Exercises

- 1. Let \mathcal{A} be an alphabet of size m. How many points $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$ are fixed points? How many points are periodic of periodo $n \geq 2$? How many periodic points have minimal period 12?
- 2. Let $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{A}^*$.
 - (a) Show that $X_{\mathcal{F}_1} \cap X_{\mathcal{F}_2} = X_{\mathcal{F}_1 \cup \mathcal{F}_2}$. Use this fact to show that the intersection of two shift spaces over the same alphabet is a shift space. Extend this result to arbitrary intersections of shidt spaces over the same alphabet.
 - (b) Show that if $\mathcal{F}_1 \subseteq \mathcal{F}_2$, then $X_{\mathcal{F}_1} \supseteq X_{\mathcal{F}_2}$. What is the relationship between $X_{\mathcal{F}_1 \cup X_{\mathcal{F}_2}}$ and $X_{\mathcal{F}_1 \cap \mathcal{F}_2}$?
- 3. Let $\mathcal{L}_1 \subset \mathcal{A}^*$ y $\mathcal{L}_2 \subset \mathcal{B}^*$ be the languages of two shift spaces over the alphabets \mathcal{A} y \mathcal{B} . Hence we already know that the following two properties are satisfied:
 - Extension: $\forall w \in \mathcal{L}, \exists u, v \in \mathcal{L} \setminus \{\epsilon\}$ such that $uwv \in \mathcal{L}$ (ϵ is the empty word, i.e. u and v must have length ≥ 1).
 - Factor: $\forall w = a_1 \dots a_n \in \mathcal{L}, \ a_k \dots a_{k+r} \in \mathcal{L} \ \forall \ k \geq 1 \ \text{and} \ r \geq 0 \ \text{such that} \ k+r \leq n.$

Show that $\mathcal{L}_1 \cup \mathcal{L}_2$ satisfies both the extension and factor properties. Then show that the union of two shift spaces is a shift space. Explain why this result can not be extended to arbitrary unions of shift spaces, even when the alphabet is the same for all.

- 4. Let \mathcal{L}_1 and \mathcal{L}_2 be as in the previous exercise. Determine whether or not $\mathcal{L}_1 \cap \mathcal{L}_2$ is the language of a shift space, i.e. determine if the intersections of this two languages satisfies both the extension and factor properties.
- 5. Let $\mathcal{A} = \{0,1\}$ be a binary alphabet. Let $X \subset \mathcal{A}^{\mathbb{Z}}$ be the set of points $\mathbf{x} = (x_n)_{n \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ such that there exists exactly on entry with a 1 and the rest of the entries are 0.
 - (a) Show that X is σ -invariant.
 - (b) Show that X is not a shift space.
 - (c) Show that $X \cup \{0^{\infty}\}$ is a shift space, where $0^{\infty} \in \mathcal{A}^{\mathbb{Z}}$ is the point with all of its coordinates equal to 0.
 - (d) Find a subset of forbidden words $\mathcal{F} \subset \mathcal{A}^*$ such that $X \cup \{0^{\infty}\} = \mathsf{X}_{\mathcal{F}}$.
 - (e) Determine if $X \cup \{0^{\infty}\}$ is a shift of finite type.
 - (f) Find the periodic points of $X \cup \{0^{\infty}\}$.

- 6. Let $B_n = |\mathcal{B}_n(X_{\{11\}}|)$ be the amount of *n*-blocks of the golden mean shift. Identify the counting sequence $(B_n)_{n\geq 0}$ and then find the generating function $f(z) = \sum_{n\geq 0} B_n z^n$.
- 7. For the full $\{-1, +1\}$ -shift and $k \ge 1$, find the number of k-blocks having the property that the sum of the symbols is 0.
- 8. Let $x \in X$ be a periodic point of minimal period k in a dynamical system (X, T). Show that if $n \ge 1$ is such that $T^n(x)$, then k|n, that is, k divides n.
- 9. Let $S \subseteq \{0, 1, 2, 3, ...\}$ be a *finite* subset of the nonnegative integers. Let $X(S) \subseteq \{0, 1\}^{\mathbb{Z}}$ be the set of points in $\{0, 1\}^{\mathbb{Z}}$ such that 1 occurs infinitely often both in the past and future, and between any two conecutive occurrences of 1, the amount of 0s belongs to S. If S is infinite, then we define X(S) as before but we also add the point $0^{\infty} = \dots 000 \dots$ (why?).
 - (a) Describe X(S) when $S = \{1\}$.
 - (b) Describe X(S) when $S = \{4, 5, 6, 7\}$.
 - (c) Show that the full shift is an S-gap shift (find S).
 - (d) Show that the golden mean shift an S-gap shift (find S).
 - (e) Show that if S is infinite, then X(S) is no longer a shift space.
 - (f) Show that $X(S) \cup \{0^{\infty}\}$ is always a shift space (even when S is infinite).
 - (g) When S is infinite, we let the S-gap shift be $X(S) \cup \{0^{\infty}\}$. Show that the even shift is an S-gap shift (find S).
 - (h) For which sets S does the S-gap shift have infinitely many periodic points?
- 10. Consider the binary alphabet $\{0,1\}$. Describe the shift space X_{01} .
- 11. Let X be the full A-shift.
 - (a) Show that if X_1 and X_2 are shift spaces such that $X_1 \cup X_2 = X$, then $X_1 = X$ or $X_2 = X$ (or both).
 - (b) Extend your argument to show that if X is the union of any collection $\{X_{\alpha}\}$ of shift spaces, then there is an α such that $X = X_{\alpha}$.
 - (c) Explain why these statements no longer hold if we merely assume that X is a shift space (not full).
- 12. Let X be a shift space and let $N \geq 1$. Shoe that there is a collection \mathcal{F} of forbidden blocks of length at least N such that $X = X_{\mathcal{F}}$.
- 13. Show that there are uncountably many shift spaces contained in the full 2-shift. (*Hint*: consider the S-gap shift.)

- 14. Let \mathcal{L}_1 and \mathcal{L}_2 be the languages of two shift spaces (i.e. they both satisfy both the factor and extension properties). Show that $\mathcal{L}_1 \cup \mathcal{L}_2$ satisfies both the factor and extension properties. Use this to show that the union of two shift spaces is also a shift space. Now let $\mathcal{L}_1\mathcal{L}_2, \mathcal{L}_3...$ be a countable collection of languages of shift spaces over the same alphabet. Show that $\cup_{n\geq 1}\mathcal{L}_n$ is also a language of a shift space. Why can't you use this to show that the union of an infinite number of shift spaces over the same alphabet is also a shift space?
- 15. A shift space X is *irreducible* if for every two legal words $u, v \in \mathcal{B}(X)$, there exists a legal word $w \in \mathcal{B}(X)$ such that uwv is legal, that is, $uwv \in \mathcal{B}(X)$.
 - (a) Is the intersection of two irreducible shift spaces always irreducible?
 - (b) Let $A = \{0, 1\}$. Is $X_{\{01\}}$ irreducible?
 - (c) If X is irreducible, then show that for any pair $u, v \in \mathcal{B}(X)$ there exists a non-empty word $w \in \mathcal{B}(X)$ such that $uwv \in \mathcal{B}(X)$.
- 16. Let $\phi: X \to Y$ and $\psi: Y \to Z$ be two sliding block codes.
 - (a) Show that $\psi \circ \phi$ is a sliding block code.
 - (b) Show that if both are factor codes, then the composition is also a factor code, and similarly for embeddings and conjugacies.
- 17. Let $X = \{0,1\}^{\mathbb{Z}}$ and $\Phi: \{0,1\} \to \{0,1\}$ be the 1-block map given by $\Phi(0) = 1$ and $\Phi(1) = 0$. Show that $\phi = \Phi_{\infty}: X \to X$ is a conjugacy of the full two-shift to itself.
- 18. Let $X = \{0,1\}^{\mathbb{Z}}$ be (again) the full 2-shift (over the alphabet $\{0,1\}$). Define the block map $\Phi\{0,1\}^4 \to \{0,1\}$ by

$$\Phi(abcd) = b + a(c+1)d \pmod{2}$$

and put $\phi = \Phi_{\infty}^{[-1,2]}$.

- (a) Describe the action of ϕ on $x \in X$ in terms of the blocks 1001 and 1101 appearing in x.
- (b) Show that $\phi^2(x) = x$ for all $x \in X$, and hence show that ϕ is a conjugacy of X to itself.
- (c) Use this method to find another conjugacies of the full 2-shift to itself.
- (d) Let $\phi: X \to Y$ be a sliding block code, and let $Z \subset Y$ be a shift space contained in Y. Show that $\varphi^{-1}(Z) = \{x \in X : \phi(x) \in Z\}$ is a shift space (contained in X).
- 19. Show that a forbidden list $\mathcal{F} \subseteq \mathcal{A}^*$ is such that $X_{\mathcal{F}} = \emptyset$ if and only if there exists N such that wheneveer u and v are blocks with |u| = N, then some subblock of uvu belongs to \mathcal{F} .

- 20. Let $X_1 \supseteq X_2 \supseteq X_3 \supseteq \ldots$ be shift spaces whose intersection is X. For each $N \ge 1$, use the Cantor diagonal argument to prove that there is a $K \ge 1$ such that $\mathcal{B}_N(X_k) = \mathcal{B}(X)$ for all $k \ge K$.
- 21. Decide which of the following is a shift of finite type (if so, exhibit a finite generating set of forbidden words):
 - (a) The gap shift X(S) when S = 1, 2, 3.
 - (b) The gap shift X(S) when S is the set of prime numbers (the so called *prime shift*).
 - (c) The context free shift.
- 22. Let $\mathcal{A} = \{-1, +1\}$ and let $c \geq 0$. Let $X \subseteq \mathcal{A}$ be defined by the rule that for every word w occurring in any point of X, the algebraic sum s of the symbols in w satisfies $-c \leq s \leq c$. Show that X is a shift space. Is it a shift of finite type? Is it a sofic shift?
- 23. Let X and Y be shifts of finite type. Show that $X \cap Y$ is a shift of finite type. Must $X \cup Y$ be a shift of finite type?
- 24. Let $\mathcal{A} = \{0,1\}$ and $\mathcal{F} = \{11,00000\}$. Find a collection \mathcal{F}_5 of 5-blocks such that $X_{\mathcal{F}} = X_{\mathcal{F}_5}$.
- 25. If \mathcal{F} is a collection of blocks for which $X_{\mathcal{F}} = \emptyset$, must there always be a *finite* subcollection $\mathcal{F}_0 \subseteq \text{such that } X_{\mathcal{F}_0} = \emptyset$?
- 26. Let G be the graph of the full two shift (see Figure 1). Draw the graph of $G^{[3]}$.

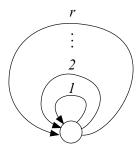


Figure 1: The graph of the full r-shift.

- 27. Let $\mathcal{A} = \{0,1\}, \mathcal{F} = \{000,111\}$ and $X = X_{\mathcal{F}}$.
 - (a) Construct a graph G for which $X_G = X_{\mathcal{F}}^{[3]}$.
 - (b) Use the adjacency matrix of G to compute the number of points in X with period 5.
 - (c) Compute the entropy h(X).
- 28. For each pair of adjacency matrices below, decide whether it is possible to obtain the graph of the second from the graph of the first by a finite sequence of splittings and amalgamations:

(a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

(b)
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

(c)
$$(2)$$
 and $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

(d)
$$\begin{pmatrix} 2 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

29. Let \mathcal{G} and \mathcal{H} be the labeled graphs with symbolic adjacency matrices

$$\begin{pmatrix} a & b \\ b & \varnothing \end{pmatrix}$$
 and $\begin{pmatrix} a & a \\ b & \varnothing \end{pmatrix}$.

Show that $X_{\mathcal{G}}$ is not conjugate to $X_{\mathcal{H}}$.

30. For the labelled graphs \mathcal{G} corresponding to each of the following symbolic adjacency matrices, compute the follower set graph of $X_{\mathcal{G}}$. Then find a right resolving presentation of $X_{\mathcal{G}}$.

$$\begin{pmatrix} \varnothing & a & a \\ \varnothing & \varnothing & b \\ a & b & \varnothing \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} a & a+b & a+c \\ a & \varnothing & \varnothing \\ a & \varnothing & \varnothing \end{pmatrix}.$$