Distributed Recursion

March 2011

Sergio Rajsbaum
Instituto de Matemáticas, UNAM

joint work with Eli Gafni, UCLA
Introduction

• Though it is a new field, computer science already touches virtually every aspect of human endeavor
But...

- fundamentally, computer science is a science of abstraction
- creating the right model for thinking about a problem and devising the appropriate mechanizable techniques to solve it.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman
Algorithms

- the techniques used to obtain solutions by manipulating data as represented by the abstractions of a data model
Recursion

- a very useful technique for defining concepts and solving problems
- Whenever we need to define an object precisely or whenever we need to solve a problem, we should always ask, “What does the recursive solution look like?”

From “Foundations of Computer Science” by Al Aho and Jeff Ullman
Recursion

• The power of computers comes from their ability to execute the same task, or different versions of the same task, repeatedly.

• in recursion a concept is defined, directly or indirectly, in terms of itself.

From “Foundations of Computer Science” by Al Aho and Jeff Ullman
Recursive definitions

define a class of objects in terms of the objects themselves.
To be meaningful...
To be meaningful

1. One or more basis rules, in which some simple objects are defined, and

2. Inductive rules, whereby larger objects are defined in terms of smaller ones in the collection.
Understanding recursion using “friends”
Understanding recursion using “friends”
Towers of Hanoi
Towers of Hanoi using friends

How do I solve Towers of Hanoi?
Towers of Hanoi using friends

Ask a (younger) friend for help with a smaller problem
Towers of Hanoi using friends

Ask a (younger) friend for help with a smaller problem

move
top 3
Towers of Hanoi using friends

Ask a (younger) friend for help with a smaller problem

thanks
Towers of Hanoi using friends

Ask a (younger) friend for help with a smaller problem

I move one
Towers of Hanoi using friends

Ask a (younger) friend for help with a smaller problem

help again
Towers of Hanoi using friends

Ask a (younger) friend for help with a smaller problem

thanks!
Towers of Hanoi using friends
Towers of Hanoi using friends

Basic elements in a recursive function f:
Towers of Hanoi using friends

Basic elements in a recursive function f:

- “Split” into smaller problems
Towers of Hanoi using friends

Basic elements in a recursive function f:

- “Split” into smaller problems
- invoke f on them
Towers of Hanoi using friends

Basic elements in a recursive function \(f \):

- "Split" into smaller problems
- invoke \(f \) on them
- "merge" the results
Towers of Hanoi using friends

Basic elements in a recursive function f:

- “Split” into smaller problems
- invoke f on them
- “merge” the results
Towers of Hanoi using friends

Basic elements in a recursive function f:

- “Split” into smaller problems
- invoke f on them
- “merge” the results
Towers of Hanoi

Challenge: find a non-recursive algorithm
Recursive programs are often more succinct or easier to understand than their iterative counterparts.

More importantly, some problems are more easily attacked by recursive programs than by iterative programs.
Recursion in distributed algorithms
(need real friends)
Motivation

The benefits of designing and analyzing sequential algorithms using recursion are well known.
Motivation

The benefits of designing and analyzing *sequential* algorithms using recursion are well known.

However, little use of recursion has been done in *distributed* algorithms.
Recursion in distributed algorithms
Recursion in distributed algorithms

• Instead of just one process, many
Recursion in distributed algorithms

- Instead of just one process, many
- Split the problem now means: subproblems for fewer processes
Recursion in distributed algorithms

• Instead of just one process, many
• Split the problem now means: subproblems for fewer processes
• Get help from smaller friend groups to solve the subproblems
Recursion in distributed algorithms

- Instead of just one process, many
- Split the problem now means: subproblems for fewer processes
- Get help from smaller friend groups to solve the subproblems
- Until a problem for one friend is reached
Recursion in distributed algorithms

- Instead of just one process, many
- Split the problem now means: subproblems for fewer processes
- Get help from smaller friend groups to solve the subproblems
- Until a problem for one friend is reached
Problems
Problems

• In seq., functions: one input, one output
Problems

• In seq., functions: one input, one output
• In dist., we consider tasks: distributed inputs/outputs, represented as vectors
Problems

• In seq., functions: one input, one output
• In dist., we consider \textit{tasks}: distributed inputs/outputs, represented as vectors
• Interested mainly in coordination, local computation power disregarded
Problems

- In seq., functions: one input, one output
- In dist., we consider *tasks*: distributed inputs/outputs, represented as vectors
- Interested mainly in coordination, local computation power disregarded
- see some examples...
Agreement tasks
Agreement tasks

• consensus: agree on 1 value
Agreement tasks

- consensus: agree on 1 value
- k-set agreement: on at most k values
Agreement tasks

• consensus: agree on 1 value
• k-set agreement: on at most k values
• snapshots: on possible views of a run, subsets ordered by containment
Disagreement tasks
Disagreement tasks

- Leader election: one of the participants
Disagreement tasks

- Leader election: one of the participants
- Symmetry breaking: not all decide the same value
Disagreement tasks

• Leader election: one of the participants
• Symmetry breaking: not all decide the same value
• Renaming: all decide different values, names on a small name space
Wait-free read/write shared memory model
Wait-free read/write shared memory model

• n Processes
Wait-free read/write shared memory model

- n Processes
- Communication
Wait-free read/write shared memory model

- \(n \) Processes
- Communication
Wait-free read/write shared memory model

- \(n \) Processes
- Communication
- Asynchronous
Wait-free read/write shared memory model

- n Processes
- Communication
- Asynchronous
- Any number may crash
Distributed splitters

asking help from smaller groups of friends
Distributed splitters
Distributed splitters

- Is there a wait-free algorithm to split in two?
Distributed splitters

- Is there a wait-free algorithm to split in two?
- Perfect splitting No!

\[n \] processes

left: \(n/2 \)

right: \(n/2 \)
Strong splitter

\[n \text{ processes} \]

left: at least 1, at most \(n-1 \)

right: at least 1, at most \(n-1 \)
Strong splitter

- No! Need objects stronger than read/write
 (except for some values of n: WSB problem [Castañeda, Rajsbaum podc08])

n processes

left: at least 1
at most $n-1$

right: at least 1,
at most $n-1$
Very Weak splitter

\[n \text{ processes} \]

left: at least \(0\), at most \(n-1\)
right: at least \(1\), at most \(n\)
Very Weak splitter

- there is a wait-free algorithm

n processes

left: at least 0

at most $n-1$

right: at least 1

at most n
Very Weak splitter

- there is a wait-free algorithm

When less than n arrive, they go left.

Left: at least 0, at most $n-1$.

Right: at least 1, at most n.

n processes
Weak splitter

\[n \text{ processes} \]

left: at least 0, at most \(n-1 \)

right: at least 0, at most \(n-1 \)

at most one stop
Weak splitter

- Hence there is a wait-free algorithm

\[n \text{ processes} \]

left: at least 0, at most \(n-1 \)
right: at least 0, at most \(n-1 \)

at most one stop
Very weak splitter

- Algorithm $\text{VWsplitter}_{id}(n)$:
 - write id, read all registers
 - if $|\text{read-set}| = n$, then return right
- else
 - return left
Very weak splitter

- Algorithm \texttt{VWsplitter} \texttt{id} \texttt{(n)}:
 - write id, read all registers
 - if |read-set| = \texttt{n}, then return right
- else
 - return left
Very weak splitter

- Algorithm $\text{VWsplitter } id(n)$:
 - write id, read all registers
 - if $|\text{read-set}| = n$, then return right
- else
 - return left

at least one sees all

at most $n-1$
call this
Weak splitter

• Algorithm \texttt{Wsplitter id}(n):
 - write id, read all registers
 - if $|\text{read-set}| = n$, then
 - if id = max\{read-set\} return stop
 - else return right
 • else
 - return left
Weak splitter

- Algorithm $Wsplitter_{id}(n)$:
 - write id, read all registers
 - if $|\text{read-set}| = n$, then
 - if $id = \max\{\text{read-set}\}$ return stop
 - else return right
 - else return left

- at least one sees all
Weak splitter

• Algorithm $W_{\text{splitter}} id(n)$:
 - write id, read all registers
 - if $|\text{read-set}| = n$, then
 - if id = $\max\{\text{read-set}\}$ return stop
 - else return right
 • else
 - return left

at least one sees all

at most $n-1$ call this
Weak splitter

- Algorithm $\text{Wsplitter}_{id}(n)$:
 - write id, read all registers
 - if $|\text{read-set}| = n$, then
 - if $id = \max\{\text{read-set}\}$ return stop
 - else return right
 - else return left

- at least one sees all
- at most $n-1$ call this
- at most $n-1$ call this
- at most $n-1$ call this
Recursive distributed programming
The goal:
- Each process obtains a set of ids of participating processes
- the sets can be ordered by containment

Used to obtain consistent views of an execution: ids in the same set are concurrent
ok views

1,2,3
-2,-
-2,3
NOT ok
views

1,2,-
-,-2,-
1,-,3
VWsplitter snapshots

- Algorithm $\text{Snapshot id}(n)$:
 - write id, read all registers
 - if $|\text{read-set}| = n$, then return read-set
- else
 - $\text{Snapshot id}(n-1)$
VWsplitter snapshots

- Algorithm \texttt{Snapshot id}(n):
 - write id, read all registers
 - if \(|\text{read-set}| = n\), then return read-set
- else
 - \texttt{Snapshot id}(n-1)

at least one sees all
VWsplitter snapshots

• Algorithm \texttt{Snapshot}_{id}(n):
 - write id, read all registers
 - if \(|\text{read-set}| = n\), then return read-set
• else
 - \texttt{Snapshot}_{id}(n-1)

at least one sees all

at most \(n-1\) call this
VWsplitter snapshots

- Algorithm \textbf{Snapshot}_{id}(n):
 - write id, read all registers
 - if \(|\text{read-set}| = n\), then return read-set
- else
 - \textbf{Snapshot}_{id}(n-1)
Immediate snapshots

- Algorithm **Snapshot** $id(n)$ computes more than snapshots:
- the snapshot of a process happens immediately after its write
- i in read-set of j then

 read-set of i subset of read-set of j
Linear recursion

invoke IS(3) outputs 1,2,3

invoke IS(2) outputs 1,2

invoke IS(1) outputs 1
Recursive -> iterated

• when we unfold the recursion, we get a run on a sequence of read/write memories

• because each recursive call works with a fresh memory
every copy is new
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all

-,-2,-
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all

-2, 3
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all

1, 2, 3
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all

returns 1, 2, 3
remaining 2 go to next memory
remaining 2 go to next memory
remaining 2 go to next memory
• 3rd one returns -2,3

-2,3
• 3rd one returns -1, 2, 3
• 2nd one goes alone
returns -2,-3

• returns -2,-3
so in this run, the views are

-2,3

-2,-
so in this run, the views are

1,2,3

-2,3

-2,-
another run
• Arrive in arbitrary order
• all see all
• all see all

1, 2, 3
• and in this case, no recursive call,
• they all return with 1,2,3
• and in this case, no recursive call, • they all return with 1,2,3
Renaming and binary branching recursion
Branching recursion

BR(4)

BR_L(3)

BR_L(2)

BR_L(1)

BR_R(3)

BR_R(2)

BR_R(1)
Renaming
Renaming

• Processes choose new names, as few as possible
Renaming

• Processes choose new names, as few as possible

• There is a wait-free algorithm for $2n-1$ names
Renaming

• Processes choose new names, as few as possible
• There is a wait-free algorithm for $2n-1$ names
• and impossible for fewer names (except in some exceptional cases)
Recursive renaming

Left to right

Right to left
Recursive renaming

- Use weak splitter

Left to right

Right to left
Recursive renaming

- Use weak splitter
- Some go left, and solve renaming recursively from left to right, the others do it from right to left
Recursive renaming

- Use weak splitter
- Some go left, and solve renaming recursively from left to right, the others do it from right to left
- one may stop with a new name
Recursive renaming

- Use weak splitter
- Some go left, and solve renaming recursively from left to right, the others do it from right to left
- one may stop with a new name
Renaming

- Algorithm Renaming\(_{id}\)\((n,First,D)\):
 - write \(id\), read all registers
 - \(Last = First + D(2n-2)\)
 - if \(|\text{read-set}| = n\), and \(id = \text{max read-set}\) then return \(Last\)
 - else return RenamingLR\((n-1,Last-1,-D)\)

- else
 - RenamingRL\(_{id}\)\((n-1,First,D)\)
Renaming

- Algorithm $\text{Renaming}_{id}(n, \text{First}, D)$:
 - write id, read all registers
 - $Last = \text{First} + D(2n-2)$
 - if $|\text{read-set}| = n$, and $id = \text{max read-set}$ then return $Last$
 - else return $\text{RenamingLR}(n-1, Last-1, -D)$
- else
 - $\text{RenamingRL}_{id}(n-1, \text{First}, D)$
Renaming

• Algorithm Renaming \(id \) \((n, First, D)\):
 - write \(id \), read all registers
 - \(Last = First + D(2n-2) \)
 - if \(|\text{read-set}| = n \), and \(id = \max \text{read-set} \) then return \(Last \)
 - else return RenamingLR\((n-1, Last-1, -D)\)

• else
 - RenamingRL \(id \) \((n-1, First, D)\)
Renaming

• Algorithm Renaming\textsubscript{id} (n, First, D):
 - write \textit{id}, read all registers
 - \textit{Last} = \textit{First} + D(2n-2)
 - if |read-set| = \textit{n}, and \textit{id} = max read-set then return \textit{Last}
 - else return RenamingLR(n-1, Last-1, -D)

• else
 - \textit{RenamingRL}\textsubscript{id} (n-1, First, D)
Recursive algorithms facilitate impossibility proofs

Emma Louise Jones
Recursive \Rightarrow iterated

- when we unfold the recursion, we get an iterated run
- because each recursive call works with a fresh memory
every copy is new
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all

-2,
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all

\[-,2,3\]
• Arrive in arbitrary order
• Last one sees all
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all
• arrive in arbitrary order
• last one sees all

returns 1, 2, 3
• remaining 2 go to next memory
remaining 2 go to next memory
remaining 2 go to next memory

1, 2, 3

-, 2, -
• 3rd one returns -,2,3
• 3rd one returns -,2,3
• 2nd one goes alone
returns -2,-2,-3
limitations come from indistinguishability
limitations come from indistinguishability
limitations come from indistinguishability

- The most essential distributed computing issue is that a process has only a local perspective of the world
limitations come from indistinguishability

- The most essential distributed computing issue is that a process has only a local perspective of the world.
- Represent with a vertex labeled with id (green) and a local state this perspective.
limitations come from indistinguishability

- The most essential distributed computing issue is that a process has only a local perspective of the world.
- Represent with a vertex labeled with id (green) and a local state this perspective.
- E.g., its input is 0.
limitations come from indistinguishability

- The most essential distributed computing issue is that a process has only a local perspective of the world.
- Represent with a vertex labeled with id (green) and a local state this perspective.
- E.g., its input is 0.
- Process does not know if another process has input 0 or 1, a graph.
Indistinguishability graph for 2 processes
• focus on 2 processes

• there may be more that arrive after
sees only itself
sees only itself
• green sees both
• but ...
• green sees both
• but ...
• green sees both

• but ...
• green sees both

• but, doesn't know if seen by the other
• green sees both
• but, doesn't know if seen by the other
• green sees both

• but, doesn't know if seen by the other
• green sees both

• but, doesn't know if seen by the other
• green sees both

• but, doesn't know if seen by the other
one round graph for 2 processes
one round graph for 2 processes

solo
one round graph for 2 processes
one round graph for 2 processes
iterated runs

for each run in round 1 there are the same 3 runs in the next round

round 1:

round 2:
iterated runs

for each run in round 1 there are the same 3 runs in the next round

round 1:

round 2:
iterated runs

for each run in round 1 there are the same 3 runs in the next round

round 1:

round 2:
iterated runs

for each run in round 1 there are the same 3 runs in the next round

round 1:

round 2:
iterated runs

for each run in round 1 there are the same 3 runs in the next round

round 1:

round 2:
iterated runs

round 2:
solo
sees both
iterated runs

- **solo in both rounds**

- **solo in both rounds**

- **sees both**

round 2:
iterated runs

solo

sees both

round 2:
iterated runs

round 2:

solo

sees both

sees both, then solo in 2nd
iterated runs

round 1:

see each other in 1st round

round 2:

see each other in both
More rounds

round 1:

round 2:

round 3:

Theorem: protocol graph after k rounds
- longer
- but always connected
implications in terms of

- task solvability
- complexity
- computability
representing tasks
binary consensus

Input Graph

Output Graph
representing tasks
binary consensus

Input Graph

Output Graph

Input/output relation
representing tasks

binary consensus

start with same input
decide same output

Input/output relation

Input Graph

Output Graph
representing tasks
binary consensus

Input Graph

Output Graph

Input/output relation
different inputs, agree on any
Binary consensus is not solvable due to connectivity

Input Graph

Output Graph
Binary consensus is not solvable due to connectivity

Input Graph	Output Graph
0 0
[Graph showing nodes and edges]

Input/output relation
Binary consensus is not solvable due to connectivity

Each edge is an initial configuration of the protocol

Input Graph

Output Graph

Input/output relation
Binary consensus is not solvable due to connectivity

Input Graph

Output Graph

Input/output relation

Each edge is an initial configuration of the protocol subdivided after 1 round.
Binary consensus is not solvable due to connectivity.

Input Graph

Output Graph

Input/output relation

no solution in 1 round
Binary consensus is not solvable due to connectivity.

Input Graph

Output Graph
Binary consensus is not solvable due to connectivity.

Each edge is an initial configuration of the protocol subdivided after 1 round. No solution in 1 round decide.

No solution in k rounds decide.

Input Graph

Output Graph

Input/output relation
Binary consensus is not solvable due to connectivity.

Input Graph

Output Graph

no solution in k rounds

decide

decide

Input/output relation
Binary consensus is not solvable due to connectivity.

Each edge is an initial configuration of the protocol subdivided after 1 round with no solution in 1 round.

The diagram shows an input graph and an output graph. The input/output relation indicates that the decision is made after k rounds, with no solution in 1 round.
Runs for 2 processes

round 1:

round 2:

round 3:

Theorem: protocol graph after k rounds

- longer
- but always connected
Runs for \(n \) processes

- 4 local states in some execution
- 3-dim simplex
- e.g. inputs 0, 1, 2, 3

Theorem: protocol complex after \(k \) rounds

- recursively subdivided
- but always \(n \)-connected
Conclusions
Conclusions
Conclusions

• In SSS‘2010 we present recursive algorithms for snapshots, immediate snapshots, renaming and swap
Conclusions

• In SSS‘2010 we present recursive algorithms for snapshots, immediate snapshots, renaming and swap
• linear, binary branching and multi-branching recursion
Conclusions

• In SSS‘2010 we present recursive algorithms for snapshots, immediate snapshots, renaming and swap

• linear, binary branching and multi-branching recursion

• Recursion is useful:
Conclusions

- In SSS‘2010 we present recursive algorithms for snapshots, immediate snapshots, renaming and swap
- linear, binary branching and multi-branching recursion
- Recursion is useful:
 - some new algorithms,
Conclusions

• In SSS‘2010 we present recursive algorithms for snapshots, immediate snapshots, renaming and swap

• linear, binary branching and multi-branching recursion

• Recursion is useful:
 – some new algorithms,
 – facilitates analysis
Conclusions
Conclusions

• Recursion is also interesting for lower bounds, due to recursive structure of the iterated models obtained
Conclusions

- Recursion is also interesting for lower bounds, due to recursive structure of the iterated models obtained.
- In OPODIS'2010 we show how to transform a distributed algorithm to iterated.
Conclusions

• Recursion is also interesting for lower bounds, due to recursive structure of the iterated models obtained.

• In OPODIS‘2010 we show how to transform a distributed algorithm to iterated.

• A survey in LATIN‘2010 (LNCS 6034)
Conclusions

• Recursion is also interesting for lower bounds, due to recursive structure of the iterated models obtained

• In OPODIS‘2010 we show how to transform a distributed algorithm to iterated

• A survey in LATIN‘2010 (LNCS 6034)

• Connection to topology
Open questions
Open questions

• Can every distributed algorithm be written in a recursive form?
Open questions

• Can every distributed algorithm be written in a recursive form?

• Our algorithms, based on splitters, have depth $O(n)$, and quadratic step complexity. Other type of recursive algorithms?
Open questions

• Can every distributed algorithm be written in a recursive form?

• Our algorithms, based on splitters, have depth $O(n)$, and quadratic step complexity. Other type of recursive algorithms?

• Programming languages for recursive algorithms?
Open questions

• Can every distributed algorithm be written in a recursive form?

• Our algorithms, based on splitters, have depth $O(n)$, and quadratic step complexity. Other type of recursive algorithms?

• Programming languages for recursive algorithms?

• Many other interesting question
Thank you