Under consideration for publication in Math. Struct. in Comp. Science

Algebraic Spans!

Maurice Herlihy'* and Sergio Rajsbaum?}

L Computer Science Department, Brown University
Providence RI 02912
herlihy@cs.broun. edu

2 Instituto de Matemdticas, U.N.A.M., Ciudad Universitaria, D.F. 04510, Mézico
rajsbaum@math.unam. mz

Received 26 January 2000

Topological methods have yielded a variety of lower bounds and impossibility results for
distributed computing. In this paper, we introduce a new tool for proving impossibility
results, based on a core theorem of algebraic topology, the acyclic carrier theorem, which
unifies, generalizes, and extends earlier results.

1. Introduction

Combinatorial and topological methods have yielded a variety of lower bounds results for
distributed computing, including general characterizations of the computational power
of certain models (e.g. (BMZ90; HR94; HS93; HS94)), and the circumstances under
which specific problems can be solved (e.g. (BG93a; BG93b; CHLT93; HR94; HS93;
S793)); a recent survey appears in (HR99). In this paper, we introduce a new tool for
proving impossibility results based on a core theorem of algebraic topology. Using the
acyclic carrier theorem (Mun84, Th. 13.3), we unify, generalize, and extend earlier results.
These new proofs are more succinct. Although the mathematical notions underlying this
theorem are abstract, they are elementary, being fully covered in the first chapter of
Munkres’ standard textbook (Mun84).
This paper makes the following contributions.

— Earlier proofs (HR94; HS93) relied on a mixture of combinatorial and continuous
arguments. In this paper, we show how to make these proofs completely algebraic,
requiring no continuous mathematics. Some important constructs, such as the notion
of a span (HS93), are restated in a more elegant algebraic form.

— For each task, set agreement and renaming, we prove a single, short theorem specifying
an algebraic property that prevents a protocol from solving the task. These theorems

t A preliminary version of this paper appeared in the Proceedings of the 14th ACM Symposium on
Principles of Distributed Computing (PODC ’95), Aug. 20-23, Ottawa, Canada, 1995, pp. 90-99.
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are quite general, yielding results in a variety of models. They imply the known
results, and also yield the first impossibility results for renaming using set agreement
primitives.

A more complete discussion of related work is postponed to Section 4. Here we expand
some of the results presented in the tutorial (HR95), where a few more details about the
topology techniques used here can be found.

Finally, we believe that these results further illustrate the benefits of formulating con-
cepts and models from distributed computing in the language of algebraic topology, a
mature branch of mainstream mathematics.

This paper is organized as follows. In Section 2 we present the distributed computing
model. In Section 3, we present the algebraic topology background. In Section 4 we
describe Algebraic Spans, the technique used to unify impossibility results. In Section
5 we present the applications to set agreement, while in Section 6, the applications to
renaming. In the Appendix there are several examples to help the reader unfamiliar with
algebraic topology, in order to make the paper more self-contained.

2. Distributed Computing Preliminaries

We consider a standard distributed system where processes cooperate to solve a shared
task (e.g. (AWO8; Lyn96)). They communicate with one another either by message pass-
ing or by accessing a shared memory. Informally, a task is a problem where each process
starts with a private input value, communicates with the others by applying opera-
tions to shared objects, and halts with a private output value. A protocol is a program
that solves a task in a concurrent system. A system may be asynchronous, placing no
constraints on processes’ relative speeds, or synchronous, requiring processes to run in
lock-step. Processes may communicate by applying operations to shared objects, such as
read/write memory, or objects with more powerful semantics. They may also commu-
nicate by message-passing. A protocol is t-resilient if it tolerates failures by ¢ or fewer
processes, and it is wait-free if it tolerates failures by n out of n + 1 processes.

Each process begins a protocol in a distinguished initial state, and halts in one of a
set of distinguished final states. The state of the system encompasses the states of the
processes and the communication medium (shared memory or message passing). The
system also begins a protocol in a distinguished initial state, and halts in one of a set
of distinguished final states. A set of initial or final process states s, - .., s, is mutually
compatible if there is an initial or final system state in which the i-th process has state
Si-

We model tasks and distributed systems using notions from combinatorial and alge-
braic topology (HS93). An initial or final state of a process is modeled as a vertez, a pair
consisting of a process id (a name by which we identify the process) and a value (either
input or output). We speak of the vertex as colored with the process id (we sometimes
work with vertexes colored with other values). A set of d + 1 mutually compatible initial
or final states is modeled as a d-dimensional simplex, (or d-simplex). If the colors (not
necessarily ids) of a simplex are distinct we say that it is properly colored. For the simple
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three-process tasks used in examples and figures, we use P, @, and R as process ids. In
formal arguments, we use P, ..., P,.

Let S = (so,...,8p) and T = (to,...,t;) be simplexes whose vertex sets are disjoint.
The join of S and T, denoted S-T, is the simplex (so, - . ., $p, to, - - - , tg)- If S has dimension
p and T has dimension ¢, then S - T has dimension p + ¢ + 1.

Any simplicial complex has a geometric realization as a point set in Euclidean space.
A vertex corresponds to a point in Euclidean space. A simplex corresponds to the convex
hull of affinely-independent vertexes. A complex corresponds to the union of its (geomet-
ric) simplexes, provided that any two (geometric) simplexes intersect either in a common
face, or not at all. Any complex has a geometric realization in some Euclidean space of
sufficiently high dimension. We refer to the point set occupied by a geometric realization
of a complex as the polyhedron of that complex. Note that two distinct complexes may
have the same polyhedron.

The complete set of possible initial (or final) states is represented by a set of simplexes,
closed under containment, called a simplicial complex (or complex). The dimension of C
is the dimension of a simplex of largest dimension in C. We sometimes use superscripts to
indicate dimensions of simplexes and complexes. The set of process ids associated with
simplex S™ is denoted by ids(S™), and the set of values by vals(S™).

A task specification for n 4+ 1 processes is given by an input complex Z, an output
complex O, and a relation A carrying each input n-simplex of Z to a set of n-simplexes
of O. This map associates with each initial state of the system (an input n-simplex)
the set of legal final states (output n-simplexes). For some models of computation, it is
convenient to extend A to simplexes of lower dimension:

A(S™) = [A(S™)

where S™ ranges over all n-simplexes containing S™. This definition has the following
operational interpretation: A(S™) is the set of legal final states in executions where only
m + 1 out of n + 1 processes participate (the rest fail without taking any steps). A
protocol solves a task if when the processes run their programs, they start with mutually
compatible input values, represented by a simplex S™, communicate with one another,
and eventually halt with some set of mutually compatible output values, representing a
simplex in A(S™).

For example, in the consensus problem (FLP85), each process starts with a private
input value, and all processes halt with some process’s input value. Figure 1 shows the
input and output complexes for two-process binary consensus. The input complex for
consensus is constructed by assigning independent binary values to n + 1 processes (this
complex can be shown to be homeomorphic to an n-sphere), and the output complex
consists of two disjoint n-simplexes, corresponding to decision values 0 and 1.

Any protocol that solves a task has an associated protocol complex P, in which each
vertex is labeled with a process id and that process’s final state (called its view). Each
simplex thus corresponds to an equivalence class of executions that “look the same” to
the processes at its vertexes. For 0 < m < n, we understand P(S™) for a given S™
in the input complex to be the complex generated by all executions starting in S™, in
which only the processes in ids(S™) take part (the rest fail without taking any steps).
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Fig. 1. Input and Output Complexes for 2-Process Consensus

Fig. 2. Protocol Complex for One-Round Synchronous Protocol

The range of m for which P(S™) is defined depends on the number of failures allowed
by the model. If a simplex R is in P(S™), we say that R is reachable from S™.

For example, consider a model in which synchronous processes communicate by broad-
casting messages, but a process can fail in the middle of a broadcast. Figure 2 shows the
protocol complex for a three-process single-round protocol in which each process broad-
casts its index to the others, and then halts. Each vertex in this figure is a possible final
state of a non-faulty process (faulty processes are not shown), and simplexes indicate
mutually compatible final states. The labels indicate the messages received: for example,
“01?” indicates that messages were received from P and @, but not R. The solid central
triangle corresponds to the execution in which no process fails: each vertex is labeled
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g a vertex

K a simplicial complex

|K| polyhedron of K

s™m an m-dimensional simplex
Ci(K)  i-th chain group of K

19} boundary homomorphism
« a chain

H;(K) ith homology group of K
0 trivial single-element group

Fig. 3. Some notation used in this paper

with 012. Attached to the central triangle are 1-simplexes corresponding to executions
in which one process fails, and disconnected from that triangle are the three O-simplexes
(vertexes) corresponding to executions in which two processes fail.

A vertexr map carries vertexes of one complex to vertexes of another. A simplicial
map is a vertex map that preserves simplexes. A simplicial map on properly colored
complexes is color preserving if it associates vertexes of the same color. Notice that a
color-preserving map preserves dimension. Let P be the protocol complex for a protocol.
If S™ is an input simplex, let P(S™) C P denote the complex of final states reachable
from the initial state S™. A protocol solves a decision task (Z™, O™, A} if and only if there
exists a color-preserving (i.e., process id-preserving) simplicial map § : P — O™, called
a decision map, such that for every input simplex S™, §(P(S™)) C A(S™). We prove our
impossibility results by exploiting the topological properties of the protocol complex and
the output complex to show that no such map exists.

3. Algebraic Preliminaries

Our discussion closely follows that of Munkres (Mun84, Chapter 1). Let X be an n-
dimensional simplicial complex, and S = (5,...,5;) a g-simplex of K. An orientation
for S is an equivalence class of orderings on 5y, . . ., 5, consisting of one particular ordering
and all even permutations of it. For example, an orientation of a 1-simplex (3p, 51) is just
a direction, either from §p to §;, or vice-versa. An orientation of a 2-simplex (5p, 51, 52)
can be either “clockwise,” as in (8p, 51, 32) in Figure 4, or “counterclockwise,” as in
(80, 82, 81). By convention, simplexes are oriented in increasing subscript order unless
explicitly stated otherwise.

A g-chain of K is a formal sum of oriented g-simplexes: Zf:o Ai - S7, where \; is an
integer. When writing chains, we typically omit g-simplexes with zero coefficients, unless
they are all zero, when we simply write 0. We write 1-S7 as S? and —1-S57 as —S7. For
q > 1, we identify —S? with S7 having the opposite orientation.

The g-chains of K form a free Abelian group C;(K), called the g-th chain group of K.
Two g-chains are added by adding coefficients corresponding to the same simplexes. The
identity element of the group is the g-chain with all coefficients equal to zero. The group
C,4(K) is freely generated by the elementary ¢-chains (one for each oriented g-simplex).
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Fig. 4. Oriented Simplex and Boundary

For dimension —1, it is convenient to define C'_; (K) to be Z, the infinite cyclic group
Z of integers under addition.
A boundary 0, : Cy(K) — Cy—1(K) is an homomorphism that satisfies

0y 10,00 =0, (1)

and an augmentation 9y : Co(K) — C_1(K) is an epimorphism (i.e., a surjective homo-
morphism).

As usual, we use the following boundary homomorphism. Let S? = (8,...,5,;) be
an oriented g-simplex. Define face,(S7), the i" face of S, to be the (¢ — 1)-simplex
(50,..-,8i,...,8;), where circumflex (A) denotes omission. The boundary homomorphism
0y : Cy(K) = Cy—1(K), ¢ > 0, is defined on simplexes as follows:

q
9,57 =) (=1)" - face(S7),
i=0
and extends additively to chains: 9,(ap + a1) = dyap + dya1. For ¢ = 0, 0p(5) = 1,
and extend linearly.! It is not hard to check (or see (Mun84)) that §, satisfies Equation
1. We sometimes omit subscripts from boundary operators. The boundary operator is
illustrated in Figure 4.

A g-chain « is a boundary if @ = 0y41 for some (g + 1)-chain 3, and it is a cycle if
9,a = 0. Equation 1 implies that every boundary is a cycle. A boundary is an element
of Im(0y+1), and a cycle is an element of ker(9d,). Thus, equation 1 implies that the
group im(d,41) is contained in the group ker(d,). Their quotient group is called the ¢'"
homology group: *

Hy(K) = ker(9y)/im(,41).
Informally, any g-cycle that is not also a boundary corresponds to a “hole” of dimension
q- Conversely, if every g-cycle of K is a boundary, then K has no “holes” of dimension g,

and H,(K) is the trivial group with just one element, denoted 0. We will later use one
direction of this statement:

t Munkres (Mun84) uses ¢ for 8.
¥ Munkres calls these the reduced homology groups (Mung4, p.71).
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Remark 3.1. If H,;(K) = 0 then for every g-cycle a there exists a ¢ + 1-chain S such
that 0,418 = a.

More precisely, the elements of H,(K) are the left cosets of im(9y41) in ker(9,): an
element of H,(K) has the form o+ im(9y41) for a g-cycle a. Thus, two g-cycles a, o' are
homologous if they are in the same equivalence class in H,(K). Equivalently, a and o'
are homologous if and only if & — o' is a boundary.

If Hyo(K) is trivial (equal to the one-element group denoted by 0), then K is connected
(there is a path of 1-simplexes connecting any two vertexes). Informally, if H,(K) = 0,
then K has no “holes” of dimension ¢. If H,(K) = 0, for ¢ < k, we say that K is k-acyclic.
If H,(K) = 0 for every g, we say that K is acyclic.

The chain complex C(K) is the sequence of groups and homomorphisms {C,(K),d;},
g > —1. If K is of dimension n, then Cy(K) =0 for n < g.

Let C(K) = {C,(K),0,} and C(L) = {Cy(L),d,} be chain complexes for simplicial
complexes K and £. An augmentation-preserving chain map (or chain map) ¢ is a family
of homomorphisms.

bq + Cg(K) = Cy(L),
such that J o ¢y = ¢py—1 09y, ¢ > 0, and 9 o ¢y = Jp. Usually ¢_; is defined to be the
identity. In this case the commutator rule for oq is included in the general rule for o,.

The previous identities ensure that the chain map ¢ preserves cycles and boundaries:
if a is a cycle or boundary, so is ¢(«). Notice that the identity chain map ¢ of C'(K) is a
chain map, and the composition of two chain maps is a chain map.

Any simplicial map f from K to £ induces a chain map fg from C(K) to C(L) as
follows.

— — —

(f(50), f(51),...,f(5;)) if ais a simplex (5, 51,...,5;)
(f#)g(a) =<0 if a is a simplex (50,51,...,58),p # q

i Nilf)q(Si) if o is a chain ), \;S;

This map is a homomorphism. For example, (f#)q,(—S?) = —(fx)q(S?), since interchang-
ing two vertexes on the left interchanges two vertexes on the right. On the other hand,
not every chain map is induced by a simplicial map; see the Appendix for an example.

Since fy commutes with 0 it induces a homomorphism (f,), from H,(K) to Hy(L).
We often omit subscripts and sharp signs from induced chain maps when the meaning is
clear from context.

If ¢,9 : C(K) — C(L) are chain maps, then a chain homotopy from ¢ to 1 is a family
of homomorphisms

Dy : C4(K) = Cgq1(£),
such that
at,H-qu + Dy—105 = ¢g — Uy
Very roughly, if two chain maps are homotopic, then one can be deformed into the other;

see Munkres (Mun84) for intuitive justification for this definition. In particular, the two
chain maps induce the same homomorphism in homology.
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Lemma 3.2. Let ¢,¢ : C(K) — C(L£) be chain maps and D a chain homotopy from ¢
to 1. Then the chain (¢, — 1y — Dg_10,)(S?) of Cy(L) is a cycle.

Proof.

6(’1(@1 - z/’q - Dq—laq)(sq) = 6(’1(@1 - ¢q)(5q) - a;Dq—laq(Sq)
= 6:1(¢q - 1/’q)(5q) - 6:1(¢q - 1/’!1 - azI;Jrqu)(Sq)
= 9/9,,,57 =0

q

O

For problems such as the renaming task defined below, we are interested in solutions
that satisfy certain symmetry properties. We say that a simplicial map p from K to itself
that permutes the vertexes of K is a symmetry simplicial map. The map p preserves
dimension: it sends each g-simplex to a g-simplex. Moreover, p permutes the g-simplexes
of K: if p(Sg) = p(S7), then S§ = S7. The i-fold composition of p is denoted p’ (also
a symmetry simplicial map). The orbit of a simplex S? consists of all ¢-simplexes S
for which p?(S?) = S, for some i. The g-orbits partition the g-simplexes in equivalence
classes. For example, if p is the identity symmetry, every orbit consists of a single simplex.

A symmetry chain map on C(K), pg, is the chain map py : C(K) — C(K) induced
by a symmetry simplicial map p. The i-fold composition of py, p;&, is also a chain
map. Since p preserves dimension, for every oriented g-simplex S9, px(S?) is an oriented
g-simplex, and since p is a permutation on the vertexes, px is a permutation on the
oriented g-simplexes. Thus the oriented g-simplexes are also partitioned in orbits by p:
two oriented simplexes S¢, S{ are in the same orbit if and only if p% (S§) = S{, for some
i

To avoid cumbersome notation, we usually use p to denote both the symmetry simpli-
cial map and the induced simplicial chain map, relying on context to avoid ambiguity.

Let p, p be symmetry chain maps on C(K) and C(L), respectively. A chain map
¢ : C(K) = C(L) is symmetric with respect to p, p, or simply symmetric, when p and p
are understood, if po¢ = ¢op. Similarly, a chain homotopy D is symmetric if poD = Dop.
Notice that any chain map is symmetric with respect to the identity symmetry chain
maps.

Definition 3.1. Let p, p be symmetry chain maps on C(K) and C(L), respectively. A
symmetric acyclic carrier from K to £ is a function X that assigns to each simplex S¢
of K a non-empty subcomplex of £ such that

1 X(S?) is g-acyclic,

2 if S? is a face of S7, then ¥(S?) C £(57), and

3 X(p(8)) = A(E(5)).

A homomorphism ¢ : Cy(K) — Cy (L) is carried by X if each simplex appearing with
a non-zero coefficient in ¢(S9) is in the subcomplex X(S?).

The next theorem reduces to (Mun84, Th. 13.3), when p, p are the identity; the proofs
are similar.
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Theorem 3.3 (Acyclic Carrier Theorem). Let ¥ be a symmetric acyclic carrier from

K to L.

(1) There exists a symmetric chain map from C(K) to C(£) that is carried by .
(2) If ¢ and 1) are two symmetric chain maps from C(K) to C(L) that are carried by ¥,
then there exists a symmetric chain homotopy of ¢ to v that is also carried by X.

Proof. Let 0 be the boundary of C(K) and &' the boundary of C(£), and p,p the
symmetry chain maps corresponding to ¢, .

(1) We construct the required chain map oq4 by induction on d. As usual, we define it
on oriented d-simplexes and extend linearly.

Basis: To define oy, first pick a vertex §y for each 0-orbit of K. Let 09(5p) be a vertex
in X(5p). Now, for each §; € orbit(5y), §i = p'(5)), let 0o(5i) = p*(00(50)). Notice that
00(5;) is in X(5;), because %(3;) = Z(p'(5)), and by property (3) of Definition 3.1,
Y(p'(50)) = p*(2(5)). This defines oo on the O-simplexes, and extending linearly we
get the desired homomorphism in dimension d = 0, that commutes with the boundary
operators.

Assume inductively that o has been correctly defined for dimensions smaller than
d. Pick a representative S¢ for each d-orbit. Now, by induction hypothesis, 041 (0S)
is a well-defined (d — 1)-chain, and it is in X(S&). This is because for each face S¢ 1
of S&, o4-1(S%71) is in X(S971), and hence it is in X(SZ), by (2) of Definition 3.1.
Also 04-1(0S) is is a cycle, because 8'c41(0S%) = 04-20(0SF) = 0, by the induction
hypothesis. Because $(S¢) is acyclic, Remark 3.1 implies that we can choose a d-chain
of £(5%), 04(S&), such that

6ad(53l) = O'd_l(asg). (2)

This ensures that ¢ commutes with the boundary operators. For each S¢ = pi(Sg),
choose

0a(S7) = p'(04(S9))-

Hence, 04 commutes with the boundary operators:

The penultimate step follows from the induction hypothesis. The step before that one
follows from (2) above. Finally, 04(S¢) is in £(S¢) because o(S§) is in $(5¢) and
S(p(S8)) = 5 (S(SE)).

(2) We construct the required chain homotopy D, by induction on ¢, by defining it
on the oriented g-simplexes, and then extend linearly.

Basis: Let D_; = 0. If chain maps are required to be the identity on C_;, this
definition of D_; would be the basis. In any case, to illustrate the ideas, we work through
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the case of Dy. We define Dy as follows. For each 0-orbit pick a vertex sy of K. Because

' (¢ —1)(5) = 0'¢(50) — 0"¢(5)

= ¢(950) — ¥(05)

=0
(¢ — )(8p) is a cycle. Since ¢, are carried by X, both ¢(sp), ¥(5p) are in X(5p), and
hence, (¢ —1)(8p) is in X(8p). Since X(8p) is 0-acyclic, by Remark 3.1, we can choose a
1-chain DO(§O) in Z(go), such that 8’D0(§0) = (¢ — ’g[))(g()) = (¢ — ’g[))(g()) — D_18(§0),
and the chain homotopy definition is satisfied.

For every 3; € orbit(5y), 5; = p'(5)), choose Dy (5;) = p*(Do(5p)). Notice that 8’ Dy(5;) =

(¢) - ’g[))(gl) - D_16(§}), since D_; =0 and

Also, Dy(8;) is in X(8;) because X is symmetric. Hence Dy is carried by ¥. Finally, notice
that Do(p(8;)) = p(Do(5;)), and hence Dg is symmetric.

For the induction step, assume a symmetric D; carried by ¥ is defined in dimensions j
less than d. Pick a representative S§ for each d-orbit. By the same calculations that lead
to Lemma 3.2, (¢ — 1) — Dyg_10)(S¢) is a cycle. Moreover, it is in $(S?), because ¢, 1) are
carried by ¥, and because so is Dy—; (by induction hypothesis), and by property (2) of
the definition of acyclic carrier. Because %(S¢) is acyclic, we can choose a (d + 1)-chain
Dy(S) in £(S) such that

9'Da(S5) = (¢ — v — Du-19)(S5)-

For each S¢ = p*(S¢) in the same orbit, choose D4(S¢) = p¢(Da(S)). Thus,
9'Da(S{) = 8'5'(Da(Sg))

p'(0'Da(S5))

p'(¢— 1 — Dg_10)(S5)

(¢ =% = Dy-10)(S7)-

The last step follows from the induction hypothesis. Finally, it is easy to verify that
Dgop=poDy.
[

As a consequence, we have the following special case of the Acyclic Carrier Theorem,
which says that when X is dimension preserving a chain homotopy carried by ¥ is trivial
and hence two chain maps carried by ¥ are equal:

Remark 3.4. If ¢,¢ : C(K) — C(L) are both carried by ¥, D is a chain homotopy,
Y is dimension preserving, i.e., for each S? in K, ¢ = dim(S?) = dim(X(S?)), then
Cy+1(X(S7)) =0, D; = 0 for all 4, and ¢ and ¢ are equal chain maps.
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Fig. 5. A Subdivided Complex

4. Algebraic Spans

We can use the acyclic carrier theorem to establish a variety of impossibility results. Our
basic strategy is the following. We assume that we have a protocol with complex P that
solves a task (Z, 0, A) in a particular model of computation. Let S¢ be an input simplex,
St the complex of its faces, and P a protocol. For a variety of models of computation, prior
research has shown that P(S°) is f(£)-acyclic, where f is a model-dependent function. We
exploit such results to establish the existence of an acyclic carrier ¥ from S* to P. Then
the acyclic carrier theorem guarantees the existence of a chain map o : C(S%) — C(P)
carried by X, which we call an algebraic span. The decision map 6 : P — O is a simplicial
map, and therefore induces a chain map d : C(P) — C(O). The composition of § and o
is also a chain map:
doo:C(SYH = C(0O).

We then use properties about A to show that S¢ and O are topologically “incompatible,”
implying that this chain map cannot exist, and thus deriving a contradiction.

We now discuss how a variety of prior lower bound results can all be given a common
reformulation in the language of chain complexes and acyclic carriers.

Informally, a subdivision of a complex is a way of “chopping up” each of its sim-
plexes into smaller simplexes, as illustrated in Figure 5. Any subdivision of a complex
has the “same topology’
are unchanged. Much of the earlier work in this area has focused on some notion of

9

as the original complex; in particular, the homology groups

subdivision.

Herlihy and Shavit (HS93) considered wait-free protocols in which n + 1 processes
communicate by reading and writing a shared memory. They showed that it is possible
to subdivide the input complex so that there exists a simplicial map, called a span,
from the subdivision to the protocol complex. We will refer to this notion of span as a
geometric span. They then used the existence of geometric spans to derive a number of
impossibility results. These results can be extended to show that a geometric span exists
on the input subcomplex Z; containing the vertexes colored with process ids Py, ..., P;.
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Herlihy and Rajsbaum (HR94) considered wait-free protocols using stronger primitives
characterized by their ability to solve the (m, j)-agreement task (Cha93), a generalization
of consensus (FLP85). They showed that in this model, a geometric span exists only for
a subcomplex of the input complex.

Herlihy, Rajsbaum, and Tuttle (HRT97) introduced the notion of a pseudosphere
(discussed more below), a simple combinatorial structure that can be used to ana-
lyze message-passing models, both synchronous and asynchronous. Earlier work on syn-
chronous message passing includes the “Bermuda Triangle” construction of Chaudhuri,
Herlihy, Lynch, and Tuttle (CHLT93).

In this paper, we show how these results can be unified by replacing the geometric
language of subdivisions and simplicial maps with the more abstract algebraic language
of chain complexes and acyclic carriers. To illustrate this remark, we focus first on the
wait-free geometric span of Herlihy and Shavit (HS93). Let P(S™) denote the subcomplex
of P corresponding to executions where only the processes in ids(S™) participate, and
they start with inputs S™. Establishing the existence of geometric spans required a
combination of combinatorial and continuous arguments:

1 P(S™) is acyclic,

2 P(S™) is simply connected,’

3 inductively use these two facts to construct a family of continuous maps of the input
complex, and

4 apply simplicial approximation to transform these continuous maps into the desired
simplicial maps on subdivisions of the input complex.

Reformulating this result in algebraic terms yields a simpler derivation: The function
Ywp that assigns to each input simplex S™, 0 < m < n, the protocol subcomplex
P(S™) is an an acyclic carrier from Z to P. First, as stated above, it is known that
every P(S™) is acyclic, and second, if S? is a face of S? then Xwr(S?) C Zwr(SY?). The
Acyclic Carrier Theorem guarantees the existence of an algebraic span o : C(Z) — C(P),
which we use for the impossibility results.

The geometric and algebraic notions of span are related as follows. Any geometric
span, reinterpreted as a chain map, is an algebraic span. Although algebraic spans are
more abstract, they are simpler in several ways. It is easier to establish the existence of
an algebraic span: the second, third, and fourth steps of the derivation are unnecessary.
The geometric span is not unique — it is easily seen that there are an infinite number of
permissible subdivisions and simplicial maps. By contrast, the Acyclic Carrier Theorem
implies that algebraic spans are unique up to chain homotopy. On the other hand, alge-
braic spans are a weaker notion than geometric spans, since they do not depend on the
protocol complex being simply connected. Nevertheless, as we show in this paper, the
weaker notion is sufficient to prove the set agreement and renaming impossibility results.

Attiya and Rajsbaum (AR96) take an alternative approach to proving lower bounds
for wait-free read/write memory using a combinatorial notion called a “divided image.”

§ A space is simply connected if its fundamental group is trivial (implying that every loop on the space
can be continuously deformed to a point).
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5. Set Agreement

In the (n + 1,k)-agreement task (Cha93)Y, each of n + 1 processes starts with a private
input value from some set vals, |vals| > n+ 1, communicates with the others by applying
operations to shared objects, and then halts after choosing a private output value. Each
process is required to choose some process’s input value, and the set of values chosen
should have size at most k. This problem independently was shown to have no ¢-resilient
solution in read/write memory by Borowsky and Gafni (BG93a) and by Herlihy and
Shavit (HS93), and no wait-free solution, by Saks and Zaharoglou (SZ93). A variety of
impossibility results for implementing (n + 1, k)-agreement from (m, j)-agreement were
given by Borowsky and Gafni (BG93b), and by Herlihy and Rajsbaum (HR94).

We assume in this section that we have a protocol with complex P that solves (n+1, k)-
agreement in a particular model of computation.

Theorem 5.1. Suppose we have a protocol for (n + 1, k)-agreement, with protocol com-
plex P, a properly colored simplex S¢, ¢ < n, with colors vals(S%), and an acyclic carrier
¥ from S to P such that

vals(6(2(S))) C vals(S) (3)
for all simplexes S in S¢. We claim that k > ¢ + 1.

Proof. Assume by way of contradiction that there exists a protocol with complex P
solving (n + 1, k)-agreement, and an acyclic carrier ¥ from S¢ to P, k < £ < n, satisfying
Property (3).

Let Ovals(s'Z
are all in vals(S?). Let 7 : C(Ovals(sl)) — C(S8*) be the chain map induced by the
simplicial map sending (P;,v;) to the vertex of St with value v;. This map is well-
defined because each simplex in O is labeled with at most k different values, and S*
contains simplexes with k or fewer distinct values, since k < /.

) denote the subcomplex of O consisting of simplexes whose decision values

The Acyclic Carrier Theorem (with p just the identity symmetry) guarantees that
there exists a chain map o : C(SY) — C(P) carried by ¥. Let § be the chain map
corresponding to the decision map of P.

(S —2— C(P) —2— C(0) —=— C(SY).

By (3), the image of the composition oo : C(S*) — C(O) is contained in C(Oypalsst))-
Hence, one may form ¢ : C(S%) — C(S%), the composition of o, 6, and 7. Let ® be
the acyclic carrier from S¢ to itself that sends each simplex S* to S* and all its faces,
®(S%) = S'. Let ¢ be the identity chain map on S*. Thus ¢ is carried by ®. Property 3
implies that ® also carries ¢. Because dim(S?) = i = dim(®(S?)), Remark 3.4 implies
that the two maps are equal. Therefore +(S¢) = ¢(S*) = S*.

In each execution, however, no more than ¢ values are chosen, since k < ¢, implying
that every simplex S in the image of d has at most £ different values. Because £ < n, P
contains simplexes of dimension ¢. Every such simplex S* in P is sent by the composition

T Originally called k-set agreement
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of the simplicial maps corresponding to § and 7 to a simplex in S of dimension less than
¢. The chain map 704 thus sends every ¢-chain of C'(P) to the 0 chain, so mrodoc(S) = 0,
and ¢(S*) = 0, a contradiction. 0

Now we show how to apply Theorem 5.1 to various models of computation. We rely
on a number of facts about the acyclicity of various protocol complexes. These facts are
proved elsewhere, and they rely on techniques beyond the scope of this paper.

Fact 5.2 ((HS93; HS99)). Let P be an (n + 1)-process protocol using wait-free asyn-
chronous read/write memory. For any input simplex S™, where 0 < m < n, P(S™) is
acyclic.

Let S™ be an input simplex in which each process’s input value is distinct, and let S™
be the complex consisting of S™ and its faces. For every S™ in 8", define Xy p(S™) =
P(S™). It is easy to check that Xy r(S™) satisfies the conditions for an acyclic carrier.
By Theorem 5.1, if P solves (n + 1, k)-agreement in a wait-free system, then k > n + 1:

Corollary 5.3 ((BG93a; HS93; SZ93)). There is no wait-free (n 4+ 1,n)-agreement
protocol in read/write memory.

Protocol complexes for ¢-resilient computations are similar.

Fact 5.4. Let P be an (n+ 1)-process protocol using ¢-resilient asynchronous read/write
memory, for ¢ < n. For any input simplex S™, where n —t < m < n, P(S™)is (t —n+
m — 1)-acyclic.

Let S™ be an input simplex in which P, ..., P; have distinct input values. We can express
S™ as the join of two simplexes: S?, colored with Py, ..., P;, and S, colored with the
remaining processes. Let S? be the complex consisting of S? and its faces. For every
simplex S¢ in S*, define X;(S*) to be P(S - S"*), where the (n — t + £ + 1)-simplex
St . 8"t is the join of S¢ and S™~*. As noted, ¥;(S%) is f-acyclic, and satisfies the
conditions for an acyclic carrier (with the trivial symmetry operator).

To satisfy Property 3, the following “pre-processing” stage can be added to any
(n+ 1, t)-agreement protocol to ensure that every decision value is the input to a partici-
pating low-order process. Processes Py, . .., P; are called the low-order processes, and the
remaining P11, ..., P, are called the high-order processes. Before executing the proto-
col, each low-order process writes its input to a shared array, and each high-order process
repeatedly reads that array until a low-order value appears. Because there are t + 1 low-
order processes, and only ¢ failures, every high-order process will eventually observe a
low-order value. It then replaces its own input value with that low-order value, and then
proceeds to execute the protocol. To show that no t-resilient (n+1, t)-agreement protocol
exists, it suffices to show that no such protocol exists in which each value is the input to
some participating low-order process.

¥; is an acyclic carrier from St to P(S™), satisfying Property 3, and we conclude from
Theorem 5.1 that if P solves (n + 1, k)-agreement in a t-resilient system, then k > ¢ + 1
(which can be proved by reduction from the wait-free case, Corollary 5.3, using the
BG-Simulation (BG93a; LR96)):
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Corollary 5.5. There is no t-resilient (n + 1,¢)-agreement protocol in which processes
communicate by a shared read/write memory.

For fixed m and j, m > j > 0, an (m, j)-consensus object provides two operations:
propose(i) adds the value 7 to the set of input values, and choose() returns a previously-
proposed input value. No more than m input values can be proposed, and no more than
j distinct values can be returned.

Consider the function

J(u) = j - {%J + min(j, u mod m) — 1.

There is a simple ¢-resilient (n + 1, J(¢ + 1) + 1)-agreement protocol if processes share
a read/write memory and (m, j)-agreement objects. Processes Py, ..., P; propose their
values to 2] + (£ 4+ 1) mod m (m, j)-consensus objects (as few objects as possible),
and collectively choose most J(t 4+ 1) + 1 values. Each such process writes its choice to
a register. The remaining n — ¢ processes simply wait for one of Fy,..., P; to write its
value. Since only ¢ processes can fail, this wait is bounded. This upper bound can be
shown to be tight using the following fact (a refinement of the result of (HR94)).

Fact 5.6. Let P be an (n+ 1)-process protocol using ¢-resilient asynchronous read/write
memory, for ¢ < n, extended with objects that solve (m, j)-agreement. For any input
simplex S™, where n —t < m < n, P(S™) is (J(t —n +m — 1) — 1)-acyclic.

For 0 <i < J(t+ 1), we partition the processes into sets G;, and choose a representative
Q; from each G;:

Gi = {Pitm—j+1)»- - > Pmin(n,(i+1)-(m—j+1)—1) }
Qi = Pi-(m—j+1) :

All but the last G; has m — j+1 elements. The @; are called principal processes. As in the
t-resilient read-write case, processes P, ..., P; are called the low-order processes, and the
remaining P;yq,..., P, are called the high-order processes. (In wait-free models, there
are no high-order processes.) Without loss of generality, we can precede any (n + 1, k)-
consensus protocol with the same “pre-processing step” used in the ¢-resilient read-write
case, ensuring that every value chosen by the protocol is an input to a participating
low-order process.

Let S™ be an input simplex in which every process in GG; has the same value v;, but
v; # vj for i # j. We can express S™ as L- H, where L is labeled with low-order processes,
and H with high-order processes. The low-order simplex L can itself be expressed as
So e Sy(t+1) > where ids(S;) = G;. Finally, let S7(+1) be the face of S™ labeled with
the principal processes.

Let S7(+1) be the complex consisting of S7(#+1) and its faces. For every simplex S¢ in
STt | define o(S) to be the join of S;, for i € ids(St). For each simplex S¢ in S7(t+1)
let

Sm,j) () =P(a(SY) - H).

For each S, (m.j) (S%) is ¢-acyclic, so Y (m,j) 18 an acyclic carrier. Property 3 is satisfied
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(&) (o)

Fig. 6. Construction of a three-process binary pseudosphere.

because each process in G; has the same input as some principal process in S¢ (by
hypothesis), and so does each process in H (by preprocessing).

Corollary 5.7. There is no t-resilient (n + 1, J(¢t + 1))-agreement protocol if processes
share a read/write memory and (m, j)-agreement objects.

Herlihy, Rajsbaum, and Tuttle (HRT97) have investigated certain well-structured “round-
by-round” executions of the standard asynchronous message-passing models. To show
that no protocol exists for the ¢-resilient asynchronous message-passing model, it suffices
to show that no protocol exists in the “round-by-round” subset of that model.

Fact 5.8 ((HRT97)). Let P be an (n+ 1)-process protocol using ¢-resilient “round-by-
round” asynchronous message-passing read/write memory. For any input simplex S™,
where n —t <m < n, P(S™) is (t — n + m — 1)-acyclic.

By a construction essentially identical to the one given above for shared memory,

Corollary 5.9. There is no t-resilient (n + 1,t¢)-agreement protocol in the message-
passing model.

Now consider a model in which n + 1 processes execute synchronously in rounds. In
each round, each process broadcasts a message to the others, but up to k processes per
round can fail by halting. A process can fail when its broadcast is partially complete.
Without loss of generality, we can restrict our attention to full-information protocols in
which each process broadcasts its complete state to the others. We use P"(S) to denote
the complex resulting from an r-round synchronous full-information protocol.

A pseudosphere 1(S™;U) is a complex defined in terms of a simplex S™, where each
vertex is labeled with a process id, and a finite non-empty set U. The pseudosphere
is the complex constructed by taking multiple copies of S™ and independently label-
ing each vertex with a value from U. For example, Figure 5 shows how to construct a
pseudosphere by independently assigning binary values to a set of three processes. The
left-hand figure shows a triangle labeled with process ids P, @, and R. The central figure
shows an intermediate stage where two copies of the triangle are each labeled with zeros
and ones. The right-hand figure shows the complete construction, where copies of the
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triangle are labeled with all combinations of zeros and ones. We call this construct a
pseudosphere because if S™ is an n-dimensional simplex, then (S™;{0,1}) is homeo-
morphic to an n-dimensional sphere. Pseudospheres were introduced in a recent paper
by Herlihy, Rajsbaum, and Tuttle (HRT97).

Pseudospheres are useful because the collection of initial global states for (n + 1, k)-
agreement forms a pseudosphere whose vertexes are labeled with input values. For ex-
ample, the right-hand figure in Figure 5 is the input complex for three-process binary
consensus.

Fact 5.10 ((HRT97)). For all n > 0, and all non-empty U, the pseudosphere 1 (S™; U)
is (n — 1)-connected.

Fact 5.11 ((HRT97)). Let P" be the protocol complex for an r-round synchronous
full-information protocol in which k& or fewer processes can fail in each round, and let
¥(S™;U) be an input complex. If n > rk + k, P"(¢(S™;U)) is (k — 1)-acyclic.

Let S*~! be a simplex whose values are labeled from 0 to k — 1, and S¥~! the com-
plex consisting of S*~! and its faces. For each simplex S¢ in S*~', the pseudosphere
Y(S™;ids(SY)) is the subcomplex of the input complex in which all input values are
taken from ids(S*). Define

5, (8% = Pr(y(S";ids(S")))

The map %, is an acyclic carrier, and because each input value in X,.(S%) is in vals(S?),
it satisfies Property 3.

Corollary 5.12 ((HRT97)). If n > f + k, then there is no synchronous f-resilient k-
agreement protocol taking |f/k| or fewer rounds.

Each of these lower bounds is known to be tight.

6. Renaming

In the renaming task (Attiya et al. (ABNDT90)), n + 1 processes with unique names
taken from a large name space must choose unique names taken from a small name
space. More precisely, in the (n + 1, K)-renaming task, the processes are given unique
input names in the range 0, ..., N, and are required to choose unique output names in
the range 0,..., K, where n < K < N.

To rule out the trivial solution where P; chooses output name i, we are interested in
protocols for which a process’s choice is independent of its process id. Let 7 be a permu-
tation of the process ids. The permutation 7 acts on any labeled simplex by replacing
each occurrence of a process id P in the label with the process id = (P).

T((Pis ei)) = (m(Pi), 7 (i)

If the label is a view of an execution e, then 7 (e) is the execution in which each occurrence
of P is replaced by 7(P) (the same interleaving, but processes are renamed).
A complex C is symmetric if the vertex map induced by 7 is simplicial. (To avoid
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cumbersome notation, we use 7 to denote both the permutation and the various maps
it induces, relying on context to avoid ambiguity.) If A and B are symmetric complexes,
then a simplicial map ¢ : A — B is symmetric under permutation if n(¢(¥)) = ¢(n(¥)) for
any permutation 7. A task specification (Z, O, A) is symmetric if T and O are symmetric,
and for all S™ € Z, A(w(S™)) = 7(A(S™)). In short, the problem specification depends
only on input values, not process ids.

Definition 6.1. A protocol P is anonymous if the decision map § is symmetric under
permutation: for every simplex T' in P(S™), and for any permutation 7, 7(§(7)) =

§(m(T)).
This condition can be summarized by the following commutative diagram.
P50

= b
]
P— 0
The permutation 7 also acts on chain complexes, where the anonymity condition can be
summarized as follows.

c(P) —— C(0)

J{ﬂ' s
c(P) —— c(0)
We restrict our attention to anonymous protocols.

In this section, we use symmetry arguments to give general lower bounds on renaming,
according to the following strategy. We show that if an (n + 1, K)-renaming protocol
has an acyclic carrier ¥ from S to P with the property that the protocol behaves
“symmetrically” on the boundary of ¥(S?), then K > 2¢. We use the following particular
symmetries.

Let S = (5,...,5:) be a simplex where each 5; is labeled with process id P;, let S*
be the complex of all its faces, and S‘=' the complex of its proper faces (i.e. S¢ minus
S%). In what follows we use the “rotation” permutation p, on the process ids Py, ..., Py,
sending P; to Pj+1 mod ¢+1, and leaving the other process ids fixed. This permutation acts
on simplexes and protocol complexes

p:St— St p:P—=P

by p(5i) = a(5i) = §it1 mod e+1, and p(P;, e;) = (p(P;), p(e;)). Because P is assumed to
be anonymous, both of these maps are simplicial. The induced chain maps on the chain
complexes C(S*) and C(P) are symmetry maps.

The proof is based on the following, purely topological lemma.

Lemma 6.1. If ¢ : C(SY) — C(S?) is a symmetric chain map with respect to p, then
$(8S%) = k- 8S!, for k=1 (mod £+ 1).

Proof. Let ¢ : C(SY) — C(S%) be the identity chain map. Consider any symmetric
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acyclic carrier ¥ from S* to itself that carries both ¢ and ¢, for example, one that assigns
all of S to every simplex of S¢. The Acyclic Carrier Theorem implies that there is a
symmetric chain homotopy D between ¢ and ¢.

In particular, by Lemma 3.2, (¢ — t — D9)(facey(S*)) € Cp—1(S?) is a cycle of S¢. Since
the group of (¢ — 1)-cycles of S is infinite cyclic generated by 8S¢ (as discussed in the
Appendix),

(¢ — v — D) (facey(S)) = k- 3S", (4)
for some integer k.
Note that, for even /£,
p'(faceg(S°)) = (=1)' face;(SY), (5)
while if £ is odd,
p'(faceg(S*)) = face;(SY). (6)

To check this remark observe that
p(face[)(se)) = p(gla sy §l) = (§27 KRR gf: ‘;U)

We can write both cases 5 and 6 in one equation by taking p to be the reverse parity of
£ (p=0if £is odd, and 1 if £ is even):

Pl (facen(S1)) = (~1)"face,(S"). (7)
Hence, using Equation 7 and the definition of boundary,
p(9S") = (~1)7+' 05", ®)

because p(9S¢) = p(Xf_y(=1)" - face;(S*)), and using Equation 7 this is equal to

Tio(=1)" - p(face;(S%)) = Si_o(=1)" - (=1)Pface; 1 mod e11(S*)
= (~1)PH19s".

Thus, Equation 8 yields
pl(08") = (~1)""HHas. (9)
By definition, $(9S¢) = ¢X¢_,(—1) - face;(S*). Thus, by Equation 7,
$(0S") = pZ{_o(—1)" PV pi(facey(S))
= 2i¢(=1)"PH pi(facey (SY)),
= S{_op' (=1)" PV g (face, (S1))
by symmetry of ¢. By Equation 4,
=S op (1) P (k - 0S + (1 + DO)(facey(S")))-

By Equation 9,

= k(€4 1)- 9 + Lop'(~1) 7D (1 + D) (facey (5%)).
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By Equation 7, symmetry of + and 0,
= k(L +1)-0S" + E{_o (¢ + D) ((—1)"face;(S)).
Since ¢ is the identity,
=k((+1)-0S" + 08" + DAAS",
and the proof follows from 98 = 0. ]

Informally, this lemma, says that any map from S¢ to itself that is symmetric on the
boundary must “wrap” the boundary around itself a non-zero number of times.

Theorem 6.2. Suppose we have a protocol for (n + 1, K)-renaming, an acyclic carrier
¥ from S¢ to P that is symmetric with respect to p, such that

ids(X(S)) = ids(S), (10)
for all proper faces S of S¢. Then K > 2¢.

Proof. Assume by way of contradiction that K < 2¢. Consider the output complex
O of the (n + 1, K)-renaming task, and its subcomplex O(S*) encompassing vertexes
with ids Py, ..., Pp. Thus, a vertex (P;,v) of O is labeled with a process id P; and an
output name v in 0,..., K. Let 7 : O — 8¢ be the simplicial map 7(P;,v) = §;, where
Jj = (i+ (vmod 2)) mod £ + 1. Let 7 also denote the induced chain map.

The simplicial map 7 does not send any f-simplex of O(S¢) to S¢. This is because 7
sends an /-simplex of O(S?) to S¢ only if the processes Py, ..., P; have chosen all even or
all odd output names, which is impossible because the range 0, ..., 2¢—1 does not contain
¢ + 1 distinct even or distinct odd names. It follows that, on O(S*), the homomorphism
(of the chain map w) mp = 0.

We have the following sequence of chain maps.

C(S) —Z— Cc(P) —2— C(0) —— C(8Y),
where o is the chain map whose existence is guaranteed by the Acyclic Carrier Theorem.
Let ¢ : C(S%) — C(S%) be the composition of o, §, and 7. Notice that all vertexes in the
image of o are labeled with ids from ids(S¢), by Equation 10. Thus, the same holds for
the image of § - o, since 6§ is color preserving; i.e., this image is contained in O(S*). Tt
follows from 7, = 0 on O(S*) that ¢,(S*) = 0, and hence

¢-1(9S%) =0, (11)

since ¢ commutes with 9.

We claim that the chain map ¢ is symmetric. Recall that the rotation permutation
p sends each process P; in ids(S’Z) to P;i1 mod ¢+1, and leaves the rest unchanged. It
operates on output complexes in the usual way:

(Pi+1 mod ¢41, ’Ui> if P; € ids (Se)
(P;,v;)) otherwise
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We have the following commutative diagram of symmetric chain maps:

(S —Z— C(P) —X— C(0) —=— CO(8Y

I % Ik I
(St —2— C(P) —2— C(0) —=— C(8Y

We check that each rectangle commutes: o is symmetric by the Acyclic Carrier Theorem,
¢ is symmetric because the protocol is anonymous, and 7 is symmetric by construction.
It follows that ¢ is symmetric:

po = prdo
= wpdo
= mdpo
=7mdop = Pp.
Lemma, 6.1 implies that ¢(0S*) = k- dS?, for k # 0, contradicting Equation 11. [

Now we consider some of the acyclic carriers described in Section 5. For asynchronous
read /write memory, consider a protocol for (n + 1, K')-renaming, with protocol complex
P, and let Z be the corresponding input complex. Recall from 5.2 that for any input
simplex S™ € 7 there is an acyclic carrier Yy p from 8™ to P. This carrier, for a single
input simplex, does not satisfy the symmetry requirements of Theorem 6.2. Pick, for
example, S™ labeled with process ids Py, ..., P, and the vertex of P; labeled with input
name ¢. It does satisfy the requirement

ids(Swr(S)) = ids(S), (12)

for all proper faces S of S™, by definition. But Xy r is not symmetric w.r.t. p, g, because
p sends an execution e to an execution a(e) with the same input values, e.g., if Sy *
is labeled with P, ...P,, p would send an n — 1 simplex S € Sy p(S§ ) toan —1
simplex S’ in Xy r(SP 1), where S7 ! is labeled with Py, P, ... P,, and such that S, S’
have the same input values. But such a simplex is not in Xy (S} '), since all simplexes
in this carrier have input values taken from 0,2, ...n, while S has input values 1,...,n.

We can, however, construct a symmetric carrier by “gluing together” the carriers from a
number of input simplexes as shown in Figure 7. Notice that this complex is a subdivided
simplex (and hence acyclic), and that input names are assigned symmetrically around
the boundary.

Definition 6.2. Let S® = (Sp,...,5y), where id(5;) = P;. The standard chromatic
subdivision of S™, denoted x(S™), contains all vertexes of the form (P;, S) for S C S
and P; € ids(S). A set of vertexes form a simplex if and only if (1) the process ids are
distinct, and (2) if S;,.S; correspond to two vertexes of the set, then S; C S; or S; C S;.

It is trivial to check that x(S™) is indeed a complex. (In fact, it can be shown that it
is a subdivision of S™.)
We now construct a complex x’'(S¢) C Z, isomorphic to x(S%), by assigning input names
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Fig. 7. Symmetric input subcomplex for renaming

to vertexes of x(S%). The input names are defined inductively. The unique vertex of x’(S°)
has input name 0. Assume inductively that we have assigned f(m — 1) = m(m + 1)/2
input names to the vertexes in x'(S™~!) = x'(face,,,(S™)). The rotation map that sends
P; to P; {1 mod m+1 induces a bijective simplicial map

- face,(S™) = faceys (S™)
by p(5i) = 5i+1 mod m+1, and also
p: x(face;(S™)) = x(face; 1 (S™)),

by p(Pi, Si) = (p(Pi), p(S;)). Every vertex @ € x(S™ ') (the boundary of S™) is equal
to p'(i@), for some @ € x(face,,(S™)). Assign each vertex 7 € x/(S™ ') the same input
value as @. Finally, for each P;, the vertex (P;, S™) is the only interior vertex labeled
with P;. Assign this vertex the input value f(m —1) + .

This construction uses n(n + 1)/2 input names, by solving the recursion f(0) = 1,
fim) = f(m — 1) + m + 1. Any renaming protocol for 2n + 1 input names can be
transformed into a protocol for a larger number of input names simply by using the
shared-memory renaming protocol of Bar-Noy and Dolev (BND89) to reduce the number
of names to 2n+ 1, and therefore the impossibility of (n+ 1, K)-renaming for O(n?) input
names implies impossibility for 2n + 1 input names.

Corollary 6.3. There is no wait-free (n + 1,2n — 1)-renaming protocol in read/write
memory (HS93).

A similar argument yields:

Corollary 6.4. There is no t-resilient (n 4+ 1,2t — 1)-renaming protocol in read/write
memory.

If processes share read/write memory and (m, j)-consensus objects, then it is not known
whether a symmetric carrier X, ; can be chosen so that ids(3,, ;(S%)) = ids(S%). This
condition is clearly satisfied, however, when m =n + 1, and j > (n +1)/2.

Corollary 6.5. There is no wait-free (n+ 1,25 — 1)-renaming protocol if processes share
a read/write memory and (n + 1, j)-consensus objects.
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This result is new.

We do not analyze renaming lower bounds for synchronous message-passing systems,
since it is known that logn rounds are necessary and sufficient for wait-free (n+1,n+1)-
renaming (HT90) using comparison-based protocols.

Appendix. Appendix

This appendix gives some simple examples of chain groups, chain maps and chain homo-
topies, for readers unfamiliar with algebraic topology.

Ezxamples

Let S? = (5,5, 52) be a 2-simplex (a “solid” triangle). Let S be the oriented complex
of its proper faces (a “hollow” triangle); S* includes three O-simplexes (vertexes): 5y, 31,
and 35, and three 1-simplexes: S} = face;(S?), 0 <i < 2:

1 I 1 O 1 O
SO = (51752)751 = (30752)752 = (30751);
where the vertexes are ordered as indicated in each S}. Thus,
0Sy = 8 — 51,08 = & — 5,05, = &
0 — 52 — 51,001 = 82 — 50,003 = 51 — S0.

The 0-th chain group of S', Cy(S'), is generated by the §;, meaning that all 0-chains
have the form

Ao - 50+ AL - 81+ Ay - 55,

where the \;’s are integers. The first chain group, C;(S'), is generated by the S}, and
all 1-chains have the form

Ao - Sy + A ST+ Ao - Sy

Since S' contains no simplexes of higher dimension, the higher chain groups are trivial.

Let us calculate the groups of 1-cycles of S'. For a 1-chain Ao-Si4A; S} +X2-S3, we have
that O(Xo- S+ A1-St+A2-53) is equal to Ag-0(S3) +A1-0(St) + A2 -0(S3), because 9 is a
homomorphism. Thus, the last equation is equal to Ag- (52 —351)+ A1+ (52 —50) + A2+ (51— 50).
And this is equal to 0 if and only if Ay = Ay = —A;. Therefore, the group of 1-cycles is
generated by the cycle S§ — St + S}, and is isomorphic to the infinite cyclic group of
integers under addition.

It is easy to generalize this argument to prove that the group of n-cycles of 8™ is also
infinite cyclic. In fact, since the group of n + 1-chains is trivial, Hn(S”) is also infinite
cyclic (S” has a hole, and one can go around it k times, for any integer k).

The rotation map p : S — S! defined by p(5i) = 5it1 mod s is a simplicial map.
Therefore, it induces a chain map (abusing notation, we call it the same) p : C(S') —
C(S'). The chain map p is defined on simplexes as follows. For 0 < i < 2, po(5;) =
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§i41 mod 3- In dimension 1, we have

Pl(Sé) = (52,50)= _511
p1(S1) = (81, 50)=—S3
p1(Sy) = (51,8) =S

To verify that p is a chain map, it suffices to check that po(9SE) = po(52 — 51) =
5o — 52 = Op1(S}), and similarly for the S} and Si.

The identity simplicial map ¢ : S* — S' also induces a chain map ¢ : C(S') = C(Sh).
We now show that ¢ and p are chain homotopic, by displaying both an acyclic carrier,
and the chain homotopy D. An acyclic carrier ¥ for ¢ and p is the following: we want
that X(3;) includes both ¢(5;) = §; and p(5;) = §;11, so X(5;) is the complex consisting
of S, and its vertexes. And ¥(S}) is the subcomplex of S! containing +(S}) = S},
p(S}) = S}t.) (i.e. two edges), and their vertexes. Both ¢ and p are carried by I, and
both ¥(5;) and X£(S}) are acyclic (being contractible). The chain homotopy D is given
by Do(5;) = (—1)"*S}, 5 moa 3> and D1(S}) = 0. It is easily verified that

(D9 +0D)(S) = (1~ p)(S).

Although every simplicial map induces a chain map, some chain maps are not induced
by any simplicial map. Consider the chain map defined by ¢(5;) = §;, and ¢(S}) =
S+ (-1) 2:?:0(—1)315]1 (notice that 2:?:0(—1)3}5’]1 = 05?). Thus, ¢(05?) =4-952, so
this map “wraps” the boundary around itself four times, something no simplicial map
could do. This map is not chain homotopic to ¢, although (¢ — ¢)(S) is a cycle for every
simplex S.

One of the referees pointed out to us that Lemma 6.1 can be viewed as a special case
of the Equivariant Hopf theorem (tDP82; tD87).
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