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Abstract. We present several constructions of the quantum principal bundle,
with its complete differential calculus and frame structure, for a large class of
quantum spaces, all interpretable as a quantum version of the classical hyper-
bolic plane. A primary, and purely quantum, phenomenon is the appearance
of an internal symmetry of the quantum hyperbolic plane, which enables us
to interpret the bundle algebra, as a cross product with the circle structure
group. We discuss in detail the properties of connections, their covariant de-
rivative and curvature operators, in the light of diverse possible compatibility
relations between the differential calculus on the quantum hyperbolic plane,
and its internal symmetry automorphism. The standard hyperbolic quantum
Hopf fibration is interpreted geometrically and discussed in detail.
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If the doors of perception were cleansed every thing
would appear to man as it is, infinite.∗
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1. Introduction

A principal objective of this paper is to introduce and study algebraic and geo-
metric properties of a very interesting class of quantum spaces, all of which can
be interpreted as quantum versions of the classical hyperbolic plane. In classical
geometry, the hyperbolic plane plays a very distinctive role. Besides being a con-
stituent of the family of the ‘classical three’ (together with Euclidean and elliptic
planes), it provides a beautiful constructive framework for all compact Riemann
surfaces of constant negative curvature. All of them can be obtained by factorizing
the hyperbolic plane by an action of the appropriate infinite discrete group.

In generalizing and extending a classical theory, it is natural to expect that most
interesting examples would be found amongst counterparts of objects possessing a
distinctive internal harmony and simplicity, and exhibiting deep connections with
other mathematical theories, objects and contexts. Therefore, it is natural to look
for quantum realizations of the hyperbolic plane. As we shall see, many things
from the classical Poincaré model can be incorporated into a new realm, without
any essential change in music.

However, as it is natural to expect from an incomparably deeper quantum con-
text, there appear new phenomena, completely absent in the classical world. It is
always of a particular interest to study these purely quantum things. It is through
them, that the quantum geometry manifests its charm.

Let us briefly walk through the contents of the paper. In the next section we
present a basic cross product construction, in light of the theory of quantum prin-
cipal bundles. We deal with an arbitrary automorphism at the level of function
algebras and consider its extendibility to the level of differential calculus. Various
degrees of compatibility are studied. This is especially important in dealing with
connections, and computing their covariant derivatives and curvature forms.

As a prelude to more general cross product construction, we present the basic
algebraic and geometric aspects of the Toeplitz extension algebra generated by
the unilateral shift operator. There are two complementary quantum geometrical
interpretations of this objects. At first, it can be viewed a ‘singing quantum circle’,
a quantum principal circle bundle over the one-point compactication of N. And
secondly, it exhibits classical hyperbolic symmetries, which enables us to see it as
the simplest of all quantum hyperbolic planes.

This more elaborated cross product construction, involving non-invertible projec-
tion symmetries and entanglement with the Toeplitz extension algebra is discussed
in Section 4.

We next present in some detail, the standard example of a quantum hyperbolic
Hopf fibration. We calculate completely all basic geometrical components: the
bundle structure, the calculus, the algebra of horizontal forms, the Levi-Civita
connection, its covariant derivative and curvature.

And in Section 4, we generalize and modify this standard example, to include
a variety of spaces and bundles which all share a common background of being
constructible via simple cross product extensions.

The paper ends with three complements, the extensions exhibiting an indepen-
dent interest of their own. In the first Appendix, we focus on analytical aspects of
the basic algebras and construct explicitly their canonical Hilbert space represen-
tations. They all fall into a classical framework of weighted shift operators, both
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one-sided and double-sided. There is an essential geometrical difference between
the hyperbolic planes associated to one-sided and two-sided scenarios. In the first
class, the spaces will be completely without points, the only classical space associ-
ated being the geometrical heaven–the circle. An important subclass is described,
where the classical symmetries from SU(1, 1) naturally act by automorphisms of
the whole structure. The Toeplitz extension is obtained as the simplest concrete
realization.

In the second class of two-sided shift operators, an inherent geometrical inho-
mogeneity appears, manifested as the presence of one classical point, the ‘center’
of the plane. This obviously excludes the complete group of classical hyperbolic
symmetries, however it opens up a possibility for the standard quantum group of
symmetries SµU(1, 1) to act on the space.

In both cases, natural realizations by analytic functions are introduced, and
their reproducing kernels with associated coherent states / point wave functions
are computed in detail. This can be understood as the quantization of the classi-
cal Poincaré model of the hyperbolic plane. The common domain of the analytic
functions is either the open unit disk D or D−{0}, where the appropriate functions
with singularity in 0 are allowed.

We also present a calculation of the metrics induced by the analytic functions
Hilbert space structure. In the models where the symmetry is classical, the metrics
turn out to be proportional to the classical hyperbolic metrics—as it should be.

In all cases, the space turns out to be ‘infinite’, and the metrics diverges when
we approach the unit circle, the geometrical heaven for the space. For the two-
sided shift operators model, the metrics also diverges at the unique classical point
represented by 0, which therefore acts as another geometrical infinity for the space,
an impossible place of infinite energy.

In the second appendix we have collected a number of interesting formulae, re-
sults and ideas which are strongly in resonance with the problematics of differential
calculi on the circle. Although we are focused on the circle, several results are
easily generalizable for arbitrary quantum groups, and when appropriate we have
formulated them in such generality.

As we shall explain, the first order differential structures Γ on the circle are in
one-one correspondence with normalized polynomials in one variable with non-zero
free terms—precisely the generators of the corresponding ideals R in the kernel of
the counit. This leads to interesting links and applications of linear algebra and
rational functions, and diverse re-interpretations of the space Γinv of left-invariant
one forms over ©.

A particular attention is given to the computation of quadratic relations space
defining the universal differential envelope of a given first-order differential calculus
over the circle, and to the analysis of the equilibrium condition, when the envelope
and the exterior algebra coincide. These two higher-order differential structures
mark the minimal and the maximal solutions respectively, for the differential forms
admitting the pull-back of the product on the circle.

Both equilibrium and non-equilibrium situations are very interesting from alge-
braic and geometric perspectives. In particular, the non-equilibrium opens up a
possibility higher-order primitive elements in the differential calculus, which in its
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turn allows us to generate the corresponding quantum Euler characteristic classes
for the appropriate bundles.

This naturally leads to Appendix C, where a construction and basic properties of
these classes are discussed, projecting the general theory of characteristic classes [11]
to this particular context. The same appendix also features a general construction
of the Lie algebra of infinitezimal symmetries, naturally associated to a given first-
order differential calculus.

As far as our conceptual background is concerned, the basic conceptual frame-
work is given by quantum/no-commutative geometry [2, 16, 18]. In resonance with
the classical foundational treatise [14], we believe that the geometry is best de-
scribed as a symbiosis of some basic space ‘form’, with the appropriate internal
‘preintegrated’ symmetries, represented by a group of transformations freely acting
on a principal bundle over a given space. In other words, geometrical structures
manifest themselves through principal bundles. Accordingly, in quantum geometry,
the structure should best be described by appropriate quantum principal bundles,
where all objects are considered as quantum—the base space, the bundle and the
structure group. We shall basically follow the formalism of quantum principal bun-
dles as developed in [4, 5, 6], and comprehensively presented in [17].

In the particular context of this paper, the bundle and the base space will be,
in general, quantum, but the structure group will remain classical—it will be the
circle group SO(2) ' U(1). It is a natural choice for quantum Riemann surfaces.
However, in spite of this, the circle will exhibit an array of quantum phenomena,
primarily within the considerations of the differential calculus.

A couple of words about the notation. It is convenient to adopt here various
q-expressions. They are special algebraic expressions obtained by combining a pri-
mary entity q which is assumed to be invertible and central, with integers, complex
numbers and other ‘classical’ things.

Concretely, the q-numbers

(1.1) (k)q =
1− qk

1− q
=


1 + q + · · ·+ qk−1 k > 0

0 k = 0

−q−1 − · · · − qk k < 0

will find their ways to here. Their charming addition formula:

(1.2) (k + j)q = (k)q + qk(j)q qk = (k + 1)q − (k)q.

We shall also meet the q-symbols

(1.3) (z | q)k =

k−1∏
j=0

(1− zqj)

and the infinite product version

(1.4) (z | q)∞ =

∞∏
j=0

(1− zqj)

which in order to be well-defined requires the appropriate convergence conditions.
For example if q is a complex number within the open unitary disk D, then the
product is absolutely and normally convergent in z, on the whole C.
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We can express the finite symbols in terms of the infinite ones as

(1.5) (z | q)n = (z | q)∞/(zq
n | q)∞.

In such a way the definition of the symbols can be extended to all n ∈ Z and
actually to all complex numbers if q ∈ (0, 1). We always have

(1.6) (0 | q)α = (z | q)0 = 1.

The following reflection formula holds

(1.7) (z | q)−α(q−αz | q)α = 1.

These q-expressions naturally appear in computations with quantum groups and
related non-commutative structures. Their historical origins are much older than
quantum theory, and are deeply intertwined with Numbers, Infinite Series and
Complex Analysis.

2. Cross Product for Invertible Symmetries

2.1. Functions Algebra Level

Let us consider a unital *-algebra V, of which we can think as representing a
quantum space M . Let ψ : V → V be a *-automorphism of V. The cross product
construction, in its simplest form, embeds V into a larger *-algebra B, by intro-
ducing a unitary u which reproduces ψ via its similarity transformation. In other
words u∗ = u−1 and

(2.1) ufu∗ = ψ(f)

for every f ∈ V.
Remark 1. A basic class of examples is given by classical smooth manifolds M
equipped with a diffeomorphism T : M →M . We can define V = C∞(M) with the
automorphism ψ being the induced action of T on V.
Remark 2. We shall always think of u as the contextual representation of the
canonical embedding U of the unitary circle © into complex numbers. The com-
mutative *-algebra A generated by U , captures the group structure on the circle,
via the coproduct φ : A → A⊗A, which is the pull back of the product in the circle
and it is given by φ(U) = U ⊗ U .

The cross product algebra B gives us a nice quantum principal bundle [5]. The in-
clusion ι : V → B can be interpreted as the projection of the corresponding quantum
space P onto M . The coproduct φ extends to a *-homomorphism F : B → B ⊗A,
actually a coaction of the circle group on B, by V-linearity. So that V is the F -fixed
subalgebra of B.
Lemma 1. The constructed quantum principal bundle will be trivializable, iff ψ is
an inner automorphism of V.

Proof. For the trivializability of P is equivalent, at the geometrical level, to the
existence of a cross-section from M to P . Algebraically, there exists a unital *-
homomorphism s : B → V which is a left inverse of ι. Then ψ(f) = sψ(f) =
s(ufu∗) = s(u)fs(u)∗ and thus ψ is inner. And conversely, if ψ is inner associated
to a unitary W then the assignment s(u) = W consistently and uniquely defines
the corresponding bundle cross-section map s : B → V. �
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2.2. The Simplest Differential Calculus Extension

Let us now assume that the space M is equipped with a differential calculus,
represented by a graded differential *-algebra Ω(M), built over V. This means that
Ω0(M) = V, and that Ω(M), as a differential algebra, is generated by V. We shall
denote by dM : Ω(M)→ Ω(M) the corresponding differential. We shall assume that
ψ extends to a differential *-automorphism of the whole Ω(M).

Remark 3. In the above mentioned classical example of smooth manifolds, this ex-
tendibility property will automatically hold, as the diffeomorphisms of the manifold
always extend to differential forms.

We are going to construct a natural compatible differential calculus on the bun-
dle P . By definition its corresponding differential *-algebra Ω(P ) is given by the
relations

(2.2) u du = du u (du)2 = 0 uλ = ψ(λ)u (du)λ = (−)∂λψ(λ)(du)

where λ ∈ Ω(M). We shall assume first that the calculus on the structure group
© is the classical calculus, and let us denote by ©∧ this classical calculus.

Lemma 2. The map F : B → B ⊗ A is uniquely extendible to a differential *-
homomorphism F̂ : Ω(P )→ Ω(P ) ⊗̂ ©∧.

Proof. Let us observe that the algebra Ω(P ) has two components, both trivial as
left or right Ω(M)-modules:

Ω(P ) = hor(P )⊕ hor(P )(u∗du)

where

hor(P ) = Ω(M)B = BΩ(M)

plays the role of the horizontal forms subalgebra.

Since F : u 7→ u⊗ U , the first bimodule is clearly compatible with the definition
of F̂ . To check the compatibility of the second bimodule,

duλ− (−)∂λψ(λ)du (duλ⊗U + (−)∂λuλ⊗ dU)− (−)∂λψ(λ)(du⊗U + u⊗ dU)

= (duλ− (−)∂λψ(λ)du)⊗ U + (−)∂λ(uλ− ψ(λ)u)⊗ dU

where λ ∈ Ω(M). Thus, the relations defining Ω(P ) are fully compatible. �

Remark 4. In other words, we have a differential calculus on the quantum principal
bundle P , as defined in [5]. The corresponding horizontal forms are given by

hor(P ) = F̂−1
{

Ω(P )⊗A
}

in resonance with the general theory. And as we are going to see, the expression
u∗du defines a canonical flat connection on P .
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2.3. Connections, Covariant Derivative and Curvature

We shall assume in this subsection that a general differential calculus on the
bundle is given, such that the right action F : B → B ⊗A extends to a differential
(necessarily then grade and *-preserving) homomorphism F̂ : Ω(P ) → Ω(P ) ⊗̂ Γ∨∧,
where Γ∨∧ is a full differential calculus for the circle built over a given bicovariant *-
calculus Γ. Our aim is to see what an internal structure of the calculus looks like, if
we assume the existence of at least one regular and multiplicative connection. This
will provide the framework for going in the opposite direction, and constructing the
calculus given the primary geometrical data on the base space.

We shall assume that the automorphism ψ is extended to the calculus Ω(P )
straightforwardly, as the inner automorphism associated to u.

Remark 5. In general, this means that the extended ψ does not commute with
the differential d : Ω(P )→ Ω(P ).

By setting

(2.3) ϕ • Uk = ψ−k(ϕ) = u−kϕuk

we construct a right A-module structure on Ω(P ). It is easy to verify that

(2.4) F̂ (ϕ • a) = [ϕ(0) • a(2)]⊗ κ(a(1))ϕ(1)a(3) [ϕ • a]∗ = ϕ∗ • κ(a)∗.

In particular, if ϕ is horizontal then

(2.5) F∧(ϕ • a) = [ϕ(0) • a]⊗ ϕ(1)

for every a ∈ A. This is equivalent to saying that Ω(M) is •-invariant.
If ω : Γinv → Ω(P ) is an arbitrary connection on P then the horizontal obstacle

to regularity `ω is composed of two generating components. The first is given by
supercommutators

(2.6) `ω(ϑ, h) = ω(ϑ)h− (−)∂hhω(ϑ)

where h ∈ Ω(M). Because © is Abelian, these elements are always from Ω(M).
The second component is given by canonical bundle harmonics probes

(2.7) `ω(ϑ, uk) = uk
[
ω(ϑ) • Uk − ω(ϑ ◦ Uk)

]
.

We can rewrite this in the form

(2.8) ω(ϑ) • a− ω(ϑ ◦ a) =
∑

a(−)`ω(ϑ, a(+))

where A 3 a 
∑

a(−) ⊗ a(+) ∈ B ⊗ B is the linear extension of Uk 7→ V −k ⊗ V k,
a lifted translation map.

Lemma 3. A necessary and sufficient pair of conditions for a connection ω to be
regular is

ω(ϑ)h = (−)∂hhω(ϑ)(2.9)
ω(ϑ ◦ a) = ω(ϑ) • a(2.10)

for every ϑ ∈ Γinv, a ∈ A and h ∈ Ω(M). �
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Each of these two properties is worth analyzing in more detail. If the condition
(2.10) holds for a = U then it holds for all a ∈ A. In general, the lack of ◦−•
intertwining by ω measured in (2.8) always takes values from Ω(M). In particular,
if q(z) is the generating polynomial for the calculus Γ then ω(ϑ) • q(U) ∈ Ω(M).
On the other hand, if the ◦−• intertwining holds for ω and if the supercommuting
(2.9) holds for ϑ = o1 then it holds for all ϑ ∈ Γinv.

Lemma 4. The assignment ω  ω(o1) = % establishes one-one correspondence
between the connections which intertwine ◦ and • and antihermitian one-forms %
on P satisfying

F̂ (%) = %⊗ 1 + 1⊗ o1(2.11)
% • q(U) = 0.(2.12)

In terms of this correspondence, the connection will be regular iff % supercommutes
with the elements of Ω(M). �

In our geometrical setup the expressions $k = u∗kd(uk) for k ∈ Z exhibit a
special significance. They mimic the germs ok = π(Uk) of the basic harmonics on
the circle and satisfy

(2.13)
F̂ ($k) = $k ⊗ 1 + 1⊗ ok
$∗k = −$k d$k = −$2

k.

They are all generated from $1 by iteratively applying ψ and ψ−1. Explicitly
$0 = 0 and

(2.14) $k =
{k−1∑
j=0

ψ−j
}
$1 $−k =

{ k∑
j=1

ψk
}
$1

for k > 0.
So if we take the first n germs o1, . . . , on which span the space Γinv then for

them the assignment

(2.15) ok  $k

defines a connection $ on P . A priori, this is not extendible to all germs, as all the
$k will exhibit less linear relations than the ok.

Remark 6. If
∑

k
ckok = 0 then and only then

∑
k
ck$k will belong to the

calculus on the base M .

Secondly, the elements $k are intrinsically related to the problematics of extend-
ing the symmetry ψ from V to the whole calculus Ω(M). By differentiating (2.3),
and regrouping the terms we arrive at

(2.16) $kh− (−)∂hh$k =
{
ψ−kdψk − d

}
h.

The transformed differentials ψ−kdψk will be, in principle, all different. However,
their mutual differences are always given by inner superderivations in Ω(P ).

The most harmonic situation is when ‘bundle germs’ and group germs are com-
pletely correlated, so that the defined connection acts on all germs in the same way
(2.15). This is equivalent to saying that $ intertwines ◦ and • so that $ is already
‘half regular’.
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Lemma 5. In this context, $ is regular iff ψ is d-preserving. �

Now, every connection on P is of the form ω = $ − χ where χ : Γinv → Ω(P ) is
an antihermitian map with values in one forms onM , an appropriate ‘displacement
tensor’. For ω to be regular, it must supercommute with the forms on the base,
and be fully ◦−• compatible. The supercommutativity with Ω(M) reads

(2.17) $kh− (−)∂hh$k = χkh− (−1)∂hhχk

where χk = χ(ok) ∈ Ω1(M). In other words, the graded commutators with the
initial connection $ are equivalent to internal graded commutators with the dis-
placement. A useful special case of the identity is when h = χk which then reads

(2.18) $kχk + χk$k = 2χ2
k.

Another important consequence of (2.17) is obtained by replacing h with dh, then
differentiating it, taking into account the third equation in (2.13) the flatness prop-
erty of $, and doing elementary transformations:

(2.19)
[
dχk + χ2

k, h
]

= 0

for all k ∈ Z and h ∈ Ω(M)—an interesting centrality property.
The ◦−• intertwining property for χ says that

(2.20) χk =
{k−1∑
j=0

ψ−j
}
χ1 χ−k = −

{ k∑
j=1

ψk
}
χ1 = −ψk(χk)

for all k > 0.
If the equation (2.17) is satisfied for k = 1 then it follows that, because of (2.14)

and (2.20), it holds for all k ∈ Z. In summary:

Lemma 6. The displacements for the regular connections are in one-one corre-
spondence with antihermitian one-forms on Ω(M) whose difference with $1 super-
commutes with everything in Ω(M), and whose generated cyclic • submodule is a
projection of the cyclic ◦ module Γinv with its cyclic vector o1. In this case (2.20)
defines the full displacement map χ, the one-form is interpretable as χ1 and (2.17)
happily holds. �

By combining (2.16) and (2.17) we find

(2.21) χkh− (−)∂hhχk =
{
ψ−kdψk − d

}
h.

This brings the difference between the transformed differential and the original
differential, measurable completely within Ω(M). To put it in other terms, the
formula can be viewed as the definition of the extension of ψ, from its original
domain V = Ω0(M) to the whole of Ω(M). To see this explicitly, rewrite (2.21) as

(2.22) ψkd(h) = dψk(h) +
[
χ−kψ

k(h)− (−)∂hψk(h)χ−k
]
.

Let us compute the curvature map rω : A → hor(P ) of such a connection ω =
$ − χ. According to the definition of this map

(2.23) rω(Uk) = dω(ok) + ω(ok)ω(ok) = d$k − dχk + ($k − χk)2 =

= d$k +$2
k − dχk + χ2

k −$kχk − χk$k = −
(
dχk + χ2

k

)
.
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The curvature takes values from Ω2(M) as it should, because © is Abelian. And,
as we have already explained, the curvature is always a central element of Ω(M).

Let D = Dω+ξ be the corresponding covariant derivative. It extends the differ-
ential dM : Ω(M) → Ω(M) to a covariant first-order hermitian antiderivation (in
the sense of satisfying the graded Leibniz rule) of hor(P ).

As such, it is completely determined by its values on the generator U . We have

(2.24) D(U) = dU − U(ω + ξ) = −Uξ.
And it is instructive to compare, in this very particular context, the square of the
covariant derivative and the curvature. We have

(2.25) D2(U) = −D(U)ξ − Ud(ξ) = −Urω+ξ

in accordance with the general theory.

2.4. Universal Solution

Let us now consider the most general situation admitting a regular connection.
We shall assume that a graded differential *-algebra Ω(M) is given, together with
a graded *-automorphism ψ : Ω(M) → Ω(M). However, we shall not require any
compatibility property between ψ and dM . We shall construct the cross product
algebra hor(P ) in the same way as before, so that

Uλ = ψ(λ)U

for every λ ∈ Ω(M).
The existence of regular connections is intrinsically related to the possibility of

extending the differential dM to a covariant derivative map D : hor(P ) → hor(P ),
which is a hermitian first-order antiderivation which is covariant—in the sense that
the diagram

(2.26)

hor(P )
F∧−−−−→ hor(P )⊗A

D
y yD ⊗ id

hor(P ) −−−−→
F∧

hor(P )⊗A

is commutative.
Every such a map is completely determined by its value on U , and because of

the covariance, it must be of the form

(2.27) D(U) = −Uξ
where ξ ∈ Ω1(M). Since D is hermitian, we have

0 = D(1) = D(U∗)U + U∗D(U) = −(ξ∗ + ξ)

in other words ξ must be antihermitian.

Proposition 7. The following identity holds:

(2.28) ξλ− (−)∂λλξ = dM (λ)− ψ−1dMψ(λ)

for every λ ∈ Ω(M). Conversely, if ξ is an antihermitian first-order element of
Ω(M) satisfying this identity, then the formula (2.27) uniquely and consistently
defines a covariant hermitian first-order antiderivation D : hor(P ) → hor(P ) ex-
tending the differential dM : Ω(M)→ Ω(M).
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Proof. By applying D on the cross product relation, we obtain

0 = −U∗
{
D(U)λ+ UdM (λ)− dMψ(λ)U − (−)∂λψ(λ)D(U)

}
=

= ξλ− dM (λ) + ψ−1dMψ(λ)− (−)∂λλξ.

In other words (2.28) holds. Since the horizontal forms algebra is defined by the
single cross-product relation, a necessary and sufficient condition for the consistent
(and necessarily unique) extendibility of D as an antiderivation, is the compatibility
with this single relation. �

Remark 7. And the initial simplest situation when ψ preserves dM , is equivalent
to ξ supercommuting with all elements of Ω(M). We see that the general situation
is not very different: although ψ and dM do not commute, the difference between
differentials dM and ψ−1dMψ is, in a sense, small. It is the inner derivation asso-
ciated to ξ. It is worth remembering that inner superderivations always form an
ideal in the super Lie algebra of all superderivations.

Remark 8. The above formula (2.28) completely fixes the extension of the auto-
morphism ψ, from V = Ω0(M) to the whole of Ω(M). Let us recall that we are
assuming that Ω(M) is generated, as a differential algebra, by V.

Let us calculate the curvature operator for such connections. According to the
general theory, it is a map %D : A → hor(P ) uniquely defined by the formula

D2(ϕ) = −ϕ(0)%D(ϕ(1))

where F∧(ϕ) = ϕ(0) ⊗ ϕ(1). In our context, since the circle group is Abelian, the
curvature will be Ω(M)-valued. We have

%D(U) = −U∗D2(U) = U∗D(Uξ) = U∗(D(U)ξ + UdM (ξ)) = dM (ξ)− ξ2.

This easily extends to all powers of U :

Proposition 8. The following identities hold

(2.29) %D(Un) =

n−1∑
k=0

ψ−k
[
dM (ξ)− ξ2

]
%D(U−n) = −

n∑
k=1

ψk
[
dM (ξ)− ξ2

]
for each n ∈ N.

Proof. The square D2 is a standard derivation. Thus,

%D(Un) = −U−nD2(Un) = −U−n
n−1∑
k=0

Un−k−1D2(U)Uk =

= U−n
n−1∑
k=0

Un−k−1U [dM (ξ)− ξ2]Uk =

n−1∑
k=0

ψ−k[dM (ξ)− ξ2]

and similarly

%D(U−n) = −UnD2(U−n) = −Un
n−1∑
k=0

U1+k−nD2(U∗)U−k =

= Un
n−1∑
k=0

U1+k−n[ξ2 − dM (ξ)]U∗U−k =

n∑
k=1

ψk[ξ2 − dM (ξ)].
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Above, we have used the facts that D commutes with ∗, and that the expression
dM (ξ)− ξ2 is antihermitian. �

From the general theory, we know that the covariant derivative of the curvature
operator is zero. This is the quantum Bianchi identity for the regular connec-
tions. In our case, since the curvature takes values from Ω(M), this means that all
%D(Um), for m ∈ Z, must be closed. Equivalently

(2.30) dMψ
m
[
dM (ξ)− ξ2

]
= 0

for every m ∈ Z. The simplest among these Bianchi identities is the one saying
that dM (ξ2) = 0. The curvature also commutes with all the elements of Ω(M). In
particular, we have

(2.31) dM (ξ)ξ = ξdM (ξ)

which is equivalent to the above mentioned fact that ξ2 is closed.

Remark 9. The curvature operators define, in a natural way, the minimal com-
patible calculus on the structure group. This calculus is based on the right ideal
J in the kernel of the counit ε : A → C consisting precisely of all the elements
aniquilated by the curvature. We can also consider, instead of a single preferred
connection, the appropriate affine space of them (including all possible realizations
via covariant derivatives). As we can see from the above expressions for the cur-
vature, in general, such a calculus could be arbitrarily different from the classical
one. Including the universal calculus (corresponding to the trivial kernel J = {0}).

Remark 10. The centrality property of the curvature is equivalent to the cen-
trality property of the single element dM (ξ)− ξ2. The characteristic classes are all
cohomology classes generated by the elementary ones ψm

[
dM (ξ)− ξ2

]
. In fact, we

can use the derived properties to construct the universal algebra of cross-product
characteristic classes, by considering a free algebra generated by symbols ξ, dξ and
U , and factorizing over the appropriate relations.

3. Singing Quantum Circle

3.1. The Toeplitz Extension

For non-invertible projection morphisms ψ the classical circle should be replaced
by its non-commutative extension by compact operators. The *-algebra T is gen-
erated by a single element S satisfying

(3.1) S∗S = 1.

The canonical realization is given by the unilateral shift operator

(3.2) S|k〉 = |k + 1〉 S∗|0〉 = 0 S∗|k + 1〉 = |k〉
acting in the Hilbert space l2(N). By forgetting the non-commutativity, the struc-
ture morphs into the classical ©, by interpreting

(3.3) T /M∞(C) ∼= A
where M∞(C) the *-algebra of infinite complex matrices having finitely many non-
zero entries, emerges as the commutant ideal of T . The elementary matrices are
given by

(3.4) eij = |i〉〈j| = Si(1− SS∗)S∗j
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and the elements SiS∗j form a linear basis in T , which is a multiplicative unital
semigroup in T . Explicitly

(3.5) SiS∗j SkS∗l =

{
SiS∗j−k+l j ≥ k
Si+k−jS∗j j ≤ k.

The diagonal basis elements pk = UkU∗k are orthogonal projectors on subspaces
spanned by |i〉 where i ≥ k.
Remark 11. The whole structure can be naturally viewed in terms of the complex
geometry of the Hilbert space of square summable power series [3]. These series are
all holomorphic inside of a unitary disk. The generator S is viewed as the multipli-
cation operator by the complex variable z and the adjoint operator is charmingly
S∗ : ψ(z) 7→ (ψ(z)− ψ(0))/z.

There is a canonical internal symmetry, a non-unital *-morphism ψ : T → T
given, together with its left inverse, by

(3.6) ψ(h) = ShS∗ ψ−(h) = S∗hS

so that

(3.7) ψ−ψ(h) = h ψψ−(h) = ψ(1)hψ(1).

Furthermore ψ− is unital, completely positive and satisfies the following partial
multiplicativity property

(3.8)
ψ−
[
ψ(q)h

]
= qψ−(h)

ψ−(h)q = ψ−
[
hψ(q)

]
for every λ, h, ρ ∈ T . By construction pk = ψk(1) for all k ∈ N.

By taking C*-completions, we obtain the canonical short exact sequence

(3.9) 0→ K� T � C(©)→ 0

the Toeplitz extension of C(©) by the compact operators K.
The classical circle acts on T by rotations which defines the action F : T → T ⊗A

and in view of

(3.10) F (SiS∗j) = SiS∗j ⊗ U i−j

the algebra T splits into an orthogonal sum of multiple irreducible subspaces

(3.11) T =
⊕
k∈Z
Tk Tk = span

{
SiS∗j

∣∣ i− j = k
}
.

The pure terms, which are the powers of only S and S∗, together with ψ generate
the ψ-invariant spaces Tk, as

(3.12) SiS∗j =

{
ψj(Si−j) i ≥ j
ψi(S∗j−i) i ≤ j.

In particular, the F -invariant part T0 is spanned by the projectors pk. It is
a unital commutative subalgebra algebra whose underlying space is the one-point
compactification of the natural numbers

∞
N = N∪{∞}. In terms of the identification

of the points of
∞
N with characters on T0, the point∞ corresponds to a character κ∞

evaluating to one in all these projectors, so it is simply the classical point 1 ∈ ©.
While for i ∈ N its κi evaluates to one on pj with j ≤ i otherwise, its 0.
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Proposition 9. The free action subalgebra for F is spanned by the non-negative
powers of U . Thus, the action F is free.

Proof. For every a from this subalgebra we can find an array cijkl such that∑
ijkl

cijklS
iS∗j F (SkS∗l) = 1⊗ a.

Because of (3.5) and (3.10) we can remove from the sum all the terms in which the
basis elements do not multiply into 1, which are the terms i = l = k − j = 0. �

In such a way we have constructed a quantum principal ©-bundle over
∞
N. An

interesting geometrical picture emerges. The bundle unifies infinitely circular ‘os-
cillating modes’. The limiting oscillating mode is the classical mode, corresponding
to the classical part ©. There are inner and purely quantum ‘virtual modes’ with
non-individualizable fibers over the classical points i ∈ N labeling them. A true
quantum circle.

To further this quantum circle interpretation, there is a natural coproduct map
φ : T → T ⊗ T which a unital *-homomorphism defined by

(3.13) φ(S) = S ⊗ S φ(S∗) = S∗ ⊗ S∗.

The counit is the character corresponding to the classical circle point 1 ∈ ©. And
the antipode κ : T → T is the unital antimultiplicative map specified by

(3.14) κ(S) = S∗ κ(S∗) = S.

So the extension becomes a (generalized) quantum group, with © interpretable as
its classical part.

Another fundamental geometrical significance of this extension is that it provides
the simplest quantum hyperbolic plane, possessing a full classical symmetry group
SU(1, 1)/{−1, 1}. The assignment

(3.15) S∗ 7→ aS∗ + b

b̄S∗ + ā
SU(1, 1) =

{(a b
b̄ ā

) ∣∣∣ |a|2 − |b|2 = 1
}

consistently and uniquely defines an action of SU(1, 1)/{1,−1} by *-automorphisms
of T . The adjoint shift operator S∗ corresponds to the complex variable restricted
to the unit complex disc, in the classical Poincaré model of the hyperbolic plane.
The classical © is interpretable as the ‘horizon heaven’ for such a quantum space.

3.2. Universal Differential Calculus

In terms of generators and relations f(T ) the universal differential envelope of
T is given by S and S∗, their unique relation defining T and its differential child

(3.16) dS∗ S + S∗ dS = 0.

The universal calculus already contains a rudimentary structure for constructing
a full differential calculus for the quantum circle bundle. We shall explore this
structure now. The coproduct φ on T together with ε and κ extend from T to
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f(T ) naturally. The group structure remains Abelian on f(T ). The antipode κ is
a super antimultiplicative homomorphism on f(T ) satisfying

(3.17)

f(T )
φ−−−−→ f(T ) ⊗̂ f(T )

κ
y yκ⊗ κ

f(T )
φ−−−−→ f(T ) ⊗̂ f(T )

dκ = κd ∗ κ∗ = κ−1.

The construction of the complete calculus for the bundle requires fixing a finitely-
dimensional differential calculus Γ on © and promoting the appropriate additional
relations in the envelope f(T ). The action map F always extends to the calculus
level F̂ : f(T )→ f(T ) ⊗̂Γ∨∧. However, only for non-universal Γ will the germ map
be surjective on the free action algebra. For a first-order calculus over © being
non-universal is equivalent to the finite dimensionality of Γinv.

The morphism ψ and its left inverse ψ− directly extend from T to f(T ). It is
easy to see that

dψ(h) = ψd(h) +
{

(d(S)S∗)ψ(h) + (−)∂hψ(h)(Sd(S∗))
}

(3.18)

dψ−(h) = ψ−d(h) + ψ−
{

(Sd(S∗))h+ (−)∂hh(d(S)S∗)
}

(3.19)

for every h ∈ f(T ).

Proposition 10. Let us fix a first-order element θ ∈ f(T ). There exists a unique
homomorphism Π: f(T )→ f(T ) which acts as the identity on T and

(3.20) Π(dS) = (1− SS∗)dS − Sθ Π(dS∗) = dS∗(1− SS∗) + θS∗.

This map is grade-preserving and the diagram

(3.21)

f(T )
φ−−−−→ f(T ) ⊗̂ f(T )

Π
y yΠ⊗Π

f(T )
φ−−−−→ f(T ) ⊗̂ f(T )

is commutative iff θ is primitive, that is φ(θ) = 1⊗θ+θ⊗1. It will be *-preserving
iff θ∗ = −θ.

Proof. At first, we have to check the compatibility of the definition of Π with the
defining relations (3.16). We compute

0 = dS∗ S + S∗ dS  
[
dS∗(1− SS∗) + θS∗

]
S + S∗

[
(1− SS∗)dS − Sθ

]
=

= dS∗(S − SS∗S) + (S∗ − S∗SS∗)dS + θ − θ = 0.

Thus Π exists and is unique. It is grade preserving because the property is trivially
satisfied at the level of T , and (3.20). Both branches of the diagram (3.21) are
homomorphisms and coincide on T and generators dS and dS∗, if and only if θ
satisfies the primitivity condition. In order for it to be a *-homomorphism, it is
necessary and sufficient to check the property at the level of generators S and S∗,
where because of (3.20) it means the antihermicity of θ. �
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The correlation between θ and Π is of mutual reciprocity:

(3.22) θ = Π(dS∗)S = −S∗Π(dS).

If θ = −S∗ dS then and only then Π is the identity on f(T ). Another notable
choice is θ = 0. Here are some more formulae exhibiting particular usefulness in
calculations:

(1− SS∗)dS = d[SS∗]S dS∗(1− SS∗) = S∗d[SS∗]

S∗d[SS∗]S = 0 d[S∗dS] + [S∗dS]2 = S∗d(SS∗)2S.

The one-form S∗dS = −d(S∗)S is the simplest blueprint connection form. Its
sibling Sd(S∗) = d(SS∗) − d(S)S∗ is almost-a-connection. The form θ is viewed
as a connection displacement and then Π is interpretable as a blueprint horizontal
projection. And since Π acts as identity on T , it commutes with ψ and ψ− on the
complete calculus f(T ).

Lemma 11. The map Π will be idempotent iff Π(θ) = θ.

Proof. Calculating the square of Π we obtain

(3.23) Π2(dS) = (1− SS∗)dS − SΠ(θ) Π2(dS∗) = dS∗(1− SS∗) + Π(θ)S∗

which is the morphism associated to Π(θ). �

And if Π is a projector, then

(3.24) Π
[
S∗dS + θ

]
= 0

the property interpetable as the verticality of the associated connection, correspond-
ing to the first harmonic germ o1 on©. To produce analogs suitable for the higher
harmonic germs, we should act by powers of ψ− on this elementary connection:

(3.25) F̂ψ−n
[
S∗dS + θ

]
= ψ−n

[
S∗dS + θ

]
⊗ 1 + 1⊗ on.

Here, in the context of the universal envelope f(T ), this works only for n > 0 due
to the crucial asymmetry between S and S∗, and the lack of the additional algebraic
relations in the calculus.

An important associated map is a blueprint covariant derivative

(3.26) D = Πd.

So that we can rewrite (3.20) as

(3.27) D(S) = (1− SS∗)dS − Sθ D(S∗) = dS∗(1− SS∗) + θS∗.

These formulae completely determine D acting on T as a graded Π-derivation. We
always have

(3.28) D(SS∗) = d(SS∗).

In other words d(SS∗) is Π-invariant always. Indeed,

(3.29)
Π[d(S)S∗] = (1− SS∗)d(S)S∗ − SθS∗ = d(SS∗)(SS∗)− SθS∗

Π[Sd(S∗)] = S(1− SS∗)d(S∗) + SθS∗ = (SS∗)d(SS∗) + SθS∗

and summing these two and applying the Leibniz rule we obtain the result.
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Lemma 12. The following identities hold

Dψ(h) = ψD(h) + d(SS∗)ψ(h) + (−)∂hψ(h)d(SS∗)− ψ
{
θh− (−)∂hhθ

}
(3.30)

Dψ−(h) = ψ−
{
D(h) + d(SS∗)h+ (−)∂hhd(SS∗) + ψ(θ)h− (−)∂hhψ(θ)

}
(3.31)

for Π-invariant elements h ∈ f(T ).

Proof. Obtained by acting by Π on (3.18) and (3.19) respectively, taking (3.29) into
account, all coupled with elementary properties of ψ. �

Let us assume that the idempotency condition holds.

Lemma 13. We have

(3.32) D2(S) = −SR RS∗ = D2(S∗)

with the blueprint curvature 2-form given by

(3.33) R = S∗d(SS∗)2S +D(θ)− θ2.

Proof. A straightforward computation

D2(S) = D
[
(1− SS∗)dS − Sθ

]
= −d(SS∗)D(S)−D(S)Π(θ)− SD(θ) =

= −d(SS∗)
[
(1− SS∗)dS − Sθ

]
−
[
(1− SS∗)dS − Sθ

]
θ − SD(θ) =

= SS∗d(SS∗)dS − SD(θ) + Sθ2 = −S
{
S∗d(SS∗)2S +D(θ)− θ2

}
intertwined with the above elementary identities. The second formula follows sym-
metrically, and for antihermitian θ is simply the conjugate of the first. �

Lemma 14. If h is Π-invariant then

(3.34) D2ψ(h) = ψ[D2(h)]− ψ[R, h].

Proof. It follows from the previous Lemma and observing that on the horizontals
D acts as a graded derivation, hence D2 is a simple derivation. �

3.3. Calculus Crafting

We shall now consider a more subtle and natural calculus for the extension
algebra, obtained by introducing additional commutation relations

(3.35) S dS = dS S S∗ dS∗ = dS∗ S∗.

Remark 12. Such commutation relations can always be promoted, in the con-
text of Hilbert spaces of holomorphic functions in a domain of C, where the non-
commutative space is built from the complex variable multiplication operator and
its adjoint. In our context, it is clear that the new relations are compatible with
the natural SU(1, 1) symmetry and the above introduced quantum group structure.

Remark 13. Since we are promoting the first-order relations, the resulting com-
plete calculus is isomorphic to the universal differential envelope of the first-order
calculus Ψ.
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The infinitezimal generators for the SU(1, 1) symmetry are given by the following
hermitian derivations of the basic algebra:

h1(S) = (1− S2)/2

h2(S) = i(1 + S2)/2

h3(S) = iS

h1(S∗) = (1− S∗2)/2

h2(S∗) = −i(1 + S∗2)/2

h3(S∗) = −iS∗

They satisfy

[h1, h2] = h3 [h2, h3] = −h1 [h3, h1] = −h2

which is the standard presentation of the Lie algebra su(1, 1). The derivations
X ∈ su(1, 1) naturally incorporate into the full calculus, via the operators ιX and
lX as discussed in Appendix C.

Remark 14. In fact, the introduced derivations cover the whole Lie algebra of the
calculus, in the sense that

su(1, 1) = Der(T
∣∣ Ψ)

for our context.

Our new relations imply

(3.36) dS∗ = −S∗2dS dS = −dS∗ S2.

At the first order level, the calculus is generated by the triplet

(3.37) dS w = S∗ dS = −dS∗ S = −w∗ dS∗

in the sense that the elements of the form

(3.38) Sk

dSw
dS∗

S∗l k, l ∈ N

constitute a natural linear basis for the first-order calculus.
All the second-order relations for our calculus are generated from the first-order

relations. We have

(3.39) (dS)2 = (dS∗)2 = dw = dS∗ dS = 0.

For the forms of grade n ≥ 2 we have the following 4-tuple linear basis

(3.40) Sk


dSwn−2dS∗

wn

dS wn−1

wn−1dS∗

S∗l k, l ∈ N

and in particular we see that the differential calculus is non-trivial in all grades.
This fact also follows from the primitivity formulae

(3.41) φ(w) = w ⊗ 1 + 1⊗ w φ(w2) = w2 ⊗ 1 + 1⊗ w2.

Proposition 15. The projector p = SS∗ satisfies

(3.42) dp p dp = dS dS∗ − Sw2S∗ + dS wS∗ − Sw dS∗.
In particular,

(3.43) (dp)3 = d(Sw2S∗).
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Proof. The first identity follows by a direct calculus, expanding the left-hand side
to the canonical basis for second order forms. It is worth noticing that the last 2
terms compactify into d(SwS∗). Now by taking the differential of both sides we
arrive at (3.43). �

There exists a very special second-order element which trivially contracts with
all infinitezimal hyperbolic symmetries.

Proposition 16. We have

(3.44) ιX(w2 + dp p dp) = 0

for every X ∈ su(1, 1).

Proof. A direct verification with X assuming the values of the elementary basis
hyperbolic derivations h1, h2, h3. �

Our calculus admits further natural factorization which preserves the SU(1, 1)
symmetry, and which closes the calculus at dimension 3. Interestingly, such a
closure turns out to be impossible at dimension 2. The following additional relations
describe this calculus:

w2 + dp p dp = 0(3.45)
dp dp dp = 0.(3.46)

Clearly, the second relation follows by differentiating the first.

Proposition 17. In the factor calculus the following identities hold:

dS w2 = Sw3 w2dS∗ = −w3S∗(3.47)

dS wdS∗ = w3 − Sw3S∗.(3.48)

Proof. Taking into account (3.43) we find dSw2S∗+Sw2dS∗ = 0 and by multiplying
on the left and on the right by S∗ and S respectively we arrive at (3.47), mutually
conjugate identities. To prove (3.48) we multiply by w the basic quadratic identity,
which when expanded gives

0 = w3 + dS dS∗w − Sw2S∗w + dSwS∗w − SwdS∗ w.

The second and the fifth terms of the right hand side clearly vanish, while Sw2S∗w =
Sw2S∗2dS = −Sw2dS∗ = Sw3S∗ and dSwS∗w = −dSwdS∗. �

We see that 3-forms are all expressible in terms of the canonical ‘volume element’
w3. It is easy to see that w4 vanishes. Indeed w4 = w3S∗ dS = −w2 dS∗ dS = 0.
This further implies dSw3 = w3 dS∗ = dS w2 dS∗ = 0. In other words, all 4-forms
vanish.

Remark 15. It is worth observing that such a factorized algebra is not compatible
with the coproduct φ. In other words, the quantum group structure is lost.
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4. Cross Product for General ∗-Morphisms

4.1. General Setup

For the sake of internal harmony & completeness, we have collected here some
general definitions regarding quantum principal bundles [5]. Let us consider a
quantum group G represented by a *-algebra A equipped with the coproduct map
φ : A → A⊗A. Let us assume that G acts on the right on a quantum space P via
a unital *-homomorphism F : B → B ⊗A. This means that

(4.1)

B F−−−−→ B ⊗A∥∥∥ yid⊗ ε

B −−−−→∼=
B ⊗ C

B F−−−−→ B ⊗A

F
y yid⊗ φ

B ⊗A −−−−−→
F ⊗ id

B ⊗A⊗A

are commutative diagrams. Let F be the set of all elements a ∈ A for which there
exists a collection of elements bα, qα ∈ B such that

(4.2)
∑
α

bαF (qα) = 1⊗ a.

Proposition 18. The set F is a unital subalgebra of A. It is always ∗k–invariant
and moreover

(4.3) φ(F) ⊆ F ⊗A.

Proof. By construction F is a linear space containing the scalars of A. Another
direct consequence of the definition is that F is closed under multiplications.

From the above definition it follows that∑
α

bαq
(0)
α ⊗ q

(1)
α ⊗ q

(2)
α = 1⊗ a(1) ⊗ a(2)

which implies the right invariance of F . On the other hand we always have

(4.4)
∑
α

q∗αF (b∗α) = 1⊗ κ(a)∗.

which shows that F is ∗κ-invariant. �

It is also worth noticing that

(4.5)
∑
α

bαqα = 1ε(a)

which is another straightforward consequence of (4.2).

Definition 1. We shall call F the free action algebra for A & F . We shall say that
F is a free action of G on P iff the *-algebra generated by F in A is the whole A.
Such a structuralized P ↔ (B, ι, F ) is called a quantum principal G-bundle overM .
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4.2. The Level of Bundles

We shall assume that there is a left inverse map ψ− : V → V satisfying

(4.6) ψ−ψ(f) = f ψψ−(f) = ψ(1)fψ(1)

for all f ∈ V. The first equation above ensures that ψ is always injective. And ψ
will be bijective precisely when ψ(1) = 1. So the non-bijective ψ are possible only
in infinite-dimensional contexts.

Proposition 19. A left inverse map for ψ is unique, if it exists. It is linear, unital
and *-preserving. In addition, if V is local then ψ− is completely positive.

Proof. The uniqueness of the map follows from the second equation in (4.6), coupled
with the injectivity of ψ. In resonance with this

ψψ−(λf + g) = ψ(1)(λf + g)ψ(1) = λψ(1)fψ(1) + ψ(1)gψ(1) =

= λψψ−(f) + ψψ−(g) = ψ
{
λψ−(f) + ψ−(g)

}
and ψψ−(1) = ψ(1)2 = ψ(1) as well as ψψ−(f∗) = ψ(1)f∗ψ(1) = [ψψ−(f)]∗ =
ψ[ψ−(f)∗]. This proves the linearity, unitality and hermicity. If V is local, then
the second equation of (4.6) ensures the complete positivity of ψψ−. Since ψ is a
*-monomorphism, we can safely remove it from the composition and conclude that
ψ− is completely positive as well. �

For the non-bijective ψ there will be a strictly decreasing sequence of projectors

(4.7) pk = ψk(1)

for k ≥ 0 with p0 = 1.

We shall now extend the V to a larger *-algebra B, by introducing a new generator
u satisfying

(4.8) u∗u = 1 ψ(f) = ufu∗

for all f ∈ V. These relations are completely friendly to V, the algebra is preserved
and thus there is the canonical unital embedding ι : V � B. As an immediate
consequence of the above generating relations, we can write

(4.9) uf = ψ(f)u fu∗ = u∗ψ(f) ψ−(f) = u∗fu.

The assignments f  f ⊗ 1 and u  u ⊗ U consistently and uniquely define a
unital *-homomorphism F : B → B ⊗ A, which is the action of © on P . Thus, B
decomposes into a direct sum of the multiple irreducible spaces Bk, where k ∈ Z.

It is a fun to calculate in B. By recursively applying these no-commutation
relations it follows that

Proposition 20. If k > 0 then every element of Bk is of the form fuk and every
element of B−k is of the form u∗kf where f ∈ V. And V = B0 is the fixed-point
algebra for F . The triplet (P, ι, F ) is a quantum principal ©-bundle over M . �
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5. Standard Hyperbolic Hopf Fibration

Let us recall that the classical group U(1, 1) is formed by complex 2×2 matrices
T satisfying

T

(
1 0
0 −1

)
T ∗ =

(
1 0
0 −1

)
= T ∗

(
1 0
0 −1

)
T.

The unitarity condition for the signature (1, 1) semidefinite scalar product. Its
unimodular subgroup can be alternatively described as

SU(1, 1) =

{
T =

(
α γ̄
γ ᾱ

)
: |α|2 − |γ|2 = 1

}
.

It is important to observe that if we assume the above form of a matrix

T =

(
α γ̄
γ ᾱ

)
then the unitarity condition is equivalent to the determinant equation

|α|2 − |γ|2 = det(T ) = 1.

This is the starting point for constructing the quantum version of SU(1, 1) by
Woronowicz. It is based on a *-algebra B generated by the entries of a matrix

u =

(
α µγ∗

γ α∗

)
where we postulate the same signature (1, 1) unitarity property for u. Here µ ∈
[−1, 1] \ {0}. This implies the following commutation relations for α and γ:

αα∗ − µ2γγ∗ = 1, α∗α− γ∗γ = 1,

γγ∗ = γ∗γ, αγ∗ = µγ∗α, αγ = µγα.
(5.1)

In such a way we obtain a Hopf *-algebra, with the coproduct φ : B→ B⊗B, the
counit ε : B→ C and the antipode κ : B→ B given by

φ(uij) =

2∑
k=1

uik ⊗ ukj ε(uij) = δij(5.2)

κ(uij) =
{( 1 0

0 −1

)
u∗
(

1 0
0 −1

)}
ij(5.3)

or explicitly

φ(α) = α⊗ α+ µγ∗ ⊗ γ φ(α∗) = α∗ ⊗ α∗ + µγ ⊗ γ∗(5.4)
φ(γ) = γ ⊗ α+ α∗ ⊗ γ φ(γ∗) = γ∗ ⊗ α∗ + α⊗ γ∗(5.5)

ε(α) = ε(α∗) = 1 ε(γ) = ε(γ∗) = 0(5.6)
κ(α) = α∗ κ(α∗) = α κ(γ) = −µγ µκ(γ∗) = −γ∗.(5.7)

We shall now introduce different coordinates, which classically correspond to the
hyperbolic plane complex coordinates (in unit disc, the Poincaré model) and a
unitary transformation–the pure rotation around the origin. And as it will become
transparent, this will enable us to interpret the entire algebra as a cross product
between the hyperbolic plane and the circle.
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From now on, we shall assume that the element α is invertible. In addition, we
shall assume that an elementary functional calculus is allowed in B. Let us define

(5.8) z = α∗−1γ∗ w =
1√
αα∗

α.

It is clear that w is unitary, that is w∗ = w−1. On the other hand, we have

(5.9) αα∗ =
1

1− zz∗
α∗α =

1

1− z∗z
.

The elements zz∗ and z∗z are mutually related in the following way:

(5.10) zz∗ =
z∗z

µ−2 + (1− µ−2)z∗z
.

Let V be the *-subalgebra of B generated by z and z∗. This subalgebra can be
defined as the invariant subalgebra under a natural free action of the circle group
B. Let A be the Hopf *-algebra corresponding to the circle group, with its canonical
generator U . There is a natural Hopf *-epimorphism Π: B → A defined by Π(α) =
U , Π(α∗) = U∗ and Π(γ) = Π(γ∗) = 0.

Remark 16. In fact, this enables us to see, for µ 6= 1 the circle group as precisely
the classical part of the quantum SU(1, 1).

If we define F : B → B⊗A as F = (id⊗Π)φ, then it is easy to see that the triplet
P = (B, ι, F ), with ι : V → B the inclusion map, is a quantum principal bundle [5].
Moreover, a direct calculation reveals that

(5.11) F (w) = w ⊗ U zz∗ = w{z∗z}w∗.

Let ψ : B → B be the inner *-automorphism generated by w. In other words
ψ(b) = wbw∗ for every b ∈ B. It follows immediately that ψ commutes with the
action F , and in particular V is ψ-invariant.

Let R be the *-subalgebra of V generated by zz∗, or equivalently z∗z. The above
equation (5.10) implies that R is commutative. The same equation can be rewritten
in yet another form

(5.12) zz∗ = ψ(z∗z)

and we see that R is ψ-invariant.
The algebra B can be viewed as the cross product between V, equipped with the

restricted automorphism ψ : V → V, and the circle group. The original generators
α and γ are recovered as

α =
1√

1− zz∗
w γ =

1√
1− z∗z

z∗w.

Let us now focus on the differential calculus, and assume that the quantum
SU(1, 1) is equipped with the 3D calculus of Woronowicz. By definition, this cal-
culus Ψ is a left-covariant *-calculus, defined by the following right B-ideal:

(5.13) J =
〈
α∗ + µ2α− (1 + µ2)1, γ2, γ∗γ, γ∗2, (α− 1)γ, (α− 1)γ∗

〉
.

The space Ψinv of left invariant elements is 3-dimensional, and there is a canonical
basis in this space, given by

(5.14) η+ = π(γ) η− = µπ(γ∗) η3 = π(α− α∗)
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where π : B → Ψinv is the associated quantum germs map π(b) = κ(b(1))db(2). The
*-structure is given by

(5.15) η∗3 = −η3 η∗± = η∓.

The canonical ◦-structure is given by

(5.16)

η± ◦ α = µ−1η±
η± ◦ α

∗ = µη±

η± ◦ {γ, γ
∗} = 0

η3 ◦ α = µ−2η3

η3 ◦ α
∗ = µ2η3

η3 ◦ {γ, γ
∗} = 0.

Therefore, the following commutation relations hold

η3α = µ−2αη3 η3α
∗ = µ2α∗η3 η3γ = µ−2γη3 η3γ

∗ = µ2γ∗η3(5.17)

η±α = µ−1αη± η±α
∗ = µα∗η± η±γ = µ−1γη± η±γ

∗ = µγ∗η±(5.18)

η3z = zη3 η±z = zη± η3w = µ−2wη3 η±w = µ−1wη±.(5.19)

The calculus on the base is generated by V. The following defines the differential
on complex coordinates:

dz =
√

1− zz∗ wη−w
√

1− z∗z = µ−1
√

1− zz∗ w2
√

1− z∗zη−(5.20)

dz∗=
√

1− z∗z w∗η+w
∗√1− zz∗ = µ

√
1− z∗zw∗2

√
1− zz∗η+.(5.21)

This immediately tells us what are the relations between the coordinates z and z∗
and their differentials:

dz∗ z =
µ2

µ4 + (1− µ4)zz∗
zdz∗ dz z∗ =

µ−2

µ−4 + (1− µ−4)z∗z
z∗dz

dz z = µ2z dz dz∗ z∗ = µ−2z∗dz

dz∗ (zz∗) =
zz∗

µ4 + (1− µ4)zz∗
dz∗ dz (z∗z) =

z∗z

µ−4 + (1− µ−4)z∗z
dz.

It is also worth observing that, in our context
z∗z

µ−4 + (1− µ−4)z∗z
= ψ2(z∗z)

which implies the following commutation relations between the coordinate differ-
entials and the elements of R:

dz h = ψ2(h)dz dz∗h = ψ−2(h)dz∗.

for every h ∈ R.
The higher-order relations between the coordinate forms are given by

η+η− = −µ2η−η+ η+η3 = −µ4η3η+ η3η− = −µ4η−η3(5.22)

η2
+ = η2

− = η2
3 = 0.(5.23)

Here we used the universal differential envelope [4] of the first-order calculus, as the
complete calculus on the bundle. By differentiating the germs-coordinate forms, we
obtain

(5.24) dη3 = −(1 + µ2)η−η+ dη+ = µ2η3η+ dη− = µ2η−η3.

The map F : B → B⊗A extends to a morphism F̂ : Ψ∧ → Ψ∧ ⊗̂Γ∧ of graded differ-
ential *-algebras. Here Γ is the projected calculus on the circle, via the differential
extension Π∧ : Ψ∧ → Γ∧ of Π. In such a way, the circle acquires a nice quantum
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differential calculus: dU and U do not commute. This calculus is given by a unique
generator χ, such that

dU =
1

1 + µ2
Uχ.

The extended action is completely determined by

(5.25) F̂ (η3) = η3 ⊗ 1 + 1⊗ χ F̂ (η+) = η+ ⊗ U
2 F̂ (η−) = η− ⊗ U

−2.

We see that the algebra hor(P ) of horizontal forms on the bundle, is generated by
B = hor0(P ) and η±. It terminates with the second-order forms. The calculus on
the base is generated by V = Ω0(M), then w2η− and η+w

∗2 which span Ω1(M),
and η+η−, interpretable as the surface form on M .

There is a canonical connection ω : Γinv → Ω(P ) on this bundle, defined by

ω(χ) = η3.

This connection turns out to be regular. Its curvature Rω : Γinv → hor2(P ) turns
out to be equal

(5.26) Rω(χ) = −(1 + µ2)η−η+.

The corresponding covariant derivative D = Dω is a hermitian antiderivation on
hor(P ). It extends the differential on Ω(M), and possesses the property

(5.27) D(η+) = D(η−) = 0.

Remark 17. The forms η± can be interpreted as canonical coordinate forms on
M . For an arbitrary connection, their covariant derivative is interpretable as the
torsion. Our canonical connection, in fact, generalizes the Levi-Civita connection
on the hyperbolic plane.

6. Basic Non-commutative Hyperbolic Plane

Let R be a commutative *-algebra, generated by a single positive element % = %∗

and equipped by a *-automorphism ψ : R → R. We shall think of % as an abstract
‘radial coordinate’ and assume that its spectrum σ(%) is within [0, 1]. We shall also
assume that R admits an elementary functional calculus, as it will be clear from
the context of our calculations. This means, in particular, that all the elements of
R are interpretable as certain functions of %, defined on its spectrum σ(%).

Let U be the cross product of R and the circle algebra, relative to ψ. In other
words, we extend U by introducing an abstract unitary element $, such that

(6.1) $h$∗ = ψ(h)

for every h ∈ U . Clearly, it is sufficient to postulate this for the single generator
h = %. We can clearly extend ψ to the whole of U .

Let us consider the following new ‘complex coordinates’

(6.2) z = %$ z∗ = $∗%.

It is clear that

(6.3) zz∗ = %2 = ψ(z∗z) = f(z∗z)

where f is a real function acting in [0, 1]. From now on, we shall assume that this
function is a homeomorphism of [0, 1] such that f(0) = 0 and f(1) = 1. In addition,
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we shall assume that there exists a (necessarily unique) continuous positive function
q : [0, 1]→ R satisfying

(6.4) f(t) = tq(t)2 ∀t ∈ [0, 1].

Remark 18. This will be the case, of course, if the function f is analytic, or more
generally, if it is differentiable at t = 0.

Let V be the unital *-subalgebra of U generated by z and z∗. Assuming the same
stability under functional calculus as R, it follows that R ⊆ V. We can equivalently
define V as the minimal subalgebra containing R and coordinates z and z∗.

Lemma 21. We have ψ(V) = V. Explicitly,

(6.5) ψ(z) = q(zz∗)z = zq(z∗z) ψ(z∗) = q(z∗z)z∗ = z∗q(zz∗).

Proof. By definition of the coordinate z, we have ψ(z) = ψ(%$) = ψ(%)$. On the
other hand

%2 = f(z∗z) = z∗zq2(z∗z) = z∗q2(zz∗)z = $∗%q2(%2)%$ = ψ−1[f(%2)]

which implies, after applying ψ and taking square root ψ(%) = %q(%2). So, we
conclude that ψ(z) = q(%2)%$ = q(zz∗)z. �

In fact, we can construct an entire group of symmetries, by slightly generalizing
the above procedure and considering homeomorphisms g : [0, 1]→ [0, 1] which com-
mute with the initial f . By definition, each one of them induces a *-automorphism
ψg of U , by trivially acting on $ (so that ψ = ψf ). Assuming the same regularity
condition g(t) = ts(t)2 for g, we obtain ψg(%) = (ψg(%

2))1/2 = (g(%2))1/2 = %s(%2)

and it follows that ψg(z) = ψg(%)$ = s(%2)z = s(zz∗)z.
We can now construct the differential calculus, by following the general procedure

outlined in Section 2. The simplest configuration is to start with the classical
calculus on R. Let R∧ be this classical calculus. It is defined by a single relation
%d(%) = d(%)%. Our automorphism extends to ψ : R∧ → R∧. From the differential
cross product construction, we obtain a graded-differential *-algebra U∧. It is given
by the relations:

(6.6) $d($) = d($)$ $λ = ψ(λ)$ d($)λ = (−)∂λψ(λ)d($)

where λ ∈ R∧. We can now define Ω(M) to be the differential *-subalgebra gen-
erated by z and z∗. By definition V = Ω0(M) and the extended automorphism
preserves Ω(M).

Lemma 22. The following commutation relations hold:
1

z
dM (z) = ψ−1

{
dM (z)

1

z

}
z∗dM (z) = ψ−1

{
dM (z)z∗

}
(6.7)

1

z∗
dM (z∗) = ψ

{
dM (z∗)

1

z∗
}

zdM (z∗) = ψ
{
dM (z∗)z

}
.(6.8)

Proof. It is worth remembering that, by construction, $∗d$ supercommutes with
everything. We have

1

z
dz = $∗

1

%
(d%$ + % d$) = ψ−1

(1

%
d%
)

+$∗d$ = ψ−1
(1

%
d%+$∗d$

)
=

= ψ−1
(
d%

1

%
+ d$$∗

)
= ψ−1

(
dz

1

z

)
.
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Quite similarly,

z∗dz = $∗%(d%$ + % d$) = ψ−1
(
%d%
)

+ %2$∗d$ = ψ−1
(
%d%+$∗d$

)
=

= ψ−1
(
d% %+ %d$$∗%

)
= ψ−1

(
dz z∗

)
.

This proves the first pair of relations. The second one is simply the conjugate of
the first. �

Appendix A. Canonical Hilbert Space Realizations

A.1. Context For Automorphisms

We shall consider here the basic Hilbert space realizations for the C*-algebra
generated by the functional relation of the form

z∗z = f(zz∗),

where f : [0, 1] → [0, 1] is an analytical bijection such that f(0) = 0 and f(1) = 1.
It is worth recalling that our main example for this is the hyperbolic quantum
Hopf fibration of SµU(1, 1) over the quantum hyperbolic plane, the function f is a
hyperbolic Möbius tranformation having 0 and 1 as fixed points and preserving the
interval (0, 1). It is given by

(A.1) f(z) =
z

q + (1− q)z
q = µ2

which can be rewritten as

(A.2)
1

1− f(z)
=

1

q

1

1− z
+ 1− 1

q
.

A primary class of representations is given by considering l2(Z) with its canonical
orthonormal basis {· · · |−2〉, |−1〉, |0〉, |1〉, |2〉 · · · } and postulating the action of the
form

z|n〉 = λ1/2
n |n+ 1〉 z∗|n〉 = λ

1/2
n−1|n− 1〉

in such a way that the basic functional relation be satisfied. We shall assume here
that these numbers are non-negative, this in fact can be understood as a part of the
definition of the kets. Our operators are thus a special case of double sided weighted
shift operators. Let us note that

z∗z|n〉 = λn|n〉 zz∗|n〉 = λn−1|n〉
holds for every n ∈ Z and because of the basic functional relation we have

λn+1 = f(λn).

In other words the numbers {· · ·λ−2, λ−1, λ0, λ1, λ2 · · · } are one entire orbit of the
action of f in [0, 1]. And since 0 and 1 are fixed points for f , it is wise to exclude
them so we can assume that λn ∈ (0, 1) for every n ∈ Z.

The map f could have some fixed points inside (0, 1). However, if t ∈ (0, 1) is not
a fixed point, then all the elements fn(t) for n ∈ Z are mutually different and form
a monotonic sequence. Indeed, if t < f(t) then fn(t) < fn+1(t) and the sequence is
increasing, and similarly if t > f(t) then fn(t) > fn+1(t) and the sequence will be
decreasing. In both cases the limiting points for fn(t) when n→ ±∞ will be fixed
points for f . Interchanging f and f−1 switches between decreasing and increasing
modes.



28 MICHO DURDEVICH & PERLA CECILIA LUCIO PEÑA

And no orbit for f can jump over a fixed point. In particular, when 0 and 1 are
the unique fixed points for f then every orbit in (0, 1) is infinite with 0 and 1 as its
limit points. Furthermore, all orbits are either increasing or decreasing.

If we fix |0〉 as a reference vector then successive actions of z and z∗ generate the
whole basis:

|k〉 =
zk|0〉√

λ0λ1 · · ·λk−1

| − k〉 =
z∗k|0〉√

λ−1 · · ·λ−k
where k ∈ N.

In such a way every infinite orbit of f , is a natural birthplace for an infinite-
dimensional representation of the quantum hyperbolic plane algebra.

Proposition 23. For the infinite orbits, the constructed infinite-dimensional rep-
resentation is irreducible. �

Our next step is to construct a realization of the representation Hilbert spaces by
analytic functions. Let us focus on the simplest scenario, when the transformation f
is such that 0 and 1 are its unique fixed points, and the orbits are increasing. In this
case, as we shall now explain, the natural common domain for the corresponding
analytic functions is given by the interior of the unit disc without 0.

Proposition 24. The identifications

(A.3) |k〉! zk√
λ0λ1 · · ·λk−1

| − k〉!
√
λ−1 · · ·λ−k

zk

where k ∈ N induce the realization of the whole Hilbert space H by analytic functions
in D−{0}. In terms of this realization, the quantum complex variable z acts simply
as the multiplication operator by the coordinate z.

Proof. The elements of the Hilbert space are formally representable as

c0 +
∑
k>0

{ ckz
k√

λ0λ1 · · ·λk−1

+ c−k
√
λ−1 · · ·λ−k

1

zk

} ∑
k∈Z
|ck|

2 <∞.

The Cauchy-Hadamard formula gives for the outer and inner radii of convergence
of this Laurent series

1

R
= lim

(
|ck|/

√√√√k−1∏
j=0

λj

)1/k

= lim |ck|
1/k/

(√√√√k−1∏
j=0

λj

)1/k

= lim |ck|
1/k ≤ 1

1

r
= lim

(
|c−k|

√
λ−1 · · ·λ−k

)1/k
= lim |c−k|

1/k lim
(√
λ−1 · · ·λ−k

)1/k
= 0

which shows that all the elements of H, viewed as Laurent series, converge normally
in their common domain D− {0}. �

We see that |0〉! 1. Let us also define the numbers

(A.4) Λn =
∏
k≥n

λk.

Then (A.3) simplifies into

(A.5) |n〉!
√

Λn/Λ0z
n
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the expression now valid for all n ∈ Z. The numbers Λn form a monotonic sequence
on Z with 0 and 1 as the limiting points for the sequence. Clearly λn = Λn : Λn+1.
The powers of z are mutually orthogonal with

(A.6) 〈zn|zn〉 = Λ0/Λn.

It follows that the reproducing kernel for this Hilbert space is given by

(A.7) K(w̄, z) = Λ−1
0

∑
k∈Z

Λk(w̄z)k.

Remark 19. This is a special case of the situation when the kernel is obtained by
composing the product w̄z with a single-argument holomorphic function:

(A.8) K(w̄, z) = k(w̄z).

We shall call k the kernel generator. All our examples will be of this form. Another
important class of spaces, arising when we switch from D to the upper half-plane
=(z) > 0 is of a similar form with w̄z replaced by w̄ − z. For example

K(w̄, z) =
sin(aw̄ − az)
π(w̄ − z)

a > 0

for classical Paley-Wiener spaces. The canonical Möbius transformation

z 7→ i
i+ z

i− z
∞ 7→ −i 7→ 0 7→ i 7→ ∞

establishing a holomorphic equivalence between the upper half plane and the open
unit disk, subtly intertwines these two types.

By fixing w and letting z free, we obtain the coherent wave functions |w〉 asso-
ciated to w. In terms of the initial kets

(A.9) |w〉 = Λ
−1/2
0

∑
k∈Z

√
Λkw̄

k|k〉.

These vectors span a dense lineal in the space H and satisfy

(A.10) z∗|w〉 = w̄|w〉.

In particular we see that the spectra of z and z∗ fill the whole D – as they should.
It is worth recalling that

〈u|v〉 = K(v̄, u)

always holds, this is a general identity for Hilbert spaces of analytic functions.

Remark 20. About the notation. We put numbers as kets identificators in two
different contexts here. To define the initial orthonormal basis in H ∼= l2(Z) and to
label the coherent wave functions associated to the points w ∈ D − {0}. Luckily,
there is no ambiguity: these two labeling sets are disjoint.

Whenever we have a Hilbert space of analytic functions over some domain Ω, we
can naturally associate the coherent states to the points of Ω.

(A.11) w!
|w〉〈w|
〈w|w〉

.

The coherent states are viewed as ‘quantum stochastic points’ in this interpretation.
The metrics of the Hilbert-Schmidt operators in H induces a metrics on Ω.
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Proposition 25. The induced metrics is given by

(A.12) ds2 =
{ ∂2

∂w̄ ∂w
logK(w̄, w)

}
δw̄ δw.

Proof. The distance, as a quadratic form over the infinitezimal displacements, is

Tr
{( |w + δw〉〈w + δw|
〈w + δw|w + δw〉

− |w〉〈w|
〈w|w〉

)2}
∼ ds2 =

=
{
K(w̄, w)

∂2

∂w̄ ∂w
K(w̄, w)− ∂

∂w̄
K(w̄, w)

∂

∂w
K(w̄, w)

} δw̄ δw

K(w̄, w)2

where we have discregarded the higher-order terms in δw, δw̄. This is elementary
transformed into (A.12). �

Remark 21. This is a universal formula, valid for arbitrary Hilbert spaces of
analytic functions. The quantum mechanical interpretation is that the square of
the distance element is proportional to the probability of non-transitioning from
one coherent state to another. Indeed if ϕ, χ ∈ H are unit vectors then

Tr
{(
|ϕ〉〈ϕ| − |χ〉〈χ|

)2}
= 2(1− |〈ϕ|χ〉|2)

as a simple play with diads reveals.

Let us illustrate all this by calculating the kernel and the induced quantum
metrics for the basic model (A.1). If we fix λ0 as an origin point, its orbit is

λk =
λ0

(1− qk)λ0 + qk
=

1

1− qkκ
κ = 1− 1

λ0

where k ∈ Z. So that
n−1∏
k=0

1

λk
=

n−1∏
k=0

(1− qkκ) = (κ | q)n (κ | q)−n=
1

(q−nκ | q)n
=

n∏
k=1

1

1− q−kκ
=

n∏
k=1

λ−k

a simple unifying expression for the positive and negative products figuring in the
construction of the Hilbert space. So the Laurent series for the kernel generator
simplifies into

(A.13) k(z) =
∑
n∈Z

(κ | q)nz
n.

Let us recall a deep cosmical truth:

(A.14)
∑
n∈Z

(a | q)n
(b | q)n

zn =
(az | q)∞(q/az | q)∞(q | q)∞(b/a | q)∞
(z | q)∞(b/az | q)∞(b | q)∞(q/a | q)∞

.

This is the Ramanujan summation formula [1] for doubly infinite series. The con-
vergency requirements are

|b/a| < |z| < 1.

And particularly interesting for us here is

(A.15)
∑
n∈Z

(a | q)nz
n =

(az | q)∞(q/az | q)∞(q | q)∞
(z | q)∞(q/a | q)∞

a special case obtained by setting b = 0.
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Proposition 26. The Laurent series for the kernel generator sums into

(A.16) k(z) =
(κz | q)∞(q/κz | q)∞(q | q)∞

(z | q)∞(q/κ | q)∞

Proof. By substituting a κ and z  w̄z in (A.15) we obtain the closed expression
for the doubly infinite sum (A.13). �

Proposition 27. The induced quantum metric on D− {0} is given by

(A.17) ds2 = δw δw̄
{∑
k≥0

qk

(1− qk|w|2)2
− κ

∑
n∈Z

qn

(1− κqn|w|2)2

}
.

Proof. The formula follows from the general expression (A.12) applied to (A.16).
The logarithm transforms the infinite product into a simple happily convergent
infinite sum, then ∂2/∂w∂w̄ term by term. �

Remark 22. The metrics exhibits two important divergencies. The first is the
heaven horizon divergency occuring at |w| = 1 just as in the classical Poincaré
model, related to the infinity of the space. The second, totally quantum, divergency
occurs at w = 0 and is promoted by the negative part of the second sum. The space
becomes more and more abundant when we approach the unique classical point,
which behaves as the source of infinite energy.

Another interesting and natural one-parametric family of examples arrises if we
assume the transformation function of the form

f(t) = tq 0 < q < 1.

The iterations of the function are

fn(t) = tq
n

n ∈ Z

and a straightforward computation gives the following convolution combination of
a classical and quantum geometric series, for the reproducing kernel generator

(A.18) k(z) =

∞∑
n=−∞

κ−
1−qn
1−q zn.

For the sake of internal completeness & harmony, we shall now focus on some
general facts about infinite products, and their transformations, charming in their
own light. And the proofs of all the basic q-formulae used in the calculations of our
diverse examples, including the binomial q-identities of Caychy and Euler, and the
summation formula of Ramanujan, will be presented.

Let us consider the following functional equation

(A.19) Q(z) = u(z)Q[v(z)]

involving holomorphic functions u, v and Q. By iterating this we obtain

(A.20) Q(z) = Q[vn(z)]

n−1∏
k=0

u[vk(z)]

for every n ∈ N.
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We shall assume that all the basic compositions can be performed, and that 0
belongs to the domain of u and v, as well as

(A.21) u(0) = 1 = Q(0) lim
n ∞

vn(z) = 0,

for every z in the domain. By using this and taking the limit n ∞ in (A.20) we
obtain the factorization of Q(z) into an infinite product

(A.22) Q(z) =

∞∏
k=0

u[vk(z)].

True happiness can be found in calculating the coefficients of the power series
expansion

(A.23) Q(z) =

∞∑
k=0

ckz
k c0 = 1.

As our basic illustration, let us consider a special case when u(z) is a Möbius
transformation and v(z) = qz with |q| < 1. The most general Möbius transforma-
tion moving 0 into 1 is, modulo z-amptwists

(A.24) u(z) = 1− z u(z) =
1− κz
1 − z

where κ ∈ C. In the second fractional case, the functional equation (A.19) reduces
to the recurrence formula

(A.25) ck+1 =
1 − κqk

1− qk+1
ck.

for the coefficients. Which means

(A.26) cn =
(κ | q)n
(q | q)n

.

The power series expansion for Q(z) becomes the Cauchy q-binomial formula

(A.27)
∞∑
n=0

(κ | q)n
(q | q)n

zn =
(κz | q)∞

(z | q)∞
.

For κ = 0 this becomes

(A.28)
∞∑
n=0

zn

(q | q)n
=

1

(z | q)∞
which is the first Euler q-identity. The second Euler q-identity

(A.29)
∞∑
n=0

(−)n
q

(
n
2

)
zn

(q | q)n
= (z | q)∞

can be viewed as the first linear special case in (A.24). Indeed, assuming this for u
we obtain

(A.30) ck = − qk−1

1− qk
ck−1

from the fractional equation (A.19). That is to say

(A.31) cn =
(−)nq

(
n
2

)
(q | q)n
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and integrating into the power series expansion for Q(z) we arrive to the second
equation (A.29).

Lemma 28. If Ω is a domain in C containing 1 and % an analytic transformation
of Ω into itself with %(1) = 1, and such that 1 is an attractive point for % on the
whole Ω with |%′(1)| < 1 then the infinite product

(A.32) Q(z) =
∏
k∈N

%k(z)

of the iterations of % is normally and absolutely convergent in Ω. The following
identity holds

(A.33) Q(z) = %(z)Q[%(z)].

Proof. For z from an appropriate neighbourhood of 1 we have |%(z)− 1| ≤ t|z − 1|
where t ∈ (0, 1). And if the neighbourhood is also %-invariant then |%k(z) − 1| ≤
tk|z − 1| for all k ∈ N. This leads to the estimate∑

k∈N
|%k(z)− 1| ≤ t |z − 1|

1− t

which ensures the absolute and normal convergence of the initial product. �

A.2. Non-invertible Morphisms

Now we shall consider a seemingly innocent change from the previous setup,
generating a C*-algebra from the same basic functional relation

z∗z = f(zz∗),

but now f : [0, 1]→ [0, 1] is a non-surjective map such that f(1) = 1 and therefore
f(0) ∈ (0, 1].

This, in particular, implies that z∗z is invertible with the spectrum

σ(z∗z) ⊆ f [0, 1].

On the other hand, we are interested in Hilbert space representations in which z
and hence z∗ are non-invertible. And since zz∗ and z∗z have the same spectrum
modulo 0, we conclude that

σ(zz∗) = {0} ∪ σ(z∗z).

The existence of an isolated spectral point 0 means that ker(zz∗) = ker(z∗) 6= {0}.
Let |0〉 be a normalized vector from this kernel. Recalling that zz∗ moves around
in rhythm of f , that is (zz∗)z = zf(zz∗) we conclude that (zz∗)z|0〉 = zf(zz∗)|0〉 =
f(0)z|0〉 and

(zz∗)z2|0〉 = z2f2(zz∗)|0〉 = f2(0)z2|0〉
...

(zz∗)zk|0〉 = zkfk(zz∗)|0〉 = fk(0)zk|0〉
by iterating. We can introduce the normalized vectors

|k〉 =
zk|0〉√

f(0) · · · fk(0)
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which form an orthogonal system, and generate the space H invariant under both
z and z∗. Explicitly, the representation is given by

z∗|0〉 = 0 z∗|k〉 =
√
fk(0)|k − 1〉 z|k − 1〉 =

√
fk(0)|k〉 k ≥ 1

and it follows that, modulo equivalences, there is only one irreducible realization.
Let us further assume that

(A.34) lim fk(0) = 1.

In parallel with Proposition 24 we shall now construct a natural realization of the
Hilbert space by analytic functions.

Proposition 29. The identification

(A.35) |k〉! zk√
f(0) · · · fk(0)

where k ≥ 0 induce the realization of the whole Hilbert space H by some analytic
functions in the open unit disk D. In terms of this realization, the quantum complex
variable z acts simply as the multiplication operator by the coordinate z.

Proof. We proceed as in the proof of Proposition 24 but in a simpler ‘one-sided’
manner. The formal representation of the elements of H is∑

k≥0

ckz
k√

f(0) · · · fk(0)

∑
k≥0

|ck|
2 <∞.

Because of lim ck = 0 and lim
[
f(0) · · · fk(0)

]1/k
= 1 which is a consequence of

(A.34), the Cauchy-Hadamard formula gives for the radius of convergence of this
power series

1

R
= lim

(
|ck|/

√
f(0) · · · fk(0)

)1/k
= lim|ck|1/k ≤ 1.

Hence all the elements of H are interpretable as power series converging normally
in their common domain D. �

The reproducing kernel for H is given by

(A.36) K(w̄, z) = k(w̄z) k(z) =
∑
k≥0

zk

f(0) · · · fk(0)

and therefore the associated point wave functions are

(A.37) |w〉 =
∑
k≥0

w̄k√
f(0) · · · fk(0)

|k〉.

Remark 23. We have an apparent notational ambiguity here, similar to the one
appearing in the previous subsection (see Remark 20). However here the number 0
is what two labeling sets share. Luckily |0〉 is one and the same in both cases.

A particularly interesting collection of models arises if we require that the classi-
cal hyperbolic plane symmetry, given by the group SU(1, 1) be completely preserved.
As explained in detail in [13] this promotes the following constraint

(A.38)
1

1− f(z)
=

1

1− z
+ ν
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with ν > 0. In other words f is a parabolic Moebius transformation, conjugate to
the Euclidean translation t 7→ t+ ν via z 7→ 1/(1− z) which cyclically rotates 0, 1
and ∞. Explicitly,

(A.39) f(z) =
(1− ν)z + ν

1 + ν − νz
←→

(
1− ν ν
−ν 1 + ν

)
and (if we allow ν to take arbitrary real values) we actually deal with a one-
parameter group of Möbius transformations parametrized by ν. In our context,
the positivity of ν ensures that f(0) ∈ (0, 1).

Clearly, f becomes the identity transformation in the limit ν = 0 which gives
the commutative algebra and the classical Poincaré model of the hyperbolic plane.
In the non-commutative case ν > 0 the reproducing kernel for the resulting Hilbert
space is given by

(A.40) K(w̄, z) = (1− w̄z)−λ λ = 1 +
1

ν

and from this and with the help of (A.12) it is straightforward to calculate the
metrics

(A.41) ds2 =
λδw δw̄

(1− |w|2)2
.

This is the classical hyperbolic metrics.

Remark 24. The Toeplitz extension is obtained as the limit ν  ∞. The loga-
rithm in (A.12) reduces the metrics to the one coming from the Toeplitz extension.

Both families (A.2) and (A.38) are included in one 2-parameter family of trans-
formations

(A.42)
1

1− f(z)
=

1

q

1

1− z
+ ν + 1− 1

q

characterized as those Möbius transformations that preserve 1 and map [0, 1] into
itself. Equivalently, after conjugating by 1/(1 − z) : (0, 1,∞) 7→ (1,∞, 0) they are
interpretable as linear transformations mapping [1,+∞) into itself. We can rewrite
the above formula in the first-translation-then-dilatation manner

(A.43)
1

1− f(z)
=

1

q

{ 1

1− z
+ νυ

}
with the proportionality factor

(A.44) υ = q − 1− q
ν

.

It is worth observing that

1 +
1

ν
= λ =

1− υ
1− q

.

The values of υ are from (−∞, q) assuming that q 6= 1.

As we shall now see, the q-binomial series and formula naturally appear in com-
puting the reproducing kernel for the introduced Hilbert spaces of analytic func-
tions.
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Proposition 30. The kernel generator for the class 0 < q < 1 and ν > 0 is
explicitly given by

(A.45) k(z) =
(υz | q)∞

(z | q)∞
=
∏
k≥0

1− υzqk

1− zqk
.

Proof. The n-fold iteration of f is a map of the same form, with the substitutions

(A.46) q  qn ν  (1 + · · ·+ qn−1)ν =
1− qn

1− q
ν.

It follows straightforwardly that the iterations of 0 by f are given by

(A.47) fn(0) =
1− qn

1− qn−1υ
.

By taking the product of the first k iterations and accepting the help from the
q-symbols (1.3) we find

(A.48) f(0) · · · fk(0) =
(q | q)k
(υ | q)k

and therefore the reproducing kernel generator in (A.36) assumes the form

(A.49) k(z) =
∑
k≥0

(υ | q)k
(q | q)k

zk.

This is precisely the q-binomial series in z with υ as its q-exponent. Applying the
q-binomial formula (A.27) closes the proof. �

Remark 25. The kernel (A.40) can be viewed as the limit of the above 2-parametric
kernel, when q  1.

Proposition 31. The induced quantum metrics on D is given by

(A.50) ds2 = δw δw̄
∑
k≥0

qk
{ 1

(1− qk|w|2)2
− υ

(1− υqk|w|2)2

}
.

Proof. It follows by applying (A.12) to the infinite product (A.45). �

When q is close to 1, it is tempting to perturbatively expand the metrics around
the classical hyperbolic metric, in order to study the q-fluctuations. We can do this
by expanding each of the terms in (A.50) and performing the summation.

Proposition 32. In such a way we arrive at

(A.51) ds2 =
λδw δw̄

(1− |w|2)2

∑
n≥0

δn

( |w|2

1− |w|2
)n

where

(A.52) δn = (n+ 1)

n∑
j=0

(−)j
(
n

j

)
1 + υ + · · ·+ υj

1 + q + · · ·+ qj
.

In particular δ0 = 1 and

(A.53) δ1 =
2

ν

1− q
1 + q

—this is the strength of the first correction term.
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Proof. Using the classical binomial formula for exponent −2, observing that(
−2

n

)
= (−)n(n+ 1)

and factoring out 1/(1−|w|2)2 so that the power series is in terms of |w|2/(1−|w|2),
we calculate the remaining multiplicative parts of the coefficients as∑

k≥0

qk
{

(1− qk)n − υ(1− υqk)n
}

=
∑
k≥0

n∑
j=0

(−)j
(
n

j

)
qjk+k(1− υj+1)

=

n∑
j=0

(−)j
(
n

j

)
1− υj+1

1− qj+1
= λ

n∑
j=0

(−)j
(
n

j

)
1 + υ + · · · υj

1 + q + · · · qj
.

Thus, the perturbative expansion holds as stated and all coefficients are easily
obtained. Observe an interesting symmetry between q and υ. �

Remark 26. The perturbative expansion is valid only around 0, for |w| < 1/
√

2.
The only divergence in the metrics occurs at the heaven horizon limit |w| = 1.

Remark 27. We see that in the limit q  1 all the perturbative terms vanish
and we are left with the classical hyperbolic metrics (A.41) of the background
parabolic model. Of course, this space is still highly quantum, all the realizations
are ‘pointless’. On the other hand, if we fix q and ν  +∞ then the limit is always
the Toeplitz extension.

Remark 28. Another particularly interesting special case occurs when υ = 0 which
is equivalent to the linear transformation f(z) = 1− q+ qz. This sets the stage for
the first Euler q-formula (A.30). The kernel and the metrics simplify into

(A.54) k(z) = (z | q)−1
∞ ds2 = δw δw̄

∑
k≥0

qk

(1− qk|w|2)2
.

Appendix B. Differential Structures on Circle

B.1. General Setup

There is a natural isomorphism between A and C[z, 1/z] the extended polyno-
mials in the complex variable z with all integer powers allowed. The isomorphism
is given by restricting the rational functions from C[z, 1/z] on ©, where they can
be interpreted as trigonometric polynomials. For a given element f ∈ A we shall
write f(z) to indicate the corresponding holomorphic extension in C[z, 1/z].

Every bicovariant differential calculus Γ on © brings an important sequence of
distinguished vectors, the germs of the circle harmonics ok = π(Uk) where k ∈ Z.
By definition, these vectors span the space Γinv. Clearly o0 = 0. The vector o1 is
always cyclical relative to the right A-module structure ◦, with
(B.1) ok = o1 ◦

(
1 + U + · · ·+ Uk−1

)
o−k = −o1 ◦

(
U−1 + · · ·+ U−k

)
for every k > 0. Among these vectors, the only other always cyclical one is o−1 =

−o1 ◦ U−1. Closely related are the recursive relations

(B.2) ok ◦ U
m = ok+m − ok

valid for k,m ∈ Z.
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The whole ◦-structure on Γinv is determined by a single operator U◦ : ψ 7→ ψ ◦U .
Every Γ is uniquely determined by its ideal R = ker(π) ∩ ker(ε) so that Γinv ↔

ker(ε)/R and Γ ↔ A ⊗ Γinv. The two trivial ideals ker(ε) and {0} correspond
respectively to the trivial calculus Γ = {0} and the universal one where Γ ↔
ker(m : A⊗A → A) and Γinv ↔ ker(ε).

Let us consider non-trivial ideals R ⊂ ker(ε). Every such R is generated by a
single element of C[z], a uniquely defined polynomial of the form

(B.3) p(z) = (z − 1)q(z) q(z) =
∏
λ∈Λ

(z − λ)mλ

where Λ ⊂ C \ {0} is the set of zeros λ of q(z) with their respective multiplicities
mλ ≥ 1. This in fact establishes a natural correspondence between the non-trivial
ideals R and the above polynomials. For Γ the corresponding bicovariant calculus
to R on ©, since Γinv

∼= ker(ε)/R we have

(B.4) dim Γinv = deg q[z] = n =
∑
λ∈Λ

mλ

and it follows that o1, · · · , on form a basis in Γinv. In this basis, the operator U◦ has
the form

(B.5) U◦ =


−1 −1 · · · −1 ∗
1 0 · · · 0 ∗
0 1 · · · 0 ∗
...

...
. . .

...
...

0 0 · · · 1 ∗


with the rightmost column expressing on+1 − o1. These numbers are the same as
the coefficients of (the non-scalar part of) the polynomial zn+1 − p(z).
Remark 29. The calculus will be *-covariant iff p(z) is a real polynomial. This is
equivalent to saying that Λ = Λ with mλ = mλ̄.

Remark 30. The universal differential calculus, whereR = {0}, is the only infinite-
dimensional calculus over ©.

Besides this simple basis of projected first n circle harmonics, another important
basis in the space Γinv naturally emerges. It is integrated of blocks

(B.6) π
{
p(z)/(z − λ)j

}
λ ∈ Λ j ∈ {1, . . . ,mλ}.

This is the Jordan basis for the basic ◦-multiplication operator U◦ . In each block
the operator has the standard form

(B.7) U◦ ↔


λ 0 0 · · · 0
1 λ 0 · · · 0
0 1 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ


We see that the spectrum of U◦ is Λ, and q(z) is its characteristic polynomial.

With the help of the q-numbers (1.1) we can integrate both formulae in (B.1)
and the trivial case k = 0 into a single expression

(B.8) ok = o1 ◦ (k)U
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now valid for all k ∈ Z.

B.2. Linear Algebra Link

The formulae with the cyclic generator o1 lead us to a canonical structural rep-
resentation of every finite-dimensional differential calculus. It turns out that the
diversity of these structures is the same as the diversity of linear symmetries acting
on finite dimensional spaces and possessing cyclic vectors.

Indeed, let V be a (non-trivial) finite-dimensional vector space and T : V → V
a linear invertible operator. This by the formula

(B.9) ϕ • Uk = T kϕ

gives life to a right A-module structure on V . If in addition there is a distinguished
cyclic vector ψ ∈ V for T , define a map $ : A → V by

(B.10) $(Un) = ψ • (n)U = (n)Tψ.

This map is surjective, due to the cyclicity of ψ for T .

Lemma 33. Furthermore we have

(B.11) $(ab) = $(a) • (b) + ε(a)$(b)

for every a, b ∈ A.

Proof. It is sufficient to check it for circle harmonics, and for them it follows directly
from the addition identity (1.2). �

Clearly $(1) = 0. Let us consider the space R = ker(ε) ∩ ker($). By the above
Leibniz rule, it follows that R is a right A-ideal. Let Γ be the first-order calculus
associated to R. We can define a linear map $̃ : Γinv → V by

(B.12) $̃π = $.

By construction, this map is bijective and intertwines o1 and ψ as well as ◦ and •.
Let us summarize this as one important general conclusion.

Proposition 34. There exists a natural one-one correspondence between the left-
covariant (and hence bicovariant) differential first-order calculi Γ over © and (the
classes of isomorphisms) of triplets (V, ψ, T ) where V is a finite-dimensional vector
space, T : V → V an automorphism of V , and ψ ∈ V a cyclic vector for T . In
terms of this correspondence

(B.13) Γinv ↔ V π ↔ $ ◦ ↔ • o1 ↔ ψ.

The first↔ is completely fixed by either the second, or the third & the fourth↔. �

B.3. Two Steps Beyond Exterior Algebra

Let us now, still remaining within this linear-algebraic context, consider algebraic
structures that are quadratically generated, but weaker in relations than the exterior
algebra. So for a given vector space V , we focus on a non-trivial subspace of S(V⊗V )
representing the quadratic relations of an algebra built over its generator space V .
As we shall now explain, such structures are always bounded from below, by elegant
infinite-dimensional Clifford algebra type objects.
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If the quadratic relations subspace Q is strictly a subspace of S(V ⊗ V ), then
there will be always a vector ψ ∈ V such that ψ ⊗ ψ /∈ Q. This is equivalent to
saying that ψ2 6= 0 in the factor-algebra V |Q of V ⊗ over the relations Q.

The minimal departure from the exterior algebra occurs when the quadratic
relations subspace Q, is of codimension one in S(V ⊗ V ).

Proposition 35. In this minimal departure case, for every ψ ∈ V whose square is
non-zero in V |Q there exists a unique symmetric bilinear form g : V ×V → C such
that

(B.14) xy + yx = 2g(x, y)ψ2

in V |Q for all x, y ∈ V . In particular g(ψ,ψ) = 1.

Proof. The minimality condition says that S(V ⊗ V )/Q is one-dimensional. This
space lives in V |Q and S(V ⊗ V )/Q ∼= Cψ2. Every symmetric combination xy +
yx belongs to it and hence ∃ a unique scalar g(x, y) so that (B.14) holds. The
constructed map g : V × V → C is bilinear and symmetric. �

Remark 31. By interpreting g ∈ S(V ⊗ V )∗ we see that Q = ker(g).

Let W be the g-orthocomplement to ψ in V , so that we have V ↔ Cψ ⊕W . It
follows from (B.14) that ψ anticommutes in V |Q with the elements of W . Hence
ψ2 commutes with all of them, and thus it is a central element of V |Q.

Let us now consider the graded tensor product ∧(W ) ⊗̂ C[z] of the exterior
algebra ∧(W ) and the polynomial algebra C[z], where the grade of zn is n. There
is a natural linear map

(B.15) ∧(W ) ⊗̂ C[z] V |Q
obtained by realizing ∧(W ) as antisymmetric tensors of W⊗, assigning ψ to z,
viewing everything in V ⊗ and then simply projecting to the factoralgebra.

Proposition 36. The constructed map is bijective. In particular, the algebra V |Q
is always infinite-dimensional. It can be interpreted as a deformation of ∧(W )⊗̂C[z]
the deformation parameter being the symmetric form itself. �

Let us now assume that the codimension of Q in S(V ⊗ V ) is 2. In this case,
certainly, dim(V ) ≥ 2 and there exist two linearly independent vectors u, v ∈ V
such that projections of u⊗u and v⊗v form a basis in the factor space S(V ⊗V )/Q.
There is a natural bilinear form g : V × V → S(V ⊗ V )/Q defined by

(B.16) xy + yx = 2g(x, y).

These are the relations for the factor-algebra V |Q. In particular,

(B.17) uv + uv = αu2 + βv2

for some α, β ∈ C. Let W be the orthocomplement of {u, v} in V , relative to g. By
definition the elements of W anticommute with both u and v. So the algebra V |Q
is completely specified by the restriction of g on W , as well as the numbers α & β.

If we perform a linear basis change

(B.18) (u, v) (u, v)

(
a b
c d

)
ad− bc 6= 0
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then it is straightforward to compute

(u2, v2) (u2, v2)

(
a2 + αac b2 + αbd
c2 + βac d2 + βbd

)
(B.19) ∣∣∣∣a2 + αac b2 + αbd

c2 + βac d2 + βbd

∣∣∣∣ = (ad− bc)(ad+ bc+ αcd+ βab).(B.20)

In order to produce new generators for the space S(V ⊗ V )/Q we should assume
also 0 6= ad+ bc+ αcd+ βab. If so, the structural coefficients transform as follows:

(B.21) α 
αd2 + βb2 + 2bd

ad+ bc+ αcd+ βab
β  

αc2 + βa2 + 2ac

ad+ bc+ αcd+ βab

and using this transformational liberty we can make them both 0, unless αβ = 1
in which case we can transform the system into α = β = 1. Indeed, if α and β are
not reciprocal and not 0 then

(B.22) b =
d

β

[√
1− αβ − 1

]
c =

a

α

[√
1− αβ − 1

]
defines a transformation for the Disappearance Act.† We have

(B.23) ad− bc =
2ad
√

1− αβ
1 +
√

1− αβ
ad+ bc+ αcd+ βab =

2ad(1− αβ)

1 +
√

1− αβ
.

Proposition 37. If Q is of codimension 2 in S(V ⊗V ) then the generators u, v ∈ V
can be chosen in one of the following forms.

—The anticommuting setup

(B.24) uv + vu = 0.

The linear symmetries of the generating relation are given by diagonal or antidiago-
nal invertible matrices. As Möbius transformations, they correspond to amplitwists
and complex inversion coupled with them.

—Or the squared setup

(B.25) uv + vu = u2 + v2 ⇔ (u− v)2 = 0.

Its linear symmetries must preserve the subspace C(u− v) hence, as Möbius trans-
formations, they are isomorphic to the Euclidean group E(2).

B.4. Rational Functions Representation

Another interesting representation of the space Γinv is provided via the purely
singular rational functions of one complex variable. Let k[z] be the algebra of
rational functions vanishing at infinity of C. These are truly singular rational
functions, and we have the following decomposition

(B.26) i[z] = C[z]⊕ k[z]

in the field i[z] of rational functions over C. For every finite set Λ in C, the following
identity holds

(B.27)
∏
λ∈Λ

1

z − λ
=
∑
λ∈Λ

1

z − λ

{µ 6=λ∏
µ∈Λ

1

λ− µ

}
†If one of them is already 0, the case can be viewed as a limit of these formulae.
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with the notable simplest special case

(B.28)
1

(z − α)(z − β)
=

1

α− β
( 1

z − α
− 1

z − β
)
.

This can be understood as the multiplication formula in k[z].

In the infinite-dimensional space k[z], a natural basis is given by elementary
singular functions

(B.29) z 7→ 1

(z − λ)k

where λ ∈ C and k ≥ 1.

With the help of (B.27) we can invert an arbitrary polynomial, possessing zeros
with multiplicities specified by a function m : Λ→ N, and develop its expansion in
terms of the above basis:

(B.30)
∏
λ∈Λ

1

(z − λ)mλ
=

1

m!

∂m

∂Λ

∑
λ∈Λ

1

z − λ

{µ6=λ∏
µ∈Λ

1

λ− µ

}
.

Here we define

m! =
∏
λ∈Λ

m(λ)!
∂m

∂Λ
=
∏
λ∈Λ

∂m(λ)

∂λm

and also mλ = m(λ) + 1 for every λ ∈ Λ. We see that the principal singular part
is given by

(B.31)
∏
λ∈Λ

1

(z − λ)mλ
∼
∑
λ∈Λ

{µ6=λ∏
µ∈Λ

1

(λ− µ)
m
µ

} 1

(z − λ)mλ
.

In (B.26) we can freely move singularities from k[z] to C[z]. The simplest vari-
ation is

(B.32) i[z] = C[z,
1

z
]⊕ ∗k[z]

where ∗k[z] ⊂ k[z] is the subalgebra of the truly singular functions which are not
singular at 0.

In formula (B.32) we can factorize over C[z, 1/z] and obtain a natural C[z, 1/z]-
module structure on the factor-space ∗k[z]. Explicitly, the module structure reads

(B.33)

z|λ〉 = λ|λ〉 z|λ.k〉 = λ|λ.k〉+ |λ.k − 1〉

1

z
|λ〉 =

1

λ
|λ〉 1

z
|λ.k〉 =

k−1∑
j=0

(−)j

λj+1
|λ.k − j〉

for k ≥ 2. We have adopted the Dirac notation for the elementary singular functions
(B.29), and we shall also write |λ〉 = |λ.1〉.

In our main context of © when we identify A = C[z, 1/z], we shall think of this
module structure as the right A-module structure. It turns out that in the module
∗k happily live as submodules, the left-invariant parts of all finite-dimensional Γ
over ©, as we shall now see.
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Proposition 38. The assignation

(B.34) Γinv 3 π(a) 
[
a(z)/p(z)

]
∈ ∗k[z]

where a ∈ ker(ε), defines a natural A-module embedding of Γinv into ∗k[z]. And in
particular

(B.35) o1  
1

q(z)

the representation of the canonical cyclic vector is simply the inverse of the polyno-
mial defining the first-order calculus Γ.

Proof. The map is well-defined since if a ∈ R then p(z)|a(z) in C[z, 1/z]. This
divisibility condition is actually equivalent to saying [a(z)/p(z)] = 0, so the map is
injective. Furthermore if a ∈ ker(ε) then

π(a) ◦ b = π(ab) 
[(
a(z)b(z)/p(z)

)]
=
[(
a(z)/p(z)

)
b(z)

]
=
[
a(z)/p(z)

]
b(z)

for every b ∈ A so that the constructed map is indeed a morphism of A-modules.
Finally the basic cyclic vector o1 is represented by a(z) = z−1 and (B.35) descends
from (B.34). �

Remark 32. In terms of this identification, the basis (B.6) is morphed into the
elementary singular functions |λ.k〉 where λ ∈ Λ and k ∈ {1, . . . ,mλ}.

Remark 33. Another interesting observation is that for every λ ∈ Λ the space of
proper vectors ker(λ− U◦ ) is one-dimensional. And in particular if λ = 1 ∈ Λ these
vectors are characterized as the central vectors of Γinv in other words

(B.36) θ ∈ ker(1− U◦ ) ⇔ θa = aθ ⇔ θ ◦ a = ε(a)θ

for all a ∈ A.

B.5. Some Special Properties

Proposition 39. For m 6= 0 we have

(B.37) om = 0

iff 1 /∈ Λ and all the zeros λ of q(U) are simple zeros satisfying λm = 1.

Proof. The condition is equivalent to Um−1 ∈ R which means that as polynomials
q(U)

∣∣ (1 + U + · · ·+ U |m|−1). �

If the above condition holds, then there is the first positive such an index. Let
us call this number t. Then om = 0 iff t|m and the sequence is periodic om = om+t

for every m ∈ Z.

Remark 34. In general, the quantum connectedness components relative to Γ
are described as the kernel of the differential d : A → Γ. This is always a unital
subalgebra of A. It will be a *-subalgebra if the calculus is *-covariant. If A is
a Hopf *-algebra and Γ is bicovariant, then the kernel will in addition be a Hopf
subalgebra of A. So a Hopf *-subalgebra in the case of bicovariant *-covariant
Γ. Geometrically, this means that the connectedness components are labeled by a
quantum factor-group of G, the quantum space described by the kernel, consisting
of the ‘functions’ constant along the corresponding ‘cosets’.
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For © and Γ satisfying the above condition, we have

ker(d : A → Γ) =
{ t|k∑
k∈Z

ckU
k
}

geometrically corresponding to the canonical t-fold covering of © by ©. If the
condition is not satisfied, then the sequence never repeats and the kernel of d is
trivial, so that the circle appears ‘connected’.

Remark 35. This also has a nice interpretation in terms of the cyclic groups
Zm understood as m-th roots of 1. Every calculus satisfying (B.37) projects to
the cyclic group Zm. In such a projected form the space Γinv is preserved. In
terms of the classification of first order bicovariant differential calculi over finite
groups, where these structures are labeled by subsets consisting of entire non-trivial
conjugacy classes the lineals over which are morphed into the spaces of left-invariant
elements—the set of roots of q(U) provides this defining set for (the projected) Γinv.
Here, since the group is Abelian, the conjugacy classes are given by single elements
of Zm. So in total, for a given m there will be 2m−1 solutions for the calculus.
The empty subset being the trivial 0-calculus and the whole set of non-trivial roots
corresponding to the universal differential calculus over Zm. As we shall explain
shortly, this maximal solution is characterized, at the level of ©, by vanishing of
the quadratic relations for the universal differential envelope Γ∧.

Let us now focus on another interesting truly quantum phenomenon, in which the
differential is represented as the commutator with a fixed element of the calculus.

Proposition 40. The differential d : A → Γ will be inner, in the sense of the
existence of ξ ∈ Γinv such that

(B.38) da = ξa− aξ

for all a ∈ A if and only if 1 /∈ Λ. Which is equivalent to saying R 6⊆ ker(ε)2, in
other words the calculus should be not projectable to the classical calculus on ©.
And if this is the case, our ξ is unique and explicitly given by

(B.39) ξ = −π
{∏
λ∈Λ

[U − λ
1− λ

]m
λ
}
.

Proof. The localized form of the identity (B.38) is

(B.40) π(a) = ξ ◦ a− ε(a)ξ

and it is clear that we only have to check it for a = U . If ξ = π(b) with b ∈ ker(ε)
then the above identity becomes

π[(b− 1)(U − 1)] = 0.

In other words b− 1 = q(U)c with the simplest solution being

(B.41) c = − 1

q(1)
= −

∏
λ∈Λ

(1− λ)−mλ .

This is possible iff q(1) 6= 0. All other solutions are equivalent to this one, modulo
the ideal R. Another way to see this is to observe that for 1 /∈ Λ there are no
non-zero central elements of Γinv. �
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We can also write ξ simply as

(B.42) ξ = (U◦ − 1)−1o1.

Remark 36. If R ⊆ ker(ε)2 which is to say that the calculus is projectable to the
classical calculus on©, then clearly the differential can not be inner—for otherwise
the projected differential on the classical calculus would be inner too, which is
impossible because of the commutativity of the calculus. The classical calculus is
characterized by this property. It is the only commutative (first-order) calculus.
The existence of (one-dimensional space of) central vectors and d being inner, are
mutually exclusive and complementary properties.

Remark 37. The projectability on the classical calculus also means that such a
Γ will be fully compatible with locally trivial principal ©-bundles over classical
smooth manifolds [4]. In this context the calculus on the base manifold M is kept
classical, and local trivializations of the bundle P always naturally induce the local
trivializations of its calculus Ω(P ). The condition is equivalent to the extensibility
of all unital *-homomorphisms g : A → C∞(M) to g : Γ∧ → Ω(M), which is further
equivalent to the projectability of the convolution product g∼ = g−1 ∗ (dg) to Γinv
via π. These maps are classical localized derivations as

(B.43) g∼(ab) = ε(a)g∼(b) + g∼(a)ε(b)

for all a, b ∈ A. Thus ker(ε)2 ⊆ R and Γ projects to the classical calculus on ©.

B.6. Extending to Higher Orders

Let us now focus on extending a given first-order calculus to a complete higher-
orders calculus. Here the ‘inferior limit’ is given by the classical exterior algebra
over Γ. This is because © is Abelian group, and as such, has trivial adjoint action
and the twist operator σ is the standard transposition. The minimal solution Γ∨

is not very interesting from the differential viewpoint, as the differential d vanishes
identically on Γ∨inv. We can see this explicitly from the formula

(B.44) dok = −o2
k

which is valid for every k ∈ Z and in any complete differential calculus. This follows
from φ(Uk) = Uk ⊗ Uk and the general germs identity dπ(a) = −π(a(1))π(a(2)).

Let us recall that in general, the left-invariant component ♦(Γ) of the quadratic
relations generating the universal differential envelope consists precisely of the ele-
ments

(B.45) ♦(Γ) =
{
π(a(1))⊗ π(a(2))

∣∣ a ∈ R}.
This morphing into the expressions [π(r(1))⊗π(r(2))] ◦ (a(1)⊗ a(2)) by substituting
a ra where r ∈ R are interpretable as generators of R.

And for the circle there is, of course, a single generator r = p(U). So the
quadratic relations space in Γinv ⊗ Γinv is generated, as a right A-module, by a
single element (π ⊗ π)φ[p(U)].

Remark 38. By Proposition 34 the quadratic relations ♦(Γ) are in a natural way,
the left-invariant part of another differential calculus over ©.
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Remark 39. There is only one way for Γ∧ to be finite-dimensional: to coincide with
Γ∨. Indeed, as it follows from Proposition 36, any diminishment in full symmetric
quadratic relations S(V ⊗ V ) of a finite-dimensional space V leads to an infinite-
dimensional Clifford type structure with polynomial super-central part. So if ♦(Γ)
is strictly smaller than S(Γinv ⊗ Γinv) the algebra Γ∧ will be infinite-dimensional.

For general calculi over © admitting d-generating ξ, we can construct a higher
order calculus by postulating the extension of d as the graded commutator with ξ.
In other words

(B.46) ξϕ− (−)∂ϕϕξ = dϕ

for every ϕ in the calculus. The vanishing of the square of d is equivalent to
commuting of ξ2 with all a ∈ A which in turn means ξ2 ◦ a = (ξ ◦ a(1))(ξ ◦ a(2)) =
ε(a)ξ2. Combining with (B.40) this condition becomes

(B.47) ξ π(a) + π(a) ξ + π(a(1))π(a(2)) = 0.

In other words, the anticommutator between ξ and the elements of Γinv must be
equal to the known expression for the differential of those elements. This invites us
to consider precisely the elements of the form

(B.48) ξ⊗π(a) + π(a)⊗ξ + π(a(1))⊗π(a(2))

where a ∈ ker(ε) in Γinv ⊗ Γinv as generators of the ideal for the calculus. Clearly,
and as it should be, it includes the defining relations for the universal envelope Γ∧,
as we can see by restricting on a ∈ R.

Remark 40. The formula (B.48) is valid in the general context, for any quantum
group equipped with a bicovariant differential calculus with an ad-invariant element
ξ ∈ Γinv satisfying (B.40). These elements are always σ-invariant, as it follows from

(B.49)
σ
[
π(a(1))⊗ π(a(2))

]
= π(a(1))⊗ π(a(2))− c>π(a)

c>π(a) = (π ⊗ π)ad(a) ad(a) = a(2) ⊗ κ(a(1))a(3)

the quantum Maurer-Cartan formula, coupled with the identities

(B.50) σ
[
ξ ⊗ π(a)

]
= π(a)⊗ ξ + c>π(a) σ

[
π(a)⊗ ξ

]
= ξ ⊗ π(a).

The relations (B.48) are then extendible to any quadratic relations contained in
ker(id− σ) in Γinv ⊗ Γinv, also producing a valid higher-order differential calculus.

Proposition 41. If the calculus Γ admits its d-generating ξ then the quadratic
relations generator can be computed as

(B.51) (π ⊗ π)φ[p(U)] = p(U◦ ⊗ U◦ )[ξ ⊗ ξ].

Proof. In fact, if f(z) is any polynomial then

(B.52) (π ⊗ π)φ[f(U)] = f(1)ξ ⊗ ξ − ξ ⊗ f(U◦ )[ξ]− f(U◦ )[ξ]⊗ ξ + f(U◦ ⊗ U◦ )[ξ ⊗ ξ].
Indeed, for f(z) = zk we have

(π⊗ π)φ[f(U)] = ok ⊗ ok = (U◦ kξ − ξ)⊗ (U◦ kξ − ξ) = (U◦ k ⊗U◦ k)[ξ ⊗ ξ] + (ξ ⊗ ξ)−

− (ξ⊗U◦ kξ)− (U◦ kξ⊗ ξ) = f(1)ξ⊗ ξ− ξ⊗ f(U◦ )[ξ]− f(U◦ )[ξ]⊗ ξ+ f(U◦ ⊗U◦ )[ξ⊗ ξ].

and (B.52) follows by linearity on f(z). Now q(z) vanishes on U◦ and 1 is always a
zero of p(z), so (B.51) holds. �
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B.7. Permutational Symmetry

There is an elegant method to enlarge the quadratic relations of the universal
differential envelope such that the resulting calculus exhibits the full symmetry
of the classical permutations. As in general, such a calculus will be between the
universal envelope Γ∧ and the exterior algebra Γ∨. Our principal focus is ©,
although many results of this subsection are valid for arbitrary Abelian quantum
groups, and some extend to the general context.

Let us consider the following expressions

(B.53) θ0 ⊗ π(r(1))⊗ θ1 ⊗ · · · ⊗ θn−1 ⊗ π(r(n))⊗ θn
where r ∈ R and θα are some tensor products of elements of Γinv, including the
empty tensor products in which case the its left and right ⊗ merge into a single
one. Here n ≥ 2. These elements are from Γ⊗inv. Clearly, the only elements of order
2 are the ones from S∧2

inv the quadratic generating relations for Γ∧. Let Tn|m be the
span of all above elements of total grade m. Obviously n ≤ m and Tn|m ⊆ Γ⊗minv .

Proposition 42. The spaces Tn|m are invariant under all permutations from Sm
acting in Γ⊗minv .

Proof. It is sufficient to check the invariance under m−1 elementary transpositions
generating Sm. The multiple coproduct r(1) ⊗ · · · ⊗ r(n) is completely symmetric
since © is Abelian. If some θk is empty so there is a neighbouring configuration
π(r(k)) ⊗ π(r(k+1)) in (B.53) then elementary transposition acting upon it will
not change the expression. Otherwise, it will either transpose a part π(r(k)) and
rightmost / leftmost vector from a neighbour θk−1 or θk, or act entirely within one
of the θα. In any case, the transformed expression will be of the same type. �

Proposition 43. We have

(B.54) Tn|m ◦ a ⊆
∑
k≤n

Tk|m

for every a ∈ A and n ≤ m. In particular, the spaces T2|m are ◦-invariant.

Proof. If we ◦-act on (B.53) by U j and use the localized Leibniz rule for the germs,
the expression transforms into a ± sum of similar elements involving θα ◦ U j and
π(U j) as well as embedded π(r(1)U j) ⊗ · · · ⊗ π(r(k)U j) where 2 ≤ k ≤ n, these
corresponding to the switch r  rU j ∈ R. �

Remark 41. The proposition remains true for an arbitrary Abelian quantum group
G and the calculus Γ.

Let T∧n|m ⊆ Γ∧minv be the projection of Tn|m in the universal envelope Γ∧.

Proposition 44. We have

(B.55) d(T∧n|m) ⊆ T∧n|m+1 + T∧n+1|m+1.
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B.8. Hierarchy of Differential Structures

Proposition 45. The calculus Ψ is projectable to the calculus Γ if and only if
S ⊆ R. This is further equivalent to the divisibility of the generating polynomials
q(z)|v(z). �

Remark 42. The calculus will be irreducible in the sense of not admitting non-
trivial projections, iff its polynomial possesses no non-trivial divisors. For com-
plex polynomials this means being linear—as the linear polynomials are the ‘prime
numbers’ of C[z]. If we restrict to *-covariant calculi, then irreducibility is re-
solved within real polynomials R[z]. In this context we have a collection of one-
dimensional calculi where q(z) = z − λ and λ ∈ R and the two dimensional calculi
where q(z) = (z − λ)(z − λ̄) and λ /∈ R.

Proposition 46. If Ψ is projectable to Γ and Ψ∧ = Ψ∨ then Γ∧ = Γ∨.

Proof. Since the projection intertwines the germ maps, it transforms the quadratic
relations for Ψ∧ in Ψinv⊗Ψinv into the quadratic relations for Γ∧ in Γinv⊗Γinv. On
the other hand, the projection clearly maps the symmetric tensors of Ψinv ⊗ Ψinv

onto the symmetric tensors of Γinv ⊗ Γinv. So, if the quadratic relations for Ψ∧

cover the whole symmetric subspace of Ψinv ⊗ Ψinv, which is equivalent to saying
Ψ∧ = Ψ∨ then the projected relations will cover the symmetric tensors in Γinv⊗Γinv
in other words Γ∧ = Γ∨. �

Proposition 47. If the operator U◦ ⊗U◦ exhibits multiplicities in at least one Jordan
block of its restriction on the symmetric tensors of Γinv ⊗ Γinv then Γ∨ 6= Γ∧. �

B.9. One, 2, 3 & 4 Dimensions

The simplest class of solutions, of course, is given by the one-dimensional cal-
culi. These solutions are irreducible and correspond to the primes of [z]—the linear
polynomials q(U) = U − λ. So that p(U) = U2 − (1 + λ)U + λ. The classical
one-dimensional calculus on © is given by λ = 1. It is easy to verify that

ok = (k)λo1

and also

(B.56) (π ⊗ π)φ[p(U)] = λ(1 + λ) o1 ⊗ o1.

So for λ = −1 the universal envelope is free of relations thus coinciding with the
tensor algebra, and for λ 6= −1 the higher-order components vanish and Γ∧ = Γ∨.

And for λ 6= 1 the canonical generator for the differential is given by

(B.57) ξ = o1/(λ− 1).

The second simplest class is, unsurprisingly, given by the 2-dimensional struc-
tures. So q(z) = (z − α)(z − β) and the generator of the ideal R is

(B.58) p(U) = U3 − (α+ β + 1)U2 + (α+ β + αβ)U − αβ.
Let us first assume that α 6= β. In terms of the realization in ∗k the vectors

(B.59) |α〉 = π{(U − 1)(U − β)} |β〉 = π{(U − 1)(U − α)}
form a basis in Γinv and

(B.60) U◦ |α〉 = α|α〉 U◦ |β〉 = β|β〉
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thus vectors |α〉 and |β〉 diagonalizing the ◦ structure in Γinv. It is elementary to
see that

(B.61) o1 =
|α〉 − |β〉
α− β

which by the way is (B.28) in terms of the realization of Γinv in ∗k[z]. Therefore by
(B.8) we conclude that

(B.62) ok =
(k)α|α〉 − (k)β |β〉

α− β
for all k ∈ Z. And if α, β 6= 1 the canonical generator for the differential turns out
to be given by

(B.63) ξ =
1

α− β

[ |α〉
α− 1

− |β〉
β − 1

]
.

Let us analyze the structure of the universal differential envelope. As a straight-
forward computation from (B.58) reveals

(B.64) (π ⊗ π)φ[p(U)] =
αβ(1− αβ)

(α− β)2

[
|α〉 ⊗ |β〉+ |β〉 ⊗ |α〉

]
+

+
α(1 + α)

(α− β)2
(α2 − β)|α〉 ⊗ |α〉+

β(1 + β)

(α− β)2
(β2 − α)|β〉 ⊗ |β〉.

This is the primary cyclic generator of quadratic relations for the universal differ-
ential envelope Γ∧. The whole space of quadratic relations is obtained by ◦-acting
on it with ◦(Un ⊗ Un) where n ∈ Z. Under such actions, each of the 3 summands
in (B.64) will acquire the multiplicative factor of αnβn, α2n and β2n respectively.

So in the appropriate generic case for {α, β} this will split the vectors |α〉 ⊗ |α〉,
|β〉 ⊗ |β〉 and |α〉 ⊗ |β〉+ |β〉 ⊗ |α〉 from the generator (B.64) making the universal
envelope equal to the exterior algebra.

Lemma 48. For equality Γ∧ = Γ∨ it is necessary and sufficient that (different and
non-0) numbers α and β satisfy:

(B.65) αβ 6= 1 α+ β 6= 0 α 6= β2 β 6= α2 − 1 /∈ {α, β}.

Proof. For precisely in this case the coefficients in (B.64) will be non-0 and numbers
α2, αβ and β2 will all be different. �

And here is the collection of eight singular cases, producing strictly smaller
spaces of quadratic relations. The first 4 cases are concrete, and the second 4 allow
a continuum (either complex one or 2-dimensional) of solutions.

Cubic Roots of One. This occurs when {α, β} = {exp(±2πi/3)} the non-trivial
cubic roots of One. The generator in (B.64) vanishes and so the quadratic relations
are totally absent, in other words Γ∧ = Γ⊗. As explained in detail below, this
naturally extends to arbitrary dimensions where the vanishing of the quadratic
relations is equivalent to the polynomial being cyclic.

Imaginary Units. If {α, β} = {i,−i} then the quadratic relations space is one-
dimensional, and represented by the unique relation |i〉2 = | − i〉2.
Real Units. In other words {α, β} = {−1, 1}. The relations are |1〉2 = 0 and
| − 1〉|1〉 = −|1〉| − 1〉. This calculus is projectable to the classical calculus on ©.
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Square Special. Here we have α = −1 and β = ±i or viceversa α = ±i and
β = −1. In both cases the square terms vanish, and we are left with the one-
dimensional quadratic relations space saying that |α〉|β〉 = −|β〉|α〉 in Γ∧.

Square Generic. This is characterized by exactly one of the relations α2 = β or
α = β2, but not both (in which case would reduce to the Cubic Roots of One). It
is also assumed that {α, β} 6= {−1,±i}. In this case the quadratic relations space
is 2-dimensional: |α〉 and |β〉 anticommute and the square of exactly one of them
is 0 in Γ∧.

Minus One. Either α = −1 or β = −1 with {1,−1, i,−i}∩{α, β} = ∅. The same
2-dimensional quadratic relations space as in the case of Square Generic.

Reciprocity. If αβ = 1 and α, β 6= exp(±2πi/3) then the quadratic relations space
is 2-dimensional, and spanned by vectors |α〉 ⊗ |α〉 and |β〉 ⊗ |β〉.

Andipodality. If α + β = 0 and {α, β} ∩ {−1, 1,−i, i} = ∅ then the relations
space is 2-dimensional and spanned by vectors

(1 + α)2|α〉 ⊗ |α〉+ (1 + β)2|β〉 ⊗ |β〉 |α〉 ⊗ |β〉+ |β〉 ⊗ |α〉.

Let us now assume that the ◦-structure has only one eigenvalue α = β = λ so
that p(z) = (z − 1)(z − λ)2. In the basis o1 = |λ.2〉 and |λ〉 = π

[
(U − 1)(U − λ)

]
we have

(B.66) U◦ =

(
λ 0
1 λ

)
U◦ ⊗ U◦ =


λ2 0 0 0
λ λ2 0 0
λ 0 λ2 0
1 λ λ λ2

 .

The operator U◦ ⊗ U◦ reduces to a single Jordan block in S(Γinv ⊗ Γinv) with the
spectrum {λ2}. Its Jordan basis is given by vectors

(B.67) o1 ⊗ o1 λ
[
o1 ⊗ |λ〉+ |λ〉 ⊗ o1

]
+ |λ〉 ⊗ |λ〉 3λ2|λ〉 ⊗ |λ〉

with o1 ⊗ o1 being the cyclical vector.

The primary quadratic relation for the universal differential envelope Γ∧ is

(B.68) (π ⊗ π)φ[p(U)] = λ(2λ+ 1)
{
λ
[
o1 ⊗ |λ〉+ |λ〉 ⊗ o1

]
+ |λ〉 ⊗ |λ〉

}
+

+ λ2(λ2 − 1) o1 ⊗ o1 + λ(2λ+ 1) |λ〉 ⊗ |λ〉.

So if λ 6= ±1 the vector (B.68) will be also cyclical in S(Γinv⊗Γinv). In other words
♦(Γ) = S(Γinv ⊗ Γinv) and Γ∧ = Γ∨.

In two singular cases λ = ±1 the cyclical space generated by (B.68) will be 2-
dimensional and spanned by second and the third vectors in (B.67). So the relations
are given by

(B.69) |λ〉2 = 0 = |λ〉o1 + o1|λ〉

with o1 being completely ‘free’. Furthermore, the differential is non-trivial on Γ∧inv
with

(B.70) do1 = −o2
1 d|λ〉 =

{
0 λ = −1

−2o2
1 λ = 1.
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And for λ 6= 1 the magical d-creating ξ assumes the form

(B.71) ξ =
o1

λ− 1
− |λ〉

(λ− 1)2
.

Remark 43. The projection phenomenon of Proposition 46 is clearly illustrated in
these examples. If −1 ∈ Λ then the universal envelope Γ∧ of the calculus is always
strictly larger then the exterior algebra Γ∨ because then the calculus is projectable
to the unique exceptional one-dimensional calculus where q(z) = z + 1, λ = −1.

Let us now consider the case of single spectral value of cubic multiplicity q(z) =
(z − λ)3. In this case U◦ ⊗ U◦ splits into one Jordan pentaplet and one singlet in
S(Γinv ⊗ Γinv) and the whole A(Γinv ⊗ Γinv) is just one triplet: 32 = 1⊕ 3⊕ 5.

Another very special situation occurs when the calculus is 4-dimensional, with
two spectral values of multiplicity 2. In other words q(z) = (z − α)2(z − β)2 and
α 6= β. The space Γinv is spanned by vectors |α.2〉, |α〉, |β〉, |β.2〉. The Jordan
blocks of U◦ ⊗ U◦ relative to the spectral value αβ are as follows

(B.72)

|α.2〉 ⊗ |β.2〉 α|α.2〉 ⊗ |β〉+ β|α〉 ⊗ |β.2〉+ |α〉 ⊗ |β〉 |α〉 ⊗ |β〉
β|α〉 ⊗ |β.2〉 − α|α.2〉 ⊗ |β〉
α|β〉 ⊗ |α.2〉 − β|β.2〉 ⊗ |α〉

|β.2〉 ⊗ |α.2〉 β|β.2〉 ⊗ |α〉+ α|β〉 ⊗ |α.2〉+ |β〉 ⊗ |α〉 |β〉 ⊗ |α〉
and anti/symmetrizing this we obtain one symmetrical and one antisymmetrical
triplet, and one symmetrical and one antisymmetrical singlet.

Proposition 49. Both cubic q(z) = (z−λ)3 and tetric q(z) = (z−α)2(z−β)2 with
α 6= β examples manifest a Jordan block multiplicity for U◦ ⊗ U◦ in S(Γinv ⊗ Γinv).
Hence Γ∧ 6= Γ∨ for all of them. �

Let us now consider cubic polynomials of the form q(z) = (z−α)(z− β)2 where
α 6= β. The canonical basis vectors are

|α〉 =
1

z − α
|β〉 =

1

z − β
|β.2〉 =

1

(z − β)2

and the initial germ-harmonics

(B.73) o1 =
|α〉 − |β〉
(α− β)2

− |β.2〉
α− β

.

A straightforward calculation shows the cyclicity projection of the quadratic rela-
tions generator

(B.74) (π ⊗ π)φ[p(U)] αβ2(α− 1)
1− αβ

(α− β)3

[
|α〉 ⊗ |β.2〉+ |β.2〉 ⊗ |α〉

]
+

+ α(α+ 1)
(β − α2)2

(α− β)4
|α〉 ⊗ |α〉+ β2(1− β2)

α− β2

(α− β)2
|β.2〉 ⊗ |β.2〉.

In the linear combination above, the vectors generate one Jordan block doublet,
singlet and triplet respectively, for the operator U◦ ⊗ U◦ .

We see that the situation is in resonance with the 2-dimensional case of simple
roots α and β. The generic configuration is, however, more restricted: For the
coincidence of Γ∧ and Γ∨, it is necessary in addition to all conditions listed in
(B.65), to also have 1 /∈ {α, β}.



52 MICHO DURDEVICH & PERLA CECILIA LUCIO PEÑA

The next level of complexity is given by a cubic q(z) with all simple roots. In
other words q(z) = (z − α)(z − β)(z − γ) where α 6= β 6= γ 6= α. In this case the
key vectors for computing the quadratic relations ♦(Γ) are

(B.75)

o1 =
1

(α− β)(α− γ)
|α〉+

1

(β − γ)(β − α)
|β〉+

1

(γ − α)(γ − β)
|γ〉

o2 =
1 + α

(α− β)(α− γ)
|α〉+

1 + β

(β − γ)(β − α)
|β〉+

1 + γ

(γ − α)(γ − β)
|γ〉

o3 =
1 + α+ α2

(α− β)(α− γ)
|α〉+

1 + β + β2

(β − γ)(β − α)
|β〉+

1 + γ + γ2

(γ − α)(γ − β)
|γ〉

o4 =
1+α+ α2+α3

(α− β)(α− γ)
|α〉+

1+β + β2+β3

(β − γ)(β − α)
|β〉+

1+γ + γ2+γ3

(γ − α)(γ − β)
|γ〉.

And a straightforward calculation reveals the following beautiful expression for the
primary generator of the quadratic relations:

(π ⊗ π)φ[p(U)] = o4 ⊗ o4 + (α+ β + γ + αβ + βγ + γα) o2 ⊗ o2

− (1 + α+ β + γ) o3 ⊗ o3 − (αβ + βγ + αγ + αβγ) o1 ⊗ o1 =
(B.76)

(α+ α2)
(β − α2)(γ − α2)

(β − α)2(γ − α)2
|α〉⊗|α〉+

βγ(1− βγ)(α− βγ)

(β − γ)2(γ − α)(α− β)

{
|β〉⊗|γ〉+ |γ〉⊗|β〉

}
+

(β + β2)
(γ − β2)(α− β2)

(γ − β)2(α− β)2
|β〉⊗|β〉+

γα(1− γα)(β − γα)

(γ − α)2(α− β)(β − γ)

{
|γ〉⊗|α〉+ |α〉⊗|γ〉

}
+

(γ + γ2)
(α− γ2)(β − γ2)

(α− γ)2(β − γ)2
|γ〉⊗|γ〉+

αβ(1− αβ)(γ − αβ)

(α− β)2(β − γ)(γ − α)

{
|α〉⊗|β〉+ |β〉⊗|α〉

}
.

B.10. Any # of Dimensions

Proposition 50. If Γ∧ = Γ∨ then the generating polynomial q(z) for Γ is either
with simple roots or there exists a single root of order 2 and all remaining roots if
any, are simple.

Proof. If the polynomial q(z) does not satisfy the property mentioned, then it either
has a divisor of the form (z−λ)3 or of the form (z−α)2(z−β)2 where α 6= β. The
calculus is then projectable to the 3 or 4-dimensional calculus, associated to the
corresponding divisor. To complete the proof, apply Propositions 46 and 49. �

Let us now, as a preparation for considering the most general case, focus on two
extreme scenarios. At first, we shall assume that the spectral points in Λ are all
simple. If so, we can write

(B.77) o1 =
∑
λ∈Λ

{µ 6=λ∏
µ∈Λ

1

λ− µ

}
|λ〉 ξ =

∑
λ∈Λ

{µ6=λ∏
µ∈Λ

1

λ− µ

} |λ〉
λ− 1

in accordance with (B.27) and (B.42), and in the formula for ξ of course, implicitly
assuming 1 /∈ Λ.
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Proposition 51. The quadratic relations ♦(Γ) generator when all zeros of q(z)
are simple, is explicitly given by

(B.78) (π ⊗ π)φ[p(U)] =
∑
λ∈Λ

λ(λ+ 1)
{µ6=λ∏
µ∈Λ

(λ2 − µ)

(λ− µ)2

}
|λ〉 ⊗ |λ〉−

− 1

2

µ6=ν∑
µ,ν∈Λ

µν
µν − 1

(µ− ν)2

{λ6=µ,ν∏
λ∈Λ

µν − λ
(µ− λ)(ν − λ)

}{
|µ〉 ⊗ |ν〉+ |ν〉 ⊗ |µ〉

}
.

Proof. The formula follows from (B.51) and the above expression for ξ. This is
applicable when 1 /∈ Λ but clearly the singular/zero terms around 1 cancel out and
the formula by continuity extends to cover the case 1 ∈ Λ. �

A complementary situation to all-zeros-simple is q(z) = (z − λ)n, there is only
one zero λ of multiplicity n. In this case simply o1 = |λ.n〉 and

(B.79) ξ = −
{ |λ.n〉

1− λ
+
|λ.n− 1〉
(λ− 1)2

+ · · ·+ |λ.2〉
(1− λ)n−1

+
|λ〉

(1− λ)n

}
.

The principal cyclic component for the generator of ♦(Γ) evaluates into

(B.80) (π ⊗ π)φ[p(U)] = p(U◦ ⊗ U◦ )[ξ ⊗ ξ] ∼ λn(λ+ 1)(λ− 1)n−1 |λ.n〉 ⊗ |λ.n〉.
Proposition 52. If λ 6= −1, 1 then ♦(Γ) has exactly 2n− 1 dimensions. �

Proposition 53. The special case λ = −1 steals one dimension, so that ♦(Γ) is
2n − 2-dimensional. And if λ = 1 then the dimension of ♦(Γ) is n, and ♦(Γ) is
naturally isomorphic to Γinv. �

Remark 44. If q(z) = (z − 1)n for n ≥ 2 then Γ consists of classical n-currents
over ©.

We are now ready to turn to the general case. So an arbitrary multiplicity map
m : Λ → N is given, with actual multiplicities mλ = m(λ) + 1 as introduced in
Subsection B.4. As it follows from (B.31) the principal singular part of ξ is:

(B.81) ξ ∼
∑
λ∈Λ

{µ6=λ∏
µ∈Λ

1

(λ− µ)
m
µ

} |λ.mλ〉
λ− 1

.

Using this and taking advantage of Property 41 we compute the highest cyclic
component of the quadratic relations generator:

(B.82) (π ⊗ π)φ[p(U)] = p(U◦ ⊗ U◦ )[ξ ⊗ ξ] ∼
∑
λ∈Λ

Cλ |λ.mλ〉 ⊗ |λ.mλ〉+

+
1

2

µ6=ν∑
µ,ν∈Λ

Cµν

{
|µ.mµ〉 ⊗ |ν.mν〉+ |ν.mν〉 ⊗ |µ.mµ〉

}
with easy-to-remember constants

Cµν = (µν − 1)
(µ− 1)m(ν)(ν − 1)m(µ)

(µ/ν − 1)mν (ν/µ− 1)
m
µ

{λ6=µ,ν∏
λ∈Λ

[
µν − λ

(µ− λ)(ν − λ)

]m
λ}

Cλ = λmλ(λ+ 1)(λ− 1)m(λ)
{µ6=λ∏
µ∈Λ

(λ2 − µ)
m
µ

(λ− µ)
2m

µ

}
.
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Proposition 54. For the size of Λ and the dimension n of the calculus both fixed,
the maximal dimension of the space of universal quadratic relations ♦(Γ) is given
by the number (|Λ|+ 1)(n− |Λ|/2).

Remark 45. The quadratic function t 7→ (t + 1)(n − t/2) reaches its maximum
value of (n + 1/2)2/2 = n(n + 1)/2 + 1/8 at t = n − 1/2. The closest integer
points n − 1 and n produce the value of n(n + 1)/2 which is the dimension of
S(Γinv ⊗ Γinv). So this precisely corresponds to the equilibrium situation Γ∧ = Γ∨.
If |Λ| = n then all the zeros of q(z) are simple, and |Λ| = n − 1 means that only
one zero is non-simple, and with multiplicity 2.

B.11. Vanishing Envelope

A very interesting special context occurs when the quadratic relations defining
the universal differential envelope Γ∧ trivialize, so that it becomes the whole tensor
algebra Γ⊗.

Proposition 55. In the general context, the quadratic relations defining the uni-
versal differential envelope Γ∧ will trivialize iff the right ideal R defining Γ is also
a coideal, in the sense of

(B.83) φ(R) ⊆ R⊗A+A⊗R.

In this case the diagram

(B.84)

A π−−−−→ Γinvyφ −d
y

A⊗A −−−−→
π ⊗ π

Γinv ⊗ Γinv

is commutative, in other words Γinv possesses a natural induced coalgebra structure.

Proof. It is clear from (B.45) that if (B.83) holds then the quadratic relations
vanish. Conversely, the vanishing of the relations implies φ(a) = b ⊗ 1 + 1 ⊗ c +∑
k Rk ⊗ uk + vk ⊗Rk for every a ∈ R, where b, c ∈ ker(ε) and Rk ∈ R. From the

counit identity, it follows that b and c are, as a matter of fact, from R. �



QUANTUM HYPERBOLIC PLANES 55

Remark 46. Continuing with the general context: if R is generated, as a right
A ideal, by some generators r1, . . . , rm satisfying the co-ideal condition φ(ri) =∑

j

[
rj ⊗ bji + cij ⊗ rj

]
then (B.83) holds.

Proposition 56. In the case of © a necessary and sufficient condition for the
above mentioned trivialization of the universal differential envelope Γ∧ to occur, is
that p(U) = Un+1 − 1. Such polynomials will be called cyclic.

Proof. For a cyclic polynomial p(U) = Un+1 − 1 we have

φ[p(U)] = p(U)⊗ 1 + Un+1 ⊗ p(U)

and so the condition (B.83) holds. Conversely, if this condition holds then the set
of zeros of the polynomial is closed under multiplication. This follows from the
fact that the points of C \ {0} are in one–one correspondence with multiplicative
functionals on the trigonometric polynomials A the correspondence being given by
χ(U)↔ χ. In terms of this correspondence the convolution product of multiplica-
tive functionals is the product of the associated numbers.

It follows that zeros of p(U) are unitary and form a cyclic group. In addition,
all the zeros must be simple. �

For these cyclic calculi, the element ξ generating the differential on A is of a
particularly simple form

(B.85) ξ = − 1

n+ 1

n∑
k=1

ok.

For any calculus admitting the generator ξ the relations (B.47) for the associated
complete calculus can be rewritten as:

(B.86) ξok + okξ = −o2
k.

In the particular context of cyclic polynomials and relations-free universal dif-
ferential envelopes, the constructed calculus is non-trivial and different from the
exterior algebra, providing an instructive example of a truly intermediate solution
for all higher dimensions n. For n = 1 the condition is trivially fulfilled.

And reconnecting with Remark 35, these cyclic calculi correspond to the uni-
versal differential calculus over Zn+1, effectively including the universal differential
envelopes of all finite sets. The first non-trivial solution n = 1 corresponds to the
unique singular one-dimensional case λ = −1. The universal calculus is then over
the two-points set {−1, 1}. Here is the full specification of the universal calculus in
terms of the characteristic functions ~ and � for these two points:

(B.87)

� d� = d�~ ~ d~ = d~� d�+ d~ = 0 �+~ = 1

� d�� = 0 = ~ d~~

� d�+~ d~ = 0.5 o1 = −ξ do1 = 2(d�)2 = 2(d~)2 = −o2
1.

The spaces Ωk{−1, 1} are all two-dimensional with a canonical basis given by k-
forms �(d�)k and ~(d~)k.
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Appendix C. Infinitezimal Symmetries & Primitive Elements

C.1. Infinitezimal Symmetries

Let us consider a general algebraic setup, of a first-order calculus Γ over a quan-
tum space given by a unital *-algebra A. Let Der(A

∣∣ Γ) be the set of all derivations
X ∈ Der(A) for which there exists (necesarrily unique and of grade -1) antideriva-
tion ιX : Γ∧ → Γ∧ such that

(C.1) ιX(da) = X(a)

for every a ∈ A.

Remark 47. The antiderivation requirement for ιX when restricted to Γ says that
ιX : Γ→ A is a bimodule homomorphism. This implies that X satisfies the Leibniz
rule, in other words it is a derivation on A.

Proposition 57. A necessary and sufficient condition for X ∈ Der(A) to belong
in Der(A

∣∣ Γ) is given by the implications∑
a db = 0 ⇒

∑
aX(b) = 0 &

∑
{X(a)db− daX(b)} = 0.

Proof. A direct consequence of the definition of the universal differential envelope
for a first-order differential calculus. �

Proposition 58. The vector space Der(A
∣∣ Γ) is closed under commutators, in

other words it is a Lie subalgebra of Der(A).

Proof. A direct calculation, using the previous proposition criterion, shows that if
X,Y ∈ Der(A

∣∣ Γ) then [X,Y ] = XY − Y X ∈ Der(A
∣∣ Γ). �

For every X ∈ Der(A
∣∣ Γ) let lX : Γ∧ → Γ∧ be a map given by

(C.2) lX = dιX + ιXd.

As an anticommutator of antiderivations, it is clearly a grade-preserving derivation
on Γ∧ commuting with d and extending X.

Proposition 59. The following identities hold

[lX , lY ] = l[X,Y ] [lX , ιY ] = ι[X,Y ]

ιXιY + ιY ιX = 0

for all X,Y ∈ Der(A
∣∣ Γ).

Proof. Since the commutator of derivations is a derivation, of a derivation and
an antiderivation is an antiderivation, and the anticommutator of antiderivations is
again an antiderivation — it is sufficient to verify all these identities on the elements
of A and d(A). �
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C.2. Quantum Euler Classes

Quantum Euler classes are the simplest general quantum characteristic classes,
and can be defined for arbitrary quantum principal bundles. Our main class of
examples are quantum Riemann surfaces obtained by appropriately projecting the
quantum hyperbolic planes, so the structure group is then, of course, the classical
circle.

We shall commence by considering a general compact quantum group G repre-
sented by a Hopf *-algebra A and equipped with a bicovariant first-order *-calculus
Γ. We shall denote by Γ∨∧ any complete *-calculus built over Γ, so that the co-
product map φ : A → A⊗A extends (necessarily uniquely) to a differential homo-
morphism φ̂ : Γ∨∧ → Γ∨∧ ⊗̂ Γ∨∧, which is then automatically *-preserving, too. It is
worth recalling that all such calculi are found between the two ‘extreme’ solutions.
The maximal calculus Γ∧ given by the universal differential envelope of Γ, and the
minimal calculus Γ∨ given by the corresponding braided exterior algebra.

Definition 2. An element τ ∈ Γ∨∧ is called primitive if

(C.3) φ̂(τ) = τ ⊗ 1 + 1⊗ τ.

Clearly, every primitive τ is left invariant, in other words τ ∈ Γ∨∧inv. It is also
right-invariant (in this case of left invariantness we would say) ad-invariant. If
τ ∈ Γinv then τ is primitive iff it is ad-invariant ad(τ) = τ ⊗ 1. For second-order
elements of the form τ =

∑
θη where θ, η ∈ Γinv the primitivity is equivalent to

the ad-invariance coupled with
∑

σ(θ ⊗ η) =
∑

θ ⊗ η. Similarly, for higher order
elements all the shuffling maps should vanish on them. But this, in particular,
means that the braided exterior algebra has no higher-order primitive elements, so
more subtle considerations are required to construct them.

Lemma 60. If τ is primitive then dτ is primitive, too. If ρ is another primitive
element then the graded commutator τρ−(−)∂τ∂ρρτ is primitive, too. In particular,
if ρ is of odd degree, then ρ2 is primitive. �

Remark 48. It is worth observing that if τ is of odd order then d(τ2) = [dτ, τ ] so
if τ and dτ commute then τ2 will be closed. This is a nice way of producing closed
primitive elements, besides taking differentials of primitive elements.

If τ is a primitive element then the ideal I(τ) generated by τ and dτ is a coideal,
too. In other words

(C.4) φ̂[I(τ)] ⊆ I(τ)⊗ Γ∨∧ + Γ∨∧ ⊗ I(τ).

By definition I(τ) is d-inviariant. So we can pass to the differential factor-algebra
Γ∨∧/I(τ) = Γτ |∨∧. The first-order calculus remains intact in this factorization, and
the coproduct map on A maintains its extensibility to the φ̂ : Γτ |∨∧ → Γτ |∨∧ ⊗̂ Γτ |∨∧.

Remark 49. This in particular implies that Γτ |∨∧ still projects over the braided
exterior algebra Γ∨. Hence Γ∨ is free of higher-order primitive elements. The only
primitive elements of Γ∨ are the ad-invariant elements of Γinv.

We can always make primitive elements closed, by appropriately factorizing.
Indeed, if τ is non-closed primitive element, project it down into Γdτ |∨∧ where by
construction will (remain non-zero primitive and) become closed.
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Closed and primitive elements are very interesting indeed. In addition they
happily generate charming characteristic classes for quantum principal bundles—
the quantum Euler classes, as we shall now explain.

Let us assume that a quantum principal G-bundle P = (B, ι, F ) over a quantum
space M is given, equipped with a differential calculus Ω(P ). So in particular, we
have a grade preserving differential coaction *-homomorphism F̂ : Ω(P )→ Ω(P ) ⊗̂
Γ∨∧ extending the coaction F : B → B ⊗A.

Let ω be a connection on this bundle, understood in its extended form, as a
unital grade and *-preserving map ω : Γ∨∧inv → Ω(P ) such that the diagram

(C.5)

Γ∨∧inv
φ̂−−−−→ Γ∨∧inv ⊗̂ Γ∨∧

ω
y yω ⊗ id

Ω(P ) −−−−→
F̂

Ω(P ) ⊗̂ Γ∨∧

is commutative.

Remark 50. As discussed in detail in [5], we can start from a pseudotensorial
quantum one-form ω : Γinv → Ω(P ) and build the extension of the connection
on the whole Γ∨∧inv by composing the natural (unital and multiplicative) extension
ω⊗ : Γ⊗inv → Ω(P ) with an appropriate embedding of Γ∨∧inv into Γ⊗inv. The extension
will, by construction, always map into the algebra generated by the values of the
original one-form map ω. A particular significance is played by multiplicative con-
nections for which the extension is independent of the above mentioned embedding.
Here we are not interested in these subtleties, and connections can be dealt with in
a broader context, as covariant (in the sense of (C.5)) unital grade and *-preserving
maps between Γ∨∧inv and Ω(P ). Such an interpretation breaks with Classical Origins
[14] but it brings additional Flexibility via its Purity & Simplicity.

Lemma 61. If τ ∈ Γ∨∧inv is primitive and closed, then dω(τ) ∈ Ω(M). The coho-
mology class of this form is independent of the connection ω.

Proof. We compute

F̂ [dω(τ)] = dF̂ [ω(τ)] = d
{

(ω ⊗ id)[φ̂(τ)]
}

= d
{
ω(τ)⊗ 1 + 1⊗ τ

}
=

= dω(τ)⊗ 1 + 1⊗ dτ = dω(τ)⊗ 1

in other words dω(τ) is a form on the base M . If ω̃ is another connection, then

F̂ [ω(τ)− ω̃(τ)] = ω(τ)⊗ 1 + 1⊗ τ − ω̃(τ)⊗ 1− 1⊗ τ = [ω(τ)− ω̃(τ)]⊗ 1

which means that ω(τ) and ω̃(τ) differ by a form on Ω(M), and this property being
independent of the closeness of a primitive τ . Therefore dω(τ) and dω̃(τ) differ by
an exact form in Ω(M) and hence, in the case of closed primitive τ , belong to the
same cohomology class in Ω(M). �

Definition 3. The constructed cohomology class in HΩ(M) is called the quantum
Euler class of M associated to τ .

Remark 51. The quantum Euler classes are the simplest possible quantum charac-
teristic classes [11], when the algebraic expression, the non-commutative polynomial
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involving ω and dω, reduces to just one single term, which is always precisely of
the form dω(τ) where τ is a primitive and closed element of Γ∨∧inv.
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