
Distributed Recursion

Sergio Rajsbaum
Instituto de Matemáticas, UNAM

joint work with Eli Gafni, UCLA

March 2011

Introduction

• Though it is a new field, computer science
already touches virtually every aspect of
human endeavor

From “Foundations of Computer Science” by Al Aho and Jeff Ullman

But...

• fundamentally, computer science is a
science of abstraction

• creating the right model for thinking about
a problem and devising the appropriate
mechanizable techniques to solve it.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman

Algorithms

• the techniques used to obtain solutions by
manipulating data as represented by the
abstractions of a data model

From “Foundations of Computer Science” by Al Aho and Jeff Ullman

Recursion

• a very useful technique for defining
concepts and solving problems

• Whenever we need to define an object
precisely or whenever we need to solve a
problem, we should always ask, “What does
the recursive solution look like?”

From “Foundations of Computer Science” by Al Aho and Jeff Ullman

Recursion

• The power of computers comes from their
ability to execute the same task, or
different versions of the same task,
repeatedly.

• in recursion a concept is defined, directly
or indirectly, in terms of itself.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman

Recursive definitions

define a class of objects in terms of the
objects themselves.

To be meaningful...

To be meaningful

1. One or more basis rules, in which some
simple objects are defined, and

2. Inductive rules, whereby larger objects are
defined in terms of smaller ones in the
collection.

Understanding
recursion using

“friends”

Understanding
recursion using

“friends”

Towers of Hanoi

Towers of Hanoi using
friends

How do I solve
Towers of Hanoi?

?

Towers of Hanoi using
friends

Ask a (younger) friend
for help with a smaller

problem

!

Towers of Hanoi using
friends

Ask a (younger) friend
for help with a smaller

problem
move
top 3

Towers of Hanoi using
friends

Ask a (younger) friend
for help with a smaller

problem

thanks

Towers of Hanoi using
friends

Ask a (younger) friend
for help with a smaller

problem

I move one

Towers of Hanoi using
friends

Ask a (younger) friend
for help with a smaller

problem

help again

Towers of Hanoi using
friends

Ask a (younger) friend
for help with a smaller

problem

thanks!

Towers of Hanoi using
friends

Towers of Hanoi using
friends

Basic elements in a recursive
function f :

Towers of Hanoi using
friends

Basic elements in a recursive
function f :

“Split” into smaller
problems

Towers of Hanoi using
friends

Basic elements in a recursive
function f :

“Split” into smaller
problems
invoke f on them

Towers of Hanoi using
friends

Basic elements in a recursive
function f :

“Split” into smaller
problems
invoke f on them
“merge” the results

split

Towers of Hanoi using
friends

Basic elements in a recursive
function f :

“Split” into smaller
problems
invoke f on them
“merge” the results

split

Towers of Hanoi using
friends

Basic elements in a recursive
function f :

“Split” into smaller
problems
invoke f on them
“merge” the results

split

Towers of Hanoi

Challenge: find a non-recursive algorithm

Recursive programs are often more succinct
or easier to understand than their iterative

counterparts.

More importantly, some problems are more
easily attacked by recursive programs than

by iterative programs.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman

Recursion in distributed
algorithms

(need real friends)

Garfield and Friends

Motivation

The benefits of designing and analyzing
sequential algorithms using recursion are well
known.

Motivation

The benefits of designing and analyzing
sequential algorithms using recursion are well
known.

However, little use of recursion has been
done in distributed algorithms

Recursion in distributed
algorithms

Recursion in distributed
algorithms

• Instead of just one process, many

Recursion in distributed
algorithms

• Instead of just one process, many

• Split the problem now means: subproblems
for fewer processes

Recursion in distributed
algorithms

• Instead of just one process, many

• Split the problem now means: subproblems
for fewer processes

• Get help from smaller friend groups to
solve the subproblems

Recursion in distributed
algorithms

• Instead of just one process, many

• Split the problem now means: subproblems
for fewer processes

• Get help from smaller friend groups to
solve the subproblems

• Until a problem for one friend is reached

Recursion in distributed
algorithms

• Instead of just one process, many

• Split the problem now means: subproblems
for fewer processes

• Get help from smaller friend groups to
solve the subproblems

• Until a problem for one friend is reached

Problems

Problems

• In seq., functions: one input, one output

Problems

• In seq., functions: one input, one output

• In dist., we consider tasks: distributed
inputs/outputs, represented as vectors

Problems

• In seq., functions: one input, one output

• In dist., we consider tasks: distributed
inputs/outputs, represented as vectors

• Interested mainly in coordination, local
computation power disregarded

Problems

• In seq., functions: one input, one output

• In dist., we consider tasks: distributed
inputs/outputs, represented as vectors

• Interested mainly in coordination, local
computation power disregarded

• see some examples...

Agreement tasks

Agreement tasks

• consensus: agree on 1 value

Agreement tasks

• consensus: agree on 1 value

• k-set agreement: on at most k values

Agreement tasks

• consensus: agree on 1 value

• k-set agreement: on at most k values

• snapshots: on possible views of a run,
subsets ordered by containment

Disagreement tasks

Disagreement tasks

• Leader election: one of the participants

Disagreement tasks

• Leader election: one of the participants

• Symmetry breaking: not all decide the same
value

Disagreement tasks

• Leader election: one of the participants

• Symmetry breaking: not all decide the same
value

• Renaming: all decide different values, names
on a small name space

Wait-free read/write shared
memory model

Wait-free read/write shared
memory model

• n Processes

Wait-free read/write shared
memory model

• n Processes

• Communication

Wait-free read/write shared
memory model

• n Processes

• Communication

Wait-free read/write shared
memory model

• n Processes

• Communication

• Asynchronous

Wait-free read/write shared
memory model

• n Processes

• Communication

• Asynchronous

• Any number may crash

Distributed splitters

asking help from smaller groups of friends

Distributed splitters

Distributed splitters

• Is there a wait-free algorithm to split in two?

Distributed splitters

• Is there a wait-free algorithm to split in two?

• Perfect splitting No!

n processes

left: n/2 right: n/2

Strong splitter

n processes

left: at least 1
at most n-1

right: at least 1,
at most n-1

Strong splitter

• No! Need objects stronger than read/write
(except for some values of n: WSB problem [Castañeda,Rajsbaum podc08])

n processes

left: at least 1
at most n-1

right: at least 1,
at most n-1

Very Weak splitter

n processes

left: at least 0
at most n-1

right: at least 1,
at most n

Very Weak splitter

• there is a wait-free algorithm

n processes

left: at least 0
at most n-1

right: at least 1,
at most n

Very Weak splitter

• there is a wait-free algorithm

n processes

left: at least 0
at most n-1

right: at least 1,
at most n

when less than
n arrive,

they go left

Weak splitter

n processes

left: at least 0
at most n-1

right: at least 0,
at most n-1

at most one stop

Weak splitter

• Hence there is a wait-free algorithm

n processes

left: at least 0
at most n-1

right: at least 0,
at most n-1

at most one stop

Very weak splitter

• Algorithm VWsplitter id (n):

- write id, read all registers

- if |read-set| = n, then return right

• else

- return left

Very weak splitter

• Algorithm VWsplitter id (n):

- write id, read all registers

- if |read-set| = n, then return right

• else

- return left

at least one
sees all

Very weak splitter

• Algorithm VWsplitter id (n):

- write id, read all registers

- if |read-set| = n, then return right

• else

- return left

at least one
sees all

at most n-1
call this

Weak splitter

• Algorithm Wsplitter id (n):

- write id, read all registers

- if |read-set| = n, then

- if id= max{read-set} return stop

- else return right

• else

- return left

Weak splitter

• Algorithm Wsplitter id (n):

- write id, read all registers

- if |read-set| = n, then

- if id= max{read-set} return stop

- else return right

• else

- return left

at least one
sees all

Weak splitter

• Algorithm Wsplitter id (n):

- write id, read all registers

- if |read-set| = n, then

- if id= max{read-set} return stop

- else return right

• else

- return left

at least one
sees all

at most n-1
call this

Weak splitter

• Algorithm Wsplitter id (n):

- write id, read all registers

- if |read-set| = n, then

- if id= max{read-set} return stop

- else return right

• else

- return left

at least one
sees all

at most n-1
call this

at most n-1
call this

Recursive distributed
programming

snapshots task

• The goal:

- Each process obtains a set of ids of
participating processes

- the sets can be ordered by containment

• Used to obtain consistent views of an
execution: ids in the same set are
concurrent

1,2,3 -,2,- -,2,3ok
views

1,2,- -,2,- 1,-,3NOT ok
views

VWsplitter snapshots

• Algorithm Snapshot id (n):

- write id, read all registers

- if |read-set| = n, then return read-set

• else

- Snapshot id (n-1)

VWsplitter snapshots

• Algorithm Snapshot id (n):

- write id, read all registers

- if |read-set| = n, then return read-set

• else

- Snapshot id (n-1)

at least one
sees all

VWsplitter snapshots

• Algorithm Snapshot id (n):

- write id, read all registers

- if |read-set| = n, then return read-set

• else

- Snapshot id (n-1)

at least one
sees all

at most n-1
call this

VWsplitter snapshots

• Algorithm Snapshot id (n):

- write id, read all registers

- if |read-set| = n, then return read-set

• else

- Snapshot id (n-1)

at least one
sees all

at most n-1
call this
contained

in the previous
sets

Immediate snapshots

• Algorithm Snapshot id (n) computes more
than snapshots:

• the snapshot of a process happens
immediately after its write

• i in read-set of j then
• read-set of i subset of read-set of j

Linear recursion

IS(3)
outputs 1,2,3

outputs 1,2

outputs 1

invoke

invoke

invoke

31 2

1

3

1 2

1

2IS(2)

IS(1)

Recursive -> iterated

• when we unfold the recursion, we get a run
on a sequence of read/write memories

• because each recursive call works with a
fresh memory

every copy is
new

•arrive in
arbitrary order
•last one sees
all

•arrive in
arbitrary order
•last one sees
all

2

•arrive in
arbitrary order
•last one sees
all

2

•arrive in
arbitrary order
•last one sees
all

2
-,2,-

•arrive in
arbitrary order
•last one sees
all

2 3

•arrive in
arbitrary order
•last one sees
all

2 -,2,33

•arrive in
arbitrary order
•last one sees
all

2 31

•arrive in
arbitrary order
•last one sees
all

2
1,2,3

31

•arrive in
arbitrary order
•last one sees
all

2
1,2,3

31

•arrive in
arbitrary order
•last one sees
all

2 31

returns 1,2,3

•remaining 2 go
to next
memory

2 31

•remaining 2 go
to next
memory

2 31

2

•remaining 2 go
to next
memory

2 31

2
-,2,-

•3rd one
returns -,2,3

2 31

2
-,2,3

3

•3rd one
returns -,2,3

2 31

2 3

•2nd one goes
alone

2 31

2 3

2 31

2 3

2

dd

-,2,-

•returns -,2,-

2 31

2 3

2

dd

so in this run,
the views are

-,2,3

-,2,-

so in this run,
the views are

-,2,3

1,2,3

-,2,-

another run

•arrive in
arbitrary order

2 31

• all see all

2 31

• all see all

2
1,2,3

31

•and in this
case, no
recursive call,
• they all
return with
1,2,3

2 31

•and in this
case, no
recursive call,
• they all
return with
1,2,3

2
1,2,3

31

Renaming
and

binary branching recursion

Branching recursion

BR(4)

BRL(3)

123

3
4
1 2

34
1

2

34
1

2

4

BRR(3)

BRL(2) BRL(2)

BRL(1) BRR(1) BRL(1) BRR(1)

Renaming

Renaming

• Processes choose new names, as few as
possible

Renaming

• Processes choose new names, as few as
possible

• There is a wait-free algorithm for 2n-1
names

Renaming

• Processes choose new names, as few as
possible

• There is a wait-free algorithm for 2n-1
names

• and impossible for fewer names (except in some
exceptional cases)

Recursive renaming

Left to right

Right to left

Recursive renaming
• Use weak splitter

Left to right

Right to left

Recursive renaming
• Use weak splitter

• Some go left, and
solve renaming
recursively from
left to right, the
others do it from
right to left

Left to right

Right to left

Recursive renaming
• Use weak splitter

• Some go left, and
solve renaming
recursively from
left to right, the
others do it from
right to left

• one may stop with
a new name

Left to right

Right to left

Recursive renaming
• Use weak splitter

• Some go left, and
solve renaming
recursively from
left to right, the
others do it from
right to left

• one may stop with
a new name

Left to right

Right to left

May choose
this name

Renaming
• Algorithm Renaming id (n,First,D):

- write id, read all registers

- Last = First + D(2n-2)

- if |read-set| = n, and id = max read-set
then return Last

- else return RenamingLR(n-1,Last-1,-D)

• else

- RenamingRL id (n-1,First,D)

Renaming
• Algorithm Renaming id (n,First,D):

- write id, read all registers

- Last = First + D(2n-2)

- if |read-set| = n, and id = max read-set
then return Last

- else return RenamingLR(n-1,Last-1,-D)

• else

- RenamingRL id (n-1,First,D)

at least one
sees all

Renaming
• Algorithm Renaming id (n,First,D):

- write id, read all registers

- Last = First + D(2n-2)

- if |read-set| = n, and id = max read-set
then return Last

- else return RenamingLR(n-1,Last-1,-D)

• else

- RenamingRL id (n-1,First,D)

at least one
sees all

at most n-1
call this

Renaming
• Algorithm Renaming id (n,First,D):

- write id, read all registers

- Last = First + D(2n-2)

- if |read-set| = n, and id = max read-set
then return Last

- else return RenamingLR(n-1,Last-1,-D)

• else

- RenamingRL id (n-1,First,D)

at least one
sees all

at most n-1
call this

at most n-1
call this

Recursive algorithms
facilitate impossibility

proofs

Emma Louise Jones

Recursive ⇒ iterated

• when we unfold the recursion, we get an
iterated run

• because each recursive call works with a
fresh memory

every copy is
new

•arrive in
arbitrary order
•last one sees
all

•arrive in
arbitrary order
•last one sees
all

2

•arrive in
arbitrary order
•last one sees
all

2

•arrive in
arbitrary order
•last one sees
all

2
-,2,-

•arrive in
arbitrary order
•last one sees
all

2 3

•arrive in
arbitrary order
•last one sees
all

2 -,2,33

•arrive in
arbitrary order
•last one sees
all

2 31

•arrive in
arbitrary order
•last one sees
all

2
1,2,3

31

•arrive in
arbitrary order
•last one sees
all

2
1,2,3

31

•arrive in
arbitrary order
•last one sees
all

2 31

returns 1,2,3

•remaining 2 go
to next
memory

2 31

•remaining 2 go
to next
memory

2 31

2

•remaining 2 go
to next
memory

2 31

2
-,2,-

•3rd one
returns -,2,3

2 31

2
-,2,3

3

•3rd one
returns -,2,3

2 31

2 3

•2nd one goes
alone

2 31

2 3

2 31

2 3

2

dd

-,2,-

•returns -,2,-

2 31

2 3

2

dd

limitations come from
indistinguishability

0

0 1

limitations come from
indistinguishability

0

0 1

??

limitations come from
indistinguishability

• The most essential
distributed computing
issue is that a process
has only a local
perspective of the world 0

0 1

??

limitations come from
indistinguishability

• The most essential
distributed computing
issue is that a process
has only a local
perspective of the world

• Represent with a vertex
labeled with id (green)
and a local state this
perspective

0

0 1

??

limitations come from
indistinguishability

• The most essential
distributed computing
issue is that a process
has only a local
perspective of the world

• Represent with a vertex
labeled with id (green)
and a local state this
perspective

• E.g., its input is 0

0

0 1

??

limitations come from
indistinguishability

• The most essential
distributed computing
issue is that a process
has only a local
perspective of the world

• Represent with a vertex
labeled with id (green)
and a local state this
perspective

• E.g., its input is 0

• Process does not know
if another process has
input 0 or 1, a graph

0

0 1

??

Indistinguishability
graph for 2
processes

• focus on 2
processes

• there may be
more that
arrive after

2

 sees only itself

2

 sees only itself

2
-,2,-

• green sees both

• but ...

2 3

• green sees both

• but ...

2 -,2,33

• green sees both

• but ...

2 -,2,33
-,2,-

2 3

• green sees both

• but, doesn't
know if seen by
the other

2 -,2,33

• green sees both

• but, doesn't
know if seen by
the other

2 -,2,33

??

• green sees both

• but, doesn't
know if seen by
the other

2 -,2,33
-,2,-

??

• green sees both

• but, doesn't
know if seen by
the other

2 -,2,33
-,2,-

-,2,3

??

• green sees both

• but, doesn't
know if seen by
the other

one round graph for 2
processes

one round graph for 2
processes

solo

one round graph for 2
processes

solo
solo

see
each other

see
each other

one round graph for 2
processes

solo
solo

iterated runs

round 2:

round 1:

for each run in round 1 there are the same 3 runs in the next round

iterated runs

round 2:

round 1:

for each run in round 1 there are the same 3 runs in the next round

iterated runs

round 2:

round 1:

for each run in round 1 there are the same 3 runs in the next round

iterated runs

round 2:

round 1:

for each run in round 1 there are the same 3 runs in the next round

iterated runs

round 2:

round 1:

for each run in round 1 there are the same 3 runs in the next round

iterated runs

solo sees both

round 2:

iterated runs

solo sees both

solo in both rounds

round 2:

iterated runs

solo sees both

round 2:

iterated runs

solo sees both

round 2:
sees both,

then solo in 2nd

iterated runs

round 1:

round 2:

see each other in 1st
round

see each other in both

More rounds

round 1:

round 2:

round 3:

Theorem: protocol graph after k rounds

-longer
-but always connected

implications in terms of

- task solvability
- complexity
- computability

representing tasks
binary consensus

0 0

1 1

0 0

1 1

Input Graph Output Graph

representing tasks
binary consensus

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

representing tasks
binary consensus

0 0

1 1

0 0

1 1

start with same input
decide same output

Input Graph Output Graph

Input/output
relation

representing tasks
binary consensus

0 0

1 1

0 0

1 1

Input Graph Output Graph

diferent inputs,
agree on any

Input/output
relation

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocol

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocolsubdivided after 1 round

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocolsubdivided after 1 roundno solution in 1 round

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocolsubdivided after 1 roundno solution in 1 round decide

decide

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocolsubdivided after 1 roundno solution in 1 round decide

decide

no solution in k rounds

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocolsubdivided after 1 roundno solution in 1 round decide

decide

no solution in k rounds

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocolsubdivided after 1 roundno solution in 1 round decide

decide

no solution in k rounds

Runs for 2 processes

round 1:

round 2:

round 3:

Theorem: protocol graph after k rounds

-longer
-but always connected

Runs for n processes

Theorem: protocol complex after k rounds

- recursively subdivided
- but always n-connected

• 4 local states in
some execution

• 3-dim simplex

• e.g. inputs 0,1,2,3

0

1 2

3

Conclusions

ContextFree SpiralTree

Conclusions

Conclusions

• In SSS‘2010 we present recursive
algorithms for snapshots, immediate
snapshots, renaming and swap

Conclusions

• In SSS‘2010 we present recursive
algorithms for snapshots, immediate
snapshots, renaming and swap

• linear, binary branching and multi-branching
recursion

Conclusions

• In SSS‘2010 we present recursive
algorithms for snapshots, immediate
snapshots, renaming and swap

• linear, binary branching and multi-branching
recursion

• Recursion is useful:

Conclusions

• In SSS‘2010 we present recursive
algorithms for snapshots, immediate
snapshots, renaming and swap

• linear, binary branching and multi-branching
recursion

• Recursion is useful:

- some new algorithms,

Conclusions

• In SSS‘2010 we present recursive
algorithms for snapshots, immediate
snapshots, renaming and swap

• linear, binary branching and multi-branching
recursion

• Recursion is useful:

- some new algorithms,

- facilitates analysis

Conclusions

Conclusions

• Recursion is also interesting for lower
bounds, due to recursive structure of the
iterated models obtained

Conclusions

• Recursion is also interesting for lower
bounds, due to recursive structure of the
iterated models obtained

• In OPODIS‘2010 we show how to
transform a distributed algorithm to
iterated

Conclusions

• Recursion is also interesting for lower
bounds, due to recursive structure of the
iterated models obtained

• In OPODIS‘2010 we show how to
transform a distributed algorithm to
iterated

• A survey in LATIN‘2010 (LNCS 6034)

Conclusions

• Recursion is also interesting for lower
bounds, due to recursive structure of the
iterated models obtained

• In OPODIS‘2010 we show how to
transform a distributed algorithm to
iterated

• A survey in LATIN‘2010 (LNCS 6034)

• Connection to topology

Open questions

Open questions

• Can every distributed algorithm be written
in a recursive form?

Open questions

• Can every distributed algorithm be written
in a recursive form?

• Our algorithms, based on splitters, have
depth O(n), and quadratic step complexity.
Other type of recursive algorithms?

Open questions

• Can every distributed algorithm be written
in a recursive form?

• Our algorithms, based on splitters, have
depth O(n), and quadratic step complexity.
Other type of recursive algorithms?

• Programming languages for recursive
algorithms?

Open questions

• Can every distributed algorithm be written
in a recursive form?

• Our algorithms, based on splitters, have
depth O(n), and quadratic step complexity.
Other type of recursive algorithms?

• Programming languages for recursive
algorithms?

• Many other interesting question

Thank you

