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1 Discrete dynamical systems

A (discrete) dynamical system consists of a space X and a transformation f : X → X.
In general, X carries some sort of structure:

• X is a topological space.

• X is a measurable space (Borel), and comes with a probability measure.

• X is a metric space.

• X is a compact metric space.

• X is a differentiable manifold.

Also, in general f is required to preserve the structure:

• f is continuous.

• f is measurable, and it is measure preserving.

• f is expanding, contracting, an isometry, etc.

• f is differentiable.

Each case above gives rise to a whole area of study: topological dynamics, measurable
dynamics, ergodic theory, dynamics of compact metric spaces, differentiable dynamics,
etc. Also, we have the following two cases:

• f is invertible (a bijection).

• f is not invertible.

We will be mainly interested in topological dynamical systems1 (TDS), that is, systems
(X, f) where X is a topological space and f : X → X is continuous. Furthermore, in
general, the topology will be metrizable and X will be a compact metric space. In
addition, we will mainly focus on the case when f is invertible. Henceforth, unless
otherwise stated, by a dynamical system we will mean a pair (X, f) where X = (X, d)
is a compact metrizable space (d : X ×X → R+ is a metric that induces the topology),
and f : X → X is a continuous function or a homeomorphism (automorphism).

2 Orbits and natural extensions

Let (X, f) be a dynamical system and let x ∈ X.

• Positive semiorbit (or forward orbit):

O+
f (x) = {x, f(x), f 2(x), . . .} ∈ XN.

• Negative semiorbit (or backward orbit): If f is invertible,

O−f (x) = {. . . , f−3(x), f−2(x), f−1(x)} ∈ XZ<0 .

1Later, if there is time and interest, we will consider measurable dynamical systems.
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• Orbit : If f is invertible,

Of (x) = O+
f (x) dO+

f (x) = {. . . , f−2(x), f−1(x), x, f(x), f 2(x), . . .} ∈ XZ.

We shall view (semi)orbits both as sets and as (either one-sided –left or right–, or
double-sided) infinite sequences (the context should always be clear2).

A point x ∈ X is transitive for f if O+
f (x) = X.

Proposition 2.1 (See [1], pp. 32). If (X, f) is invertible, X has no isolated points,
and there is a dense orbit, then there exists a dense forward orbit.

A TDS (X, f) is minimal if it possesses no closed non-empty invariants subsets (i.e.
Y ( X, Y 6= ∅, and fn(Y ) ⊆ Y for all n)3. If (X, d) is compact, then (X, f) is minimal
if and only if every point x ∈ X is transitive.

The natural extension of an (invertible) TDS (X, f) is the (invertible) TDS (X, f) where

X = {Of (x) | x ∈ X} ⊆ XZ

(the orbits here are thought as sequences), and f : X → X is defined as follows: for
every x ∈ X,

f
(
Of (x)

)
n

= f
(
Of (x)n

)
.

Here XZ inherits the product topology. Since X is compact metrizable and f is con-
tinuous (and invertible), (X, f) is a compact metrizable (invertible) TDS. Observe that
f is the left shift map automorphism, that is f = σ where σ : X→ X acts as follows:

Of (x) = · · · , f−2(x) , f−1(x) , x , f 1(x) , f 2(x) , · · ·

↓ σ ↓ ↙ ↓ ↙ ↓ ↙ ↓ ↙ ↓

f
(
Of (x)

)
= · · · , f−1(x) , x , f 1(x) , f 2(x) , f 3(x) , · · ·

.

A similar definition applies to non-invertible TDS.

3 Periodic points and zeta functions

Let (X, f) be a dynamical system. A point x ∈ X is periodic if the following holds:

∃ n ≥ 1 such that fn(x) = x.

If the above holds, then we say that x is a periodic point of period n. Observe that if x is
periodic of period n, then it is also periodic of period nk for every k ≥ 1. Thus it makes
sense to define the minimal period of x as the smallest n ≥ 1 such that fn(x) = x.

A point x ∈ X is eventually periodic if the following holds:

∃k ≥ 0 and n ≥ 1 such that fn+k(x) = fk(x).

If f is invertible, then eventual periodicity =⇒ periodicity.

2For example, if we write something like Of (x)k, then we will be refering to the kth entry of the
sequence determined by the orbit of x, i.e. Of (x)k = fk(x).

3Otherwise (Y, f |Y ) is a TDS, a subsystem of (X, f). Thus a minimal system has no proper sub-
systems.
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Proposition 3.1. Let (X, f) be an invertible dynamical system.

• A point x ∈ X is periodic if and only if |Of (x)| <∞.

• A point x ∈ X is periodic of minimal period n ≥ 1 if and only if |Of (x)| = n.

• If x ∈ X is periodic of period m ≥ 1 and minimal period n ≥ 1, then n|m.

Proof. Exercise.

For every positive integer n ≥ 1, let the set of periodic points of period n and the set
of periodic points of minimal period n be

• Pn(X, f) = {x ∈ X | fn(x) = x}

• Qn(X, f) = {x ∈ Pn(X, f) | fk(x) 6= x for all k = 1, . . . , n− 1}
respectively (observe that Qn(X, f) ⊆ Pn(X, f)).

Notation. We will also write Pn(f), Pn(X), and sometimes simply Pn, and similarly
for Qn, whenever there is no room for confusion (similar abuse of notation will occur
in other instances).

Also, let P(X, f) =
⋃
n≥1Pn(X, f) be the set of all periodic points. If f is invertible,

then x ∈ X is periodic if and only if f(x) is periodic, and in this case

(X \ P(X), f |X\P(X))

is a (generally non-compact) dynamical system called the free part of (X, f). Let

• pn(X, f) = |Pn(X)|

• qn(X, f) = |Qn(X)|
Finite assumption. pn is finite for every n ≥ 1.

Clearly,

pn =
∑

k|n

qk. (1)

On the other hand, Möbius inversion yields the converse (see Appendix):

qn =
∑

k|n

µ
(n
k

)
pk. (2)

The counting sequence {pn} is coded in the Artin-Mazur (or exp-log, or dynamic) zeta
function defined by

ζX,f (z) = exp

(∑

n≥1

pn
n
zn

)
. (3)

We say that a dynamical system (X, f) has a well defined zeta function if, in addition
to the condition pn <∞ for every n ≥ 1, we also have R−1 = lim(pn)1/n <∞. In this
case, ζ(z) is an analytic function in the disc centered at the origin and radius R.
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Exercise: We have seen that {pn} determines {qn} and viceversa (see equations (1)
and (2)). Equation (3) expresses the zeta function in terms of the counting sequence of
periodic points, namely {pn}. For the counting sequences of minimal periodic points,
i.e. {qn}, show that the zeta functions admits the following product formula:

ζ(z) =
∏

n≥1

(1− zqn/n)−1

(observe that qn/n is the number of orbits of size n).

4 Examples

• Interval maps. Let f : [0, 1] → [0, 1] be a continuous function. Then ([0, 1], f)
is a TDS.

<latexit sha1_base64="OI8wGuiuh8NMvgspqEl39qjKvGI=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSK0B0sipXoRil48VrAf0May2W7apZtN2N1oS+j/8OJBEa/+F2/+G7dtDtr6YODx3gwz87yIM6Vt+9taWV1b39jMbGW3d3b39nMHhw0VxpLQOgl5KFseVpQzQeuaaU5bkaQ48DhtesObqd98pFKxUNzrcUTdAPcF8xnB2kgPfmFURFeoPCo4Z6NiN5e3S/YMaJk4KclDilo399XphSQOqNCEY6Xajh1pN8FSM8LpJNuJFY0wGeI+bRsqcECVm8yunqBTo/SQH0pTQqOZ+nsiwYFS48AznQHWA7XoTcX/vHas/Us3YSKKNRVkvsiPOdIhmkaAekxSovnYEEwkM7ciMsASE22CypoQnMWXl0njvORUSpW7cr56ncaRgWM4gQI4cAFVuIUa1IGAhGd4hTfryXqx3q2PeeuKlc4cwR9Ynz94TZCQ</latexit>

f(x) = 4x(1 � x)

1

1

<latexit sha1_base64="8reDaYacPPPz/Q3gc6exw60Q6a4=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUS9kVqV6EohePFewHtEvJptk2NJusSbZYlv4OLx4U8eqP8ea/MW33oK0PBh7vzTAzL4g508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NAyUYTWieRStQKsKWeC1g0znLZiRXEUcNoMhrdTvzmiSjMpHsw4pn6E+4KFjGBjJT8sPZ2ha9QhPWl0t1B0y+4MaJl4GSlChlq38NXpSZJEVBjCsdZtz42Nn2JlGOF0ku8kmsaYDHGfti0VOKLaT2dHT9CpVXoolMqWMGim/p5IcaT1OApsZ4TNQC96U/E/r52Y8MpPmYgTQwWZLwoTjoxE0wRQjylKDB9bgoli9lZEBlhhYmxOeRuCt/jyMmmcl71KuXJ/UazeZHHk4BhOoAQeXEIV7qAGdSDwCM/wCm/OyHlx3p2PeeuKk80cwR84nz9NjZEs</latexit>

f(x) = · · ·

1

1

1

1

<latexit sha1_base64="eJhCHuyO1AzFlUIIM5b/AewFD/I=">AAAB8XicbVBNT8JAEJ3iF+IX6tHLRmKCF9ISgl5MiF48YiIfESrZLlvYsN02u1sDafgXXjxojFf/jTf/jQv0oOBLJnl5byYz87yIM6Vt+9vKrK1vbG5lt3M7u3v7B/nDo6YKY0log4Q8lG0PK8qZoA3NNKftSFIceJy2vNHNzG89UalYKO71JKJugAeC+YxgbaQHvzg+R1do/Fju5Qt2yZ4DrRInJQVIUe/lv7r9kMQBFZpwrFTHsSPtJlhqRjid5rqxohEmIzygHUMFDqhyk/nFU3RmlD7yQ2lKaDRXf08kOFBqEnimM8B6qJa9mfif14m1f+kmTESxpoIsFvkxRzpEs/dRn0lKNJ8Ygolk5lZEhlhiok1IOROCs/zyKmmWS061VL2rFGrXaRxZOIFTKIIDF1CDW6hDAwgIeIZXeLOU9WK9Wx+L1oyVzhzDH1ifP6Woj50=</latexit>

f(x) = x2

1

1

<latexit sha1_base64="SHb6ehkAKnZwK8aELYsxui5d280="></latexit>

f(x) =

8
<
:

2x if x 2 [0, 1/2]

2(1 � x) if x 2 [1/2, 1]

<latexit sha1_base64="5L04TXAKv8cHsw/OWNEb3ApXMic=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquSPUiFL14rGA/oF1KNs22sdlkSbJiWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjG6mfuuRKs2kuDfjmPoRHggWMoKNlZph+ekUXfWKJbfizoCWiZeREmSo94pf3b4kSUSFIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUoEjqv10du0EnVilj0KpbAmDZurviRRHWo+jwHZG2Az1ojcV//M6iQkv/ZSJODFUkPmiMOHISDR9HfWZosTwsSWYKGZvRWSIFSbGBlSwIXiLLy+T5lnFq1aqd+el2nUWRx6O4BjK4MEF1OAW6tAAAg/wDK/w5kjnxXl3PuatOSebOYQ/cD5/AElIjk0=</latexit>

f(x) =

Figure 1: Interval maps.

Exercise. Study the periodic points of the maps above.

• Circle rotations. Let

S1 = {z ∈ C : |z| = 1} = {e2πix : x ∈ [0, 1]} = [0, 1]/ ∼

be the unitary circle (here ∼ means that 0 and 1 are identified). For α ∈ R, let
f = Rα : S1 → S1 be the rotation of S1 by angle 2πα, i.e.

Rα(x) = x+ α mod 1.

Then (S1, Rα) is a TDS.

<latexit sha1_base64="LN/IUMhRUIYtffon8f17KWClfJg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cK9gPaUCbbTbt2sxt2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemHCmjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJVhDaJ5FJ1QtSUM0GbhhlOO4miGIectsPx7cxvP1GlmRQPZpLQIMahYBEjaKzU6iFPRtgvV7yqN4e7SvycVCBHo1/+6g0kSWMqDOGoddf3EhNkqAwjnE5LvVTTBMkYh7RrqcCY6iCbXzt1z6wycCOpbAnjztXfExnGWk/i0HbGaEZ62ZuJ/3nd1ETXQcZEkhoqyGJRlHLXSHf2ujtgihLDJ5YgUcze6pIRKiTGBlSyIfjLL6+S1kXVr1Vr95eV+k0eRxFO4BTOwYcrqMMdNKAJBB7hGV7hzZHOi/PufCxaC04+cwx/4Hz+AI8TjyM=</latexit>↵
<latexit sha1_base64="vtUhjvouiS6k76ttA9H6+OxdfEI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1Ku1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOnLjQc=</latexit>x

<latexit sha1_base64="mTprq26t4EZVOqlKalzlnyPA5pM=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyKVI9FLx6r2A/YLiWbZtvQbLIks2JZ+jO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8MBHcgOt+Oyura+sbm4Wt4vbO7t5+6eCwZVSqKWtSJZTuhMQwwSVrAgfBOolmJA4Fa4ejm6nffmTacCUfYJywICYDySNOCVjJv+91iUiGpPJ01iuV3ao7A14mXk7KKEejV/rq9hVNYyaBCmKM77kJBBnRwKlgk2I3NSwhdEQGzLdUkpiZIJudPMGnVunjSGlbEvBM/T2RkdiYcRzazpjA0Cx6U/E/z08hugoyLpMUmKTzRVEqMCg8/R/3uWYUxNgSQjW3t2I6JJpQsCkVbQje4svLpHVe9WrV2t1FuX6dx1FAx+gEVZCHLlEd3aIGaiKKFHpGr+jNAefFeXc+5q0rTj5zhP7A+fwBk1uQzw==</latexit>

R↵(x)

<latexit sha1_base64="1nDLaIBzHyghQadVjf/dBKX0My8=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WPRi8cK9gPaUDbbSbt0sxt2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WNza3tneJuaW//4PCofHzSMirVDJpMCaU7ITUguIQmchTQSTTQOBTQDsf3c789AW24kk84TSCI6VDyiDOKVur2JlRDYrhQsl+ueFVvAXed+DmpkByNfvmrN1AsjUEiE9SYru8lGGRUI2cCZqVeaiChbEyH0LVU0hhMkC1OnrkXVhm4kdK2JLoL9fdERmNjpnFoO2OKI7PqzcX/vG6K0W2QcZmkCJItF0WpcFG58//dAdfAUEwtoUxze6vLRlRThjalkg3BX315nbSuqn6tWnu8rtTv8jiK5Iyck0vikxtSJw+kQZqEEUWeySt5c9B5cd6dj2VrwclnTskfOJ8/vWGRkg==</latexit>"
1

2

34

5

6

7

8

9 10

<latexit sha1_base64="qfvgMHwm8hnkwKokJfmY7V2wC0M=">AAACFXicbVDLSsNAFJ34rPVVdekmWAQXUhKR6rLoxmUF+4AmlMn0ph06mYSZm0IJ/Qk3/oobF4q4Fdz5N07bLLT1wMDhnHO5c0+QCK7Rcb6tldW19Y3NwlZxe2d3b790cNjUcaoYNFgsYtUOqAbBJTSQo4B2ooBGgYBWMLyd+q0RKM1j+YDjBPyI9iUPOaNopG7p3BMQoicYcOGFirLMnWTeiCpINBexnHiK9wfoqWmgWyo7FWcGe5m4OSmTHPVu6cvrxSyNQCITVOuO6yToZ1QhZwImRS/VkFA2pH3oGCppBNrPZldN7FOj9OwwVuZJtGfq74mMRlqPo8AkI4oDvehNxf+8TorhtZ9xmaQIks0XhamwMbanFdk9roChGBtCmeLmrzYbUNMNmiKLpgR38eRl0ryouNVK9f6yXLvJ6yiQY3JCzohLrkiN3JE6aRBGHskzeSVv1pP1Yr1bH/PoipXPHJE/sD5/AMA3oHc=</latexit>⇠
1

"

⇡

<latexit sha1_base64="CrBHBDRwNvabCk66ayi6alrycD4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ae0oWw2m3btJht2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVpxptMSaU7ATVcioQ3UaDknVRzGgeSt4PR7cxvP3FthEoecJxyP6aDRESCUbRSqxeGCk2/XHGr7hxklXg5qUCORr/81QsVy2KeIJPUmK7npuhPqEbBJJ+WepnhKWUjOuBdSxMac+NP5tdOyZlVQhIpbStBMld/T0xobMw4DmxnTHFolr2Z+J/XzTC69iciSTPkCVssijJJUJHZ6yQUmjOUY0so08LeStiQasrQBlSyIXjLL6+S1kXVq1Vr95eV+k0eRxFO4BTOwYMrqMMdNKAJDB7hGV7hzVHOi/PufCxaC04+cwx/4Hz+ALNxjzs=</latexit>...

Figure 2: Circle rotations.
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If α = p/q is rational, then Rq
α = Id, so every point is periodic (and the zeta

function is not well defined, in fact the finite assumption is not even satisfied!
Why?). Otherwise, if α is irrational, then every positive semiorbit is dense in
S1. Indeed, the pigeon-hole principle implies that, for every ε > 0, there exist
m,n < 1/ε such that m < n and d(Rm

α , R
n
α) < ε. Then Rn−m is a rotation by an

angle less than ε, so every positive semiorbit is ε-dense in S1.

Thus, when α is irrational, (S1, Rα) is minimal (in particular, Rα has no periodic
points).

• Expanding endomorphisms of the circle. Again let S1 = [0, 1]/ ∼ be the
circle. For every m ∈ Z \ {−1, 0, 1}, let f = Em : S1 → S1 be

f(x) = mx mod 1.

Then (S1, Em) is a TDS.

1

1

<latexit sha1_base64="YBdZN1GX2k5WXeR0SU6VBnpF9S8=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpewWqV6EohePFewHtEvJptk2NJtdkqy0LP0RXjwo4tXf481/Y9ruQVsfDDzem2Fmnh8Lro3jfKO19Y3Nre3cTn53b//gsHB03NRRoihr0EhEqu0TzQSXrGG4EawdK0ZCX7CWP7qb+a0npjSP5KOZxMwLyUDygFNirNQKSuOLm8q4Vyg6ZWcOvErcjBQhQ71X+Or2I5qETBoqiNYd14mNlxJlOBVsmu8mmsWEjsiAdSyVJGTaS+fnTvG5Vfo4iJQtafBc/T2RklDrSejbzpCYoV72ZuJ/XicxwbWXchknhkm6WBQkApsIz37Hfa4YNWJiCaGK21sxHRJFqLEJ5W0I7vLLq6RZKbvVcvXhsli7zeLIwSmcQQlcuIIa3EMdGkBhBM/wCm8oRi/oHX0sWtdQNnMCf4A+fwBBKI7h</latexit>

f(x) = 2x

<latexit sha1_base64="PNgZrVO+JcCjedg0x/W3LUVUSRs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66Lq16q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AL+xj0M=</latexit>. . .

1

1

<latexit sha1_base64="Mg5THZ1r7twVGTzAsQ6ykYrIkFE=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSLUS9lVqV6EohePFewHtEvJptk2NJsNSVZalv4ILx4U8erv8ea/MW33oK0PBh7vzTAzL5CcaeO6387K6tr6xmZuK7+9s7u3Xzg4bOg4UYTWScxj1QqwppwJWjfMcNqSiuIo4LQZDO+mfvOJKs1i8WjGkvoR7gsWMoKNlZphaXR2czHqFopu2Z0BLRMvI0XIUOsWvjq9mCQRFYZwrHXbc6XxU6wMI5xO8p1EU4nJEPdp21KBI6r9dHbuBJ1apYfCWNkSBs3U3xMpjrQeR4HtjLAZ6EVvKv7ntRMTXvspEzIxVJD5ojDhyMRo+jvqMUWJ4WNLMFHM3orIACtMjE0ob0PwFl9eJo3zslcpVx4ui9XbLI4cHMMJlMCDK6jCPdSgDgSG8Ayv8OZI58V5dz7mrStONnMEf+B8/gBCrY7i</latexit>

f(x) = 3x
1

1

<latexit sha1_base64="jD/Hw2y3JgXicOkl1JmhX08LklQ=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSLUS9mVUr0IRS8eK9gPaJeSTbNtaDZZkqy0LP0RXjwo4tXf481/Y9ruQVsfDDzem2FmXhBzpo3rfjtr6xubW9u5nfzu3v7BYeHouKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjO5mfuuJKs2keDSTmPoRHggWMoKNlVphaXxxUxn3CkW37M6BVomXkSJkqPcKX92+JElEhSEca93x3Nj4KVaGEU6n+W6iaYzJCA9ox1KBI6r9dH7uFJ1bpY9CqWwJg+bq74kUR1pPosB2RtgM9bI3E//zOokJr/2UiTgxVJDFojDhyEg0+x31maLE8IklmChmb0VkiBUmxiaUtyF4yy+vkuZl2auWqw+VYu02iyMHp3AGJfDgCmpwD3VoAIERPMMrvDmx8+K8Ox+L1jUnmzmBP3A+fwBEMo7j</latexit>

f(x) = 4x
1

1

<latexit sha1_base64="Zk9qtVvjJpnmpmfiV9SK2/oAr50=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSLUS9kVrV6EohePFewHtEvJptk2NJsNSVZalv4ILx4U8erv8ea/MW33oK0PBh7vzTAzL5CcaeO6387K6tr6xmZuK7+9s7u3Xzg4bOg4UYTWScxj1QqwppwJWjfMcNqSiuIo4LQZDO+mfvOJKs1i8WjGkvoR7gsWMoKNlZphaXR2cznqFopu2Z0BLRMvI0XIUOsWvjq9mCQRFYZwrHXbc6XxU6wMI5xO8p1EU4nJEPdp21KBI6r9dHbuBJ1apYfCWNkSBs3U3xMpjrQeR4HtjLAZ6EVvKv7ntRMTXvspEzIxVJD5ojDhyMRo+jvqMUWJ4WNLMFHM3orIACtMjE0ob0PwFl9eJo3zslcpVx4uitXbLI4cHMMJlMCDK6jCPdSgDgSG8Ayv8OZI58V5dz7mrStONnMEf+B8/gBFt47k</latexit>

f(x) = 5x
1

1

<latexit sha1_base64="Pju6v6MuIHeNma7EbMzsal/Q6gA=">AAAB73icbVBNSwMxEJ34WetX1aOXYBHqpeyKVC9C0YvHCvYD2qVk02wbms2uSVZalv4JLx4U8erf8ea/MW33oK0PBh7vzTAzz48F18ZxvtHK6tr6xmZuK7+9s7u3Xzg4bOgoUZTVaSQi1fKJZoJLVjfcCNaKFSOhL1jTH95O/eYTU5pH8sGMY+aFpC95wCkxVmoFpdHZteuMuoWiU3ZmwMvEzUgRMtS6ha9OL6JJyKShgmjddp3YeClRhlPBJvlOollM6JD0WdtSSUKmvXR27wSfWqWHg0jZkgbP1N8TKQm1Hoe+7QyJGehFbyr+57UTE1x5KZdxYpik80VBIrCJ8PR53OOKUSPGlhCquL0V0wFRhBobUd6G4C6+vEwa52W3Uq7cXxSrN1kcOTiGEyiBC5dQhTuoQR0oCHiGV3hDj+gFvaOPeesKymaO4A/Q5w+vII8a</latexit>

f(x) = 10x

Figure 3: Expanding endomorphisms of the circle.

• Full shifts and shift spaces. Let A be an alphabet, i.e a finite discrete set,
e.g.

A = {0, . . . ,m− 1}.
Let

AZ = {(xn)n∈Z : xn ∈ A ∀ n ∈ Z}
be the set of bi-infinite sequences of symbols in A. The set AZ is equipped with
the product topology. A basis for such topology consists of the cylinder sets :
Given ω = a1 . . . an ∈ An and k ∈ Z,

C[ω; k] = {x = (xn)nZ : x[k,k+n−1] = ω}.

Actually, the topology is metrizable, it is generated by the Cantor metric:

∀ x = (xn)n∈Z ∈ AZ and ∀ y = (yn)n∈Z ∈ AZ,

let

d(x,y) =
1

2n(x,y)

where

n(x,y) =




∞ if x = y

min{k ≥ 0 : xk 6= yk or x−k 6= y−k} otherwise
.
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Exercise. Prove that the Cantor metric generates the topology.

The dynamics is given by the left shift map σ : AZ → AZ, i.e. the automorphism
defined for every

x = (xn)n∈Z ∈ AZ

by the rule
σ(x)n = xn+1 ∀ n ∈ Z

(compare with the natural extension: What differences do you see?).

Exercise. Prove that σ : AZ → AZ is a homeomorphism.

Then (AZ, σ) is the TDS known as the (two-sided, or invertible) full shift over the
alphabet A.

One-sided full shifts are defined similarly. In this case, σ : AN → AN is no longer
a homeomorphism, it is onto though, actually it is m-to-1.

• Subshifts. Let F ⊂ A∗ = ∪n≥1An be a set of finite words. Then define

X = XF ⊆ AZ

as follows:

XF = {x = (xn)n∈Z ∈ AZ : ∀ k ∈ Z and ∀ w ∈ F , x[k,k+|ω|−1] 6= ω}.

Then XF is a closed σ-invariant subset (prove it!) and

(XF , σ|XF )

is a TDS known as a subshift, or shift space.

One sided shift spaces are defined similarly.

Symbolic dynamics is the area of topological dynamics that studies shift spaces. The
main focus of the course will be to study shift spaces!

5 Classification of dynamical systems

Let (X, f) and (Y, g) be two TDSs. A (topological) homomorphism is a continuous
function φ : Y → X such that f◦φ = φ◦g, that is, the following diagram is commutative:

Y
g−−−→ Y

φ

y
yφ

X −−−→
f

X

• If φ is injective, then it is an (topological) embedding. In this case we can think
of (Y, g) as a subsystem of (X, f).
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• If φ is surjective, then it is a (topological) semiconjugacy, in which case we say that
(X, f) is a factor of (Y, g). In this case we can think of (Y, g) as a supersystem
of (X, f), meaning that we can “squeeze” (Y, g) and as a result get (X, f), so to
speak.

• If φ is bijective, then it is a (topological) conjugacy. In this case we can think of
(X, f) and (Y, g) as being “essentially” the same.

Classification problems in dynamics. Classify TDSs with respect to embeddings,
semiconjugacies and conjugacies. More precisely, given two TDSs (X, f) and (Y, g),
find necessary and sufficient conditions for

• the existence of an embedding φ : Y → X;

• the existence of a semiconjugacy φ : Y → X; and

• the existence of a conjugacy φ : Y → X.

6 Invariants

We will associate special mathematical objects to dynamical systems, widely called in-
variants because they are meant to help addressing classification problems in dynamics.
For example, consider the number of periodic points of period n, or moreover the zeta
function itself:

Exercise.

• If φ : X → Y is an embedding, then pn(X) ≤ pn(Y ) for every n ≥ 1.

• If φ : X → Y is a factor, then pn(X) ≥ pn(Y ) for every n ≥ 1.

• If φ : X → Y is a conjugacy, then ζX(z) = ζY (z), or equivalently, pn(X) = pn(Y )
for every n ≥ 1.

One central and fundamental invariant is the topological entropy. In words, the topo-
logical entropy is defined as the logarithm of the exponential growth rate of the number
of essentially different orbit segments of length n (thus it is a non-negative number or
+∞). It is a topological invariant that measures the complexity of the orbit structure
of a dynamical system. For symbolic systems, the topological entropy is easily defined
and it can be computed in several general cases (as we shall see). For general TDSs,
the definition of topological entropy is more intricate, and computing the entropy can
be quite difficult.

Given a TDS (X, f), we will denote by h(X) its topological entropy (we have not defined
it yet). The following will hold:

• If φ : X → Y is an embedding, then h(X) ≤ h(Y ).

• If φ : X → Y is a factor, then h(X) ≥ h(Y ).

• If φ : X → Y is a conjugacy, then h(X) = h(Y ).

These facts exhibit the importance of the topological entropy, particularly with respect
to classification problems in dynamics. Let us jump into it.
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7 Topological entropy

Let (X, f) be a TDS with (X, d) a compact metric space. For each n ≥ 1, let

dn(x, y) = max
0≤k<n

d
(
fk(x), fk(y)

)
∀ x, y ∈ X.

Exercise. Prove the following:

• (X, dn) is a metric on X.

• d1 = d and dn ≥ dn−1 for all n > 1.

• All these metrics are equivalent.

Let ε > 0.

• Spanning sets. A subset A ⊆ X is (n, ε)-spanning if

∀ x ∈ X, ∃ y ∈ A, dn(x, y) < ε.

Compactness =⇒ there are finite (n, ε)-spanning sets. Then we define

span(n, ε, f) = min{|A| : A ⊆ X is (n, ε)-spanning}

• Separated sets. A subset A ⊆ X is (n, ε)-separated if

∀ x, y ∈ A, dn(x, y) ≥ ε.

Compactness =⇒ any (n, ε) separated set is finite. Then we define

sep(n, ε, f) = sup{|A| : A ⊆ X is (n, ε)-separated}
= max{|A| : A ⊆ X is (n, ε)-separated}

(the second equality also follows from compactness).

• Covering sets. Let

cov(n, ε, f) = min{|Λ| : P = {Pk}k∈Λ is a covering of X and diamdn(Pk) < ε}.

Compactness =⇒ cov(n, ε, f) <∞.

These three quantities count the number of orbit segments of length n that are distin-
guishable at scale ε.

Lemma 7.1.

cov(n, 2ε, f) ≤ span(n, ε, f) ≤ sep(n, ε, f) ≤ cov(n, ε, f).

Proof. First inequality: Let A be (n, ε)-spanning such that |A| = span(n, ε, f). Then
the open dn-balls of radius ε centered at the points of A cover X. Compactness =⇒
there exists ε1 < ε such that the closed balls of radius ε centered at the points of A
also cover X. Their diameter is 2ε1 < 2ε, so cov(n, 2ε, f) ≤ span(n, ε, f).

The rest of the inequalities are left as Exercises.
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Let

hε(f) = lim
n→∞

1

n
log
(
cov(n, ε, f)

)
.

cov(n, ε, f)↗ as ε ↘ =⇒ also hε(f) ↗ as ε ↘ =⇒ the following limit,
called topological entropy, exists:

htop = h(f) = lim
ε→0+

hε(f)

By Lemma 7.1, we have

h(f) = lim
ε→0+

lim
n→∞

1

n
log
(
span(n, ε, f)

)

= lim
ε→0+

lim
n→∞

1

n
log
(
sep(n, ε, f)

)
.

Lemma 7.2. The following limit exists and it is finite:

lim
n→∞

1

n
log
(
cov(n, ε, f)

)
= hε(f).

Moreover,

hε(f) = inf
n≥1

1

n
log
(
cov(n, ε, f)

)
.

Proof. Let U, V ⊆ X be such that

diamdm(U) < ε & diamdn(V ) < ε

Then4

diamdm+n

(
U ∩ f−m(V )

)
< ε.

Hence5

cov(m+ n, ε, f) ≤ cov(m, ε, f) · cov(n, ε, f)

and so the sequence an = log
(
cov(n, ε, f)

)
is subadditive and thus the result follows

from Fekete’s subadditive lemma (see Appendix).

Proposition 7.3. h(f) does not depend on the choice of a particular metric generating
the topology of (X, d).

Proof. Let d and d′ be two (topologically) equivalent metrics. Given ε > 0, let

δ(ε) = sup{d′(x, y) : d(x, y) ≤ ε}.
Compactness =⇒ δ(ε)→ 0 as ε→ 0.

If diamdn(U) < ε, then diamd′n(U) ≤ δ(ε).

Then cov′
(
n, δ(ε), f

)
≤ cov(n, ε, f).

Thus

lim
δ→0+

lim
n→∞

1

n
log
(
cov′(n, δ, f)

)
≤ lim

ε→0+
lim
n→∞

1

n
log
(
cov(n, ε, f)

)
.

Interchanging d and d′ gives the desired result.

4Indeed, let x, y ∈ U ∩ f−m(V ). Since x, y ∈ U , dm(x, y) < ε, but also fm(x), fm(y) ∈ V , and thus
dn
(
fm(x), fm(y)

)
< ε, and so the claim follows.

5Indeed, if U = {Uk}k∈ΛU and V = {Vj}j∈ΛV are two coverings of X, then {U ∩ f−m(V ) : U ∈
U & V ∈ V} is also a covering of X.
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Corollary 7.4. Topological entropy is an invariant of topological conjugacy.

Proof. Let φ : X → Y be a topological conjugacy between the TDSs (X, f) and (Y, g).
Let d be a metric in Y generating its topology. Then d′(x1, x2) = d

(
φ(x1), φ(x2)

)
is a

metric in X generating its topology. Since φ is an isometry between (X, d′) and (Y, d)
and the entropy is independent of the metric, h(f) = h(g).

8 Symbolic representations

The success of symbolic dynamics mainly relies on the fact that shift spaces serve as
models of more general dynamical systems. Let us sketch an example (precise formal
definitions will come later).

Consider the expanding automorphism E10 : S1 → S1 for example. Let A = {0, 1, . . . , 9}
and consider the full A-shift

X = {0, 1, . . . , 9}N.
Subdivide S1 in ten equal subintervals Pj = [j/10, (j + 1)/10) with j = 0, . . . , 9.

For each y ∈ S1 and n ≥ 0, define xn ∈ A by the rule E10(y) ∈ Pj. This results in a point
x = x0x1 . . . ∈ X. The image of S1 on X under this correspondence is not a shift space:
the sequence of points in S1 given by y(1) = .19, y(2) = .199, y(3).1999, . . . converges
in S1 to y = .2, but their images in X, namely x(1) = 19000 . . ., x(2) = 19900 . . .,
x(3) = 19990 . . ., . . . converges to x = 19999 . . ., and the later is not the image of any
point in S1 (the image of the point y = .2 is 20000 . . .). So instead we will construct a
semiconjugacy from X to S1, namely we will map both 19999 . . . and 20000 . . . to .2,
and we will do something similar with all the 10-adic numbers.

The 10-adic numbers have Lebesgue measure zero, so they are kind of negligible. Thus
the map from (X, σ) onto the TDS (S1, E10) that results is 1-1 almost everywhere.
Thus, we can claim that

(S1, E10) is essentially the (one-sided) full shift on 10 symbols.

The above example is the preamble to a formal construction that we will see, known as
symbolic representations.

9 Appendix

9.1 Möbius inversion

Here we prove equation (2).

Let µ : N∗ → {− 1, 0, 1} be the arithmetic function known as the Möbius function, de-
fined by first letting µ(1) = 1 and then, for every n ≥ 2, if we consider the factorization
of n as a product of powers of distinct primes, say n = pα1

1 · · · pαr
r , then

µ(n) =





0 if αk ≥ 2 for some k = 1, . . . , r

(−1)r otherwise (i.e. if α1, . . . , αr = 1)
.
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To prove equation (2), consider the Dirichlet function associated to the Möbius function
µ, that is, let

M(s) =
∑

n≥1

µ(n)

ns

and also consider Riemann’s zeta function

ζ(s) =
∑

n≥1

1

ns
.

Lemma 9.1 (Euler’s formula for the Riemann zeta function). Let P denote
the set of prime numbers. Then

ζ(s) =
∏

p∈P

1

1− p−s .

Proof. Start with

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+

1

7s
+

1

8s
+ . . . (4)

and multiply by
1

2s
to get

1

2s
· ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+

1

12s
+

1

14s
+

1

16s
+ . . . . (5)

Subtracting equation (5) to equation (4) we get
(

1− 1

2s

)
· ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+

1

13s
+

1

15s
+ . . . . (6)

Similarly, multiply the previous equation by
1

3s
and get

1

3s

(
1− 1

2s

)
· ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+

1

27s
+

1

33s
+

1

39s
+ . . . . (7)

Subtracting equation (7) to equation (6) we get
(

1− 1

3s

)(
1− 1

2s

)
· ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+

1

13s
+

1

15s
+

1

17s
+

1

19s
+

1

23s
+ . . . .

Keep on going this process: multiplying by p−s for every prime p and subtracting the
corresponding previous equation and get the desired result.

Lemma 9.2 (Inverses of zeta and Möbius functions). M(s) · ζ(s) = 1.

Proof. Using Euler’s formula we get

1

ζ(s)
=
∏

p∈P

(1− p−s)

= (1− 2−s)(1− 3−s)(1− 5−s)(1− 7−s)(1− 11−s)(1− 13−s) · · ·
= M(z).
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Lemma 9.3 (Convolution of Dirichlet series). Let

a(s) =
∑

n≥1

an
sn

b(s) =
∑

n≥1

bn
sn

c(s) =
∑

n≥1

cn
sn
.

Then c(s) = a(s) · b(s) if and only if

cn =
∑

k|n

akbn/k ∀ n ≥ 1.

Proof. Exercise.

Proof of equation (2). Let

a(s) =
∑

n≥1

Qn

sn
and c(s) =

∑

n≥1

Pn
sn
.

Since equation (1) holds, the convolution of Dirichlet series implies c(s) = a(s)ζ(s), but
then the inverses of the zeta and Möbius functions imply a(s) = c(z)M(s), thus, again
the convolution of Dirichlet series implies (2).

9.2 Fekete’s subadditive lemma

Lemma 9.4 (Fekete’s subadditive lemma). Let {an}n≥1 be a subadditive sequence
of real numbers, i.e.

an+m ≤ an + am ∀ m,n ≥ 1.

Then limn→∞ an/n exists and equals infn≥1 an/n

Proof. Let α = infn≥1 an/n. Then an/n ≥ α ∀ n ≥ 1. Let ε > 0. It suffices to show
that an/n < α + ε for all n� 1.

By definition, α is the largest number less than or equal to all of the an/n. Thus

∃ k ≥ 1,
ak
k
< α +

ε

2
.

Then, for all 0 ≤ j < k and m ≥ 1 we have
amk+j

mk + j
≤ amk
mk + j

+
aj

mk + j
≤ amk
mk

+
aj
mk

≤ mak
mk

+
ja1

mk
≤ ak

k
+
a1

m
< α +

ε

2
+
a1

m
.

Hence, if n = mk + j is large enough so that a1/m < ε/2, then an/n < α + ε.
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