{Z}/2^k;\mathbb{F}_2)$?
- (d) ¿Qué morfismo induce la proyección $\mathbb{Z}/2^{k+1} \to \mathbb{Z}/2^k$?

5 Característica de Euler

Dado un campo k, definimos la característica de Euler de un espacio X como $\chi_k(X) := \sum_{i \ge 0} (-1)^i \dim_k H_i(X;k)$, siempre que esa suma tenga sentido: que todos los sumandos sean finitos y que solo un número finito de ellos sean distintos de 0.

Podemos definir también $\chi_{\mathbb{Z}}(X) := \sum_{i \geq 0} (-1)^i$ rango $H_i(X; \mathbb{Z})$, cuando los grupos de homología de X son finitamente generados. (Recuerden que un grupo abeliano finitamente generado es de la forma $\mathbb{Z}^{\oplus r} \oplus F$ con F finito y que r es llamado el rango.)

De hecho, podemos definir características de Euler para espacios vectoriales graduados o grupos abelianos graduados H_i , aunque estos no sean la homología de algún espacio.

- 1. Prueba que un complejo de cadenas (digamos, en espacios vectoriales) tiene la misma característica de Euler que su homología.
- 2. Prueba que para un complejo CW finito X, $\chi_{\mathbb{Z}}(X) = \chi_k(X) =: \chi(X)$ para cualquier campo k.
- 3. Prueba que dados complejos CW finitos X y Y, $\chi(X \times Y) = \chi(X)\chi(Y)$.
- 4. Prueba que dada una sucesión fibrada $F \to Y \to X$ de complejos CW finitos, $\chi(Y) = \chi(F)\chi(X)$.