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Introduction

• Though it is a new field, computer science 
already touches virtually every aspect of 
human endeavor

From “Foundations of Computer Science” by Al Aho and Jeff Ullman



But...

•  fundamentally, computer science is a 
science of abstraction 

• creating the right model for thinking about 
a problem and devising the appropriate 
mechanizable techniques to solve it.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman



Algorithms

• the techniques used to obtain solutions by 
manipulating data as represented by the 
abstractions of a data model

From “Foundations of Computer Science” by Al Aho and Jeff Ullman



Recursion

•  a very useful technique for defining 
concepts and solving problems

• Whenever we need to define an object 
precisely or whenever we need to solve a 
problem, we should always ask, “What does 
the recursive solution look like?”

From “Foundations of Computer Science” by Al Aho and Jeff Ullman



Recursion

• The power of computers comes from their 
ability to execute the same task, or 
different versions of the same task, 
repeatedly.

• in recursion a concept is defined, directly 
or indirectly, in terms of itself.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman



Recursive definitions

define a class of objects in terms of the 
objects themselves. 



To be meaningful...



To be meaningful

1. One or more basis rules, in which some 
simple objects are defined, and

2. Inductive rules, whereby larger objects are 
defined in terms of smaller ones in the 
collection.
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How do I solve 
Towers of Hanoi?

?
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Towers of Hanoi using 
friends

Ask a (younger) friend 
for help with a smaller 

problem

thanks!
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Towers of Hanoi using 
friends

Basic elements in a recursive 
function f :

“Split” into smaller 
problems
invoke f on them
“merge” the results

split



Towers of Hanoi

Challenge:  find a non-recursive algorithm



Recursive programs are often more succinct 
or easier to understand than their iterative 

counterparts. 

More importantly, some problems are more 
easily attacked by recursive programs than 

by iterative programs.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman



Recursion in distributed 
algorithms

(need real friends)

Garfield and Friends
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The benefits of  designing and analyzing 
sequential algorithms using recursion are well 
known.



Motivation

The benefits of  designing and analyzing 
sequential algorithms using recursion are well 
known.

However, little use of recursion has been 
done  in distributed algorithms
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Recursion in distributed 
algorithms

• Instead of just one process, many

• Split the problem now means: subproblems 
for fewer processes

• Get help from smaller friend groups to 
solve the subproblems

• Until a problem for one friend is reached
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Problems

• In seq., functions: one input, one output

• In dist., we consider tasks: distributed 
inputs/outputs, represented as vectors

• Interested mainly in coordination, local 
computation power disregarded

•  see some examples...
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Agreement tasks

• consensus: agree on 1 value

• k-set agreement: on at most k values

• snapshots: on possible views of a run, 
subsets ordered by containment
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Disagreement tasks
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Disagreement tasks

• Leader election: one of the participants

• Symmetry breaking: not all decide the same 
value

• Renaming: all decide different values, names 
on a small name space
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Wait-free read/write shared 
memory model

• n Processes

• Communication

• Asynchronous

• Any number may crash



Distributed splitters

asking help from smaller groups of friends
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Distributed splitters

• Is there a wait-free algorithm to split in two?

• Perfect splitting No!

n processes

left:   n/2 right: n/2



Strong splitter

n processes

left: at least 1 
at most n-1

right: at least 1, 
at most n-1



Strong splitter

• No! Need objects stronger than read/write 
(except for some values of n:  WSB problem [Castañeda,Rajsbaum podc08])

n processes

left: at least 1 
at most n-1

right: at least 1, 
at most n-1
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at most n
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Very Weak splitter

• there is a wait-free algorithm

n processes

left: at least 0 
at most n-1

right: at least 1, 
at most n

when less than 
n arrive,

they go left



Weak splitter

n processes

left: at least 0 
at most n-1

right: at least 0, 
at most n-1

at most one stop



Weak splitter

• Hence there is a wait-free algorithm

n processes

left: at least 0 
at most n-1

right: at least 0, 
at most n-1

at most one stop
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- return left
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Weak splitter

• Algorithm Wsplitter id (n):

- write id, read all registers

- if |read-set| = n, then 

- if id= max{read-set} return stop

- else return right

• else 

- return left

at least one 
sees all

at most n-1 
call this

at most n-1 
call this



Recursive distributed 
programming



snapshots task

• The goal:

- Each process obtains a set of ids of 
participating processes

- the sets can be ordered by containment

• Used to obtain consistent views of an 
execution: ids in the same set are 
concurrent



1,2,3 -,2,- -,2,3ok
views



1,2,- -,2,- 1,-,3NOT ok
views
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VWsplitter snapshots

• Algorithm Snapshot id (n):

- write id, read all registers

- if |read-set| = n, then return read-set

• else 

- Snapshot id (n-1)

at least one 
sees all

at most n-1 
call this
contained 

in the previous 
sets



Immediate snapshots

• Algorithm Snapshot id (n) computes more 
than snapshots:

• the snapshot of a process happens 
immediately after its write

• i in read-set of j then 
• read-set of i subset of read-set of j



Linear recursion

IS(3)
outputs 1,2,3

outputs 1,2

outputs 1

invoke

invoke

invoke

31 2

1

3

1 2

1

2IS(2)

IS(1)



Recursive -> iterated

• when we unfold the recursion, we get a run 
on a sequence of read/write memories

• because each recursive call works with a 
fresh memory



every copy is 
new
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•remaining 2 go 
to next 
memory
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•3rd one 
returns -,2,3

2 31

2 3



•2nd one goes 
alone

2 31

2 3



2 31

2 3

2

dd

-,2,-



•returns -,2,-

2 31

2 3

2

dd



so in this run, 
the views are

-,2,3

-,2,-



so in this run, 
the views are

-,2,3

1,2,3

-,2,-



another run



•arrive in 
arbitrary order
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• all see all

2
1,2,3

31



•and in this 
case, no 
recursive call, 
• they all 
return with 
1,2,3

2 31



•and in this 
case, no 
recursive call, 
• they all 
return with 
1,2,3

2
1,2,3

31



Renaming 
and 

binary branching recursion



Branching recursion

BR(4)

BRL(3)

123

3
4
1 2

34
1

2

34
1

2

4

BRR(3)

BRL(2) BRL(2)

BRL(1) BRR(1) BRL(1) BRR(1)
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Renaming

• Processes choose new names, as few as 
possible

• There is a wait-free algorithm for 2n-1 
names

• and impossible for fewer names (except in some 
exceptional cases)



Recursive renaming

Left to right
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Recursive renaming
• Use weak splitter

• Some go left, and 
solve renaming 
recursively from 
left to right, the 
others do it from 
right to left

• one may stop with 
a new name

Left to right

Right to left

May choose
this name



Renaming
• Algorithm Renaming id (n,First,D):

- write id, read all registers

- Last = First + D(2n-2)

- if |read-set| = n, and id = max read-set 
then return Last

- else return RenamingLR(n-1,Last-1,-D)

• else 

- RenamingRL id (n-1,First,D)
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Renaming
• Algorithm Renaming id (n,First,D):

- write id, read all registers

- Last = First + D(2n-2)

- if |read-set| = n, and id = max read-set 
then return Last

- else return RenamingLR(n-1,Last-1,-D)

• else 

- RenamingRL id (n-1,First,D)

at least one 
sees all

at most n-1 
call this

at most n-1 
call this



Recursive algorithms
facilitate impossibility 

proofs

Emma Louise Jones



Recursive ⇒ iterated

• when we unfold the recursion, we get an 
iterated run

• because each recursive call works with a 
fresh memory



every copy is 
new



•arrive in 
arbitrary order
•last one sees 
all



•arrive in 
arbitrary order
•last one sees 
all

2



•arrive in 
arbitrary order
•last one sees 
all

2



•arrive in 
arbitrary order
•last one sees 
all

2
-,2,-



•arrive in 
arbitrary order
•last one sees 
all

2 3



•arrive in 
arbitrary order
•last one sees 
all

2 -,2,33



•arrive in 
arbitrary order
•last one sees 
all

2 31



•arrive in 
arbitrary order
•last one sees 
all

2
1,2,3

31



•arrive in 
arbitrary order
•last one sees 
all

2
1,2,3

31



•arrive in 
arbitrary order
•last one sees 
all

2 31

returns 1,2,3



•remaining 2 go 
to next 
memory

2 31



•remaining 2 go 
to next 
memory

2 31

2



•remaining 2 go 
to next 
memory

2 31

2
-,2,-



•3rd one 
returns -,2,3

2 31

2
-,2,3

3



•3rd one 
returns -,2,3

2 31

2 3



•2nd one goes 
alone

2 31

2 3



2 31

2 3

2

dd

-,2,-



•returns -,2,-

2 31

2 3

2

dd



limitations come from 
indistinguishability

0

0 1



limitations come from 
indistinguishability

0

0 1

??



limitations come from 
indistinguishability

• The most essential 
distributed computing 
issue is that a process 
has only a local 
perspective of the world 0

0 1

??



limitations come from 
indistinguishability

• The most essential 
distributed computing 
issue is that a process 
has only a local 
perspective of the world

• Represent with a vertex 
labeled with id (green) 
and a local state this 
perspective

0

0 1

??



limitations come from 
indistinguishability

• The most essential 
distributed computing 
issue is that a process 
has only a local 
perspective of the world

• Represent with a vertex 
labeled with id (green) 
and a local state this 
perspective

• E.g., its input is 0

0

0 1

??



limitations come from 
indistinguishability

• The most essential 
distributed computing 
issue is that a process 
has only a local 
perspective of the world

• Represent with a vertex 
labeled with id (green) 
and a local state this 
perspective

• E.g., its input is 0

• Process does not know 
if another process has 
input 0 or 1, a graph

0

0 1

??



Indistinguishability 
graph for 2 
processes



• focus on 2 
processes

• there may be 
more that 
arrive after

2



 sees only itself

2



 sees only itself

2
-,2,-
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2 -,2,33
-,2,-

-,2,3
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• green sees both

• but, doesn't 
know if seen by 
the other
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one round graph for 2 
processes
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iterated runs

solo sees both

round 2:
sees both,

then solo in 2nd



iterated runs

round 1:

round 2:

see each other in 1st 
round

see each other in both 



More rounds

round 1:

round 2:

round 3:

Theorem: protocol graph after k rounds

-longer
-but always connected



implications in terms of

- task solvability
- complexity
- computability
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0 0

1 1
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1 1

Input Graph Output Graph

diferent inputs, 
agree on any

Input/output
relation
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due to connectivity

0 0

1 1

0 0

1 1
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Runs for 2 processes

round 1:

round 2:

round 3:

Theorem: protocol graph after k rounds

-longer
-but always connected



Runs for n processes

Theorem: protocol complex after k rounds

- recursively subdivided
- but always n-connected

• 4 local states in 
some execution

• 3-dim simplex

• e.g. inputs 0,1,2,3

0

1 2

3
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Conclusions

• In SSS‘2010 we present recursive 
algorithms for snapshots, immediate 
snapshots, renaming and swap

• linear, binary branching and multi-branching 
recursion

• Recursion is useful: 

- some new algorithms, 

- facilitates analysis
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Conclusions

• Recursion is also interesting for lower 
bounds, due to recursive structure of the 
iterated models obtained

• In OPODIS‘2010 we show how to 
transform a distributed algorithm to 
iterated

• A survey in LATIN‘2010 (LNCS 6034)

• Connection to topology
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Open questions

• Can every distributed algorithm be written 
in a recursive form?

• Our algorithms, based on splitters, have 
depth O(n),  and quadratic step complexity. 
Other type of recursive algorithms?

• Programming languages for recursive 
algorithms?

• Many other interesting question ....





Thank you


