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Abstract
Random fields of scales result when the class of musical scales is thought
as a set of sites, and a site can be in one of two possible states or “spins”:
On or Off. We present a flexible simulated annealing model that pro-
duces generic configurations arising from equilibrium states (or Gibbs
measures) associated to hamiltonian energy functions defined in terms
of musical interactions with parameters that can be manipulated to cus-
tomize properties of the scales. The starting point is to think of the
set of scales as the combinatorial class of integer compositions and the
final result is an effective thermodynamic search engine implemented
in an open access application for the 12-TET tuning system: Scaletor.

MSC Classification: 37B10; 05A15; 00A65;

1 Introduction

We present a mathematical model implemented in a software application
designed to classify subsets of musical scales within the n-TET tuning sys-
tem. In this framework, a scale is viewed as a site, and each site can be in
either one of two possible states or “spins”: On or Off. The model is inspired
by thermodynamic formalism, particularly the Ising model, one of the most
well-known statistical mechanics models for interacting particle systems. We
adapt its foundational principles for the scenario is that of a finite set of sites
connected by several types of networks that we use to define interactions in
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terms of “musical energies”. These interactions give rise to Hamiltonian func-
tions, from which equilibrium states —formally described as Gibbs measures—
emerge and are realized as Boltzmann distributions.

Under this premise, given a set of parameters provided by the user, we can
simulate the corresponding generic configurations with algorithms like Glauber
dynamics and Metropolis-Hastings for the Ising model, and then the tempera-
tures can be manipulated, as in simulated annealing processes, to cross phase
transitions and observe emerging order realized as configurations of scales pro-
duced by measures of maximal pressure in the different phases of the given
parameterizations. The Gibbs measures can be Dirac probability measures
supported on single configurations of scales with specific properties and our
simulations can produce them accurately if properly calibrated. The proper-
ties can be combinatorial, e.g. can deal with the type and number of intervals
that form the pitch classes of the scales, or they can deal with the modes of the
scales, or they may take into account interpolation, or they can be of geomet-
ric type, e.g. can deal with the location of the center of balance of the scales
(see [1, 2]), etc. The musical interactions and the simulated annealing pro-
cesses were designed to be controlled in an “audio mixer” type of component
in order to gain intuition when doing manipulations.

The application, henceforth called Scaletor, was initially experimentally
developed in Processing (see [3]), a platform with the capability of pro-
ducing standalone java applications for several operating systems. So as a
complementary material accompanying this work,

Scaletor is an open access application.'

We hope that it will serve both the interested readers to verify the claims in this
work and the musicians and music theorists for it is in fact a complete catalog
of all the 2048 musical scales (each scale has been named, mainly following
the nomenclature in [4]). The thermodynamic search engine in Scaletor is
elaborated but ultimately effective and the eventual experienced user can find
it handy. A screenshot of the Graphic User Interface (GUI) is shown in Figure
1 (this figure contains a rather large caption with concepts that later in the
text will be described in detail).

The rest of the paper is organized as follows. In section 2 we give a very
brief and basic background that motivates our setup: we quickly recall the Ising
model, first by addressing spaces of configurations, hamiltonian energy func-
tions and Gibbs measures, interactions, and finish with the Glauber dynamics
and Metropolis-Hastings simulations of generic configurations. All this section
is mainly intended to motivate the model in Scaletor, but it also serves to
present the basics we need to readers that may not be familiar with this type of
material (for deep and comprehensive references see [5, 6]). So, a reader famil-
iar with thermodynamic formalism can easily go directly to the main section
3 where we present in detail how we adapt the ideas behind the Ising model
to the scenario of random fields of scales. In section 4 we show examples of

!See section 6 for more information about additional material and download instructions (in
particular, systems capable of running Processing’s standalone applications are required).
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Fig. 1 A screenshot of the GUI of Scaletor on startup. The bell of scales is shown at the
upper left corner. Each horizontal bar in it represents a scale in the selected tonality (in this
case it is C, in the green box near the bottom-right part of the bell of scales). The colors
in the bell of scales code information about the status of several things in Scaletor at each
instant of time, and some of this information is shown along other parts of the GUI. For
example, all the scales are in the On state because there are no black bars in the bell of
scales. Also, the selected scale is the Ionian scale s = (2,2,1,2,2,2,1) and it corresponds to
the green bar in the 7th column in the bell of scales (zoom in), it is also shown in detail
on the upper-right part of the GUIL The selected Ionian scale has 6 other modes, they
correspond to the pink bars in the bell of scales, all of them are also in the 7th column of
course, the first of them is shown in detail on the right part of the GUI, under the selected
scale, it is the Locrian mode (1, 2,2, 1,2, 2,2). The Dominant Bebop scale (2,2,1,2,2,1,1,1)
shown in detail under the Locrian mode is the first blue bar in the 8th column of the bell
of scales, there are 5 blue bars in this column and they correspond to the neighborhood of
the selected scale in the 17 -step interpolation network J'*, i.e there are 5 scales in C of
length 8 that result from the Ionian scale by adding a new pitch class. All the blue bars in
the bell of scales correspond to the union of all the neighborhoods of the selected scale in
the kT-step and k~-step interpolation networks J5T and 35~ resp., for all k > 1, i.e. all
the blue bars correspond to the scales that result from the Ionian scale by either adding
new pitch classes, or removing pitch classes other than the tonality C. The bottom-half part
of the GUI represents a horizontal zoom of the bright part at the bottom of the bell of
scales: here only the scales in the On state are shown in more detail as polygons, also with
color codes as above (observe that at the very bottom there is a scroll-bar to navigate). The
parameters that control the thermodynamic search engine are contained in the component
that looks like and audio mixer. The application is silent: no scale is being played. There
are no restricted nor frozen sites and the configuration is not changing because the MCMC
random process is not running; the MCMC has the master volume at zero, and in fact it is
muted (Off), hence the random field of scales that would occur if the MCMC were running
would consist of independent Bernoulli(1/2) random variables (pure random noise). Etc.

outputs produced by the application to exhibit its performance. Section 5 con-
tains conclusions and related works (this type of models could be applied to
artificial intelligence systems specialized in music). The last section 6 contains
information about Scaletor’s repository at GitHub and a tutorial video.
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2 Background

2.1 Boltzmann machines, hamiltonian energies and
equilibrium states

The type of model we develop here carries similarities with what are known as
Boltzmann machines, the Sherrington-Kirkpatrick model, Hopfield networks,
Potts model, Edwards-Anderson’s model, the Ising model itself, etc. [7-9].
There is a finite set of sites S (in our case it will be the set of scales in a
given tonality, in the 12-TET tuning system) and hence there is a (finite) spin
configuration space?

QC{+1,-1}° 2 {w: S — {+1,-1}} (1)

(as usual, for every x € S, we let w, = w(z)). Also, for each configuration
w € € there is the idea of cost, or weight, captured by a hamiltonian function
E: Q — Rsothat E(w) is thought as the energy required to realize w. We look
for typical configurations coming out of measures of maximal pressure, that
is, the generic configurations for the equilibrium states (or Gibbs measures®):
the probability distributions that solve the optimization problem

max{¥(p) | p: @ — [0,1] is a probability function} (2)
where

p) & = p(w)logp(w) (3)

we

is the entropy of the probability distribution p and
W) £ Hp) =5 | Edp (4)

is the corresponding pressure at the (inverse) temperature* (3. The finitary
variational principle asserts that there is a unique equilibrium state, that is,
there is a unique probability measure that solves the optimization problem

2The terminology comes from atomic spin models: in ferromagnetic materials, neighboring
atoms tend to have aligned spins, either positive or negative, represented by the symbols +1 and
-1, respectively (if instead the material is antiferromagnetic, then the spins tend to be opposite).
In our context, the symbols +1 and -1 will represent the states On and Off that a given scale can
be at a certain instant of time, respectively.

3For the equivalence between equilibrium states and Gibbs measures, see e.g. [5, 6, 10, 11]. In
our context these two concepts are equivalent and we will content ourselves with the definition of
equilibrium state and call it Gibbs measure indistinctively.

4In the thermodynamic theory of lattice gasses, 8 = 1/kpT € R where T is the temperature
and kp = 1.380649 x 10~23 is the Boltzmann constant, and here, as it is customary, all these
constants will be absorbed by the parameter 3.
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(2), it is precisely given by the Boltzmann distribution p = u defined by

e—BEw)
wlw) = — Yw € Q (5)

where Z £ ZwEQ e PE() is the normalizing constant known as the partition
function (the proof follows from Jensen’s inequality).

2.2 Interactions

The hamiltonian energy function F returns the total cost of energy required
to realize a given configuration w € ), and such amount of energy is thought
as the result of adding all the energies arising from the interactions that
occur between the constituents of w. Formally, an interaction is a family
® = {Pa}aes of local energy functions ®4:  — R indexed by all the finite®
subsets, or regions, A € S. This means that ®4 solely depends on the config-
urations restricted to A, or to be precise, ® 4(w) = ®4(w’) whenever w,w’ € Q
are such that w|4 = w’|4. The interaction ® induces a hamiltonian energy
function F = Eg which is the sum of all the local interaction energies, namely

Ep(w) 2 ) Pa(w) Ywe. (6)
AES

To construct custom interactions it is appropriate to start with interactions
that act on simple regions of the state space, and then consider operations
like addition, multiplication and composition with real functions. Let II(£2) be
the set of interactions on Q. For every ® = {®4: Q = R}ges € () and
U={U,:Q— Rlaes €I(Q), let D+ ¥ € TI(N) and - ¥ € T1(Q) be defined
by (P + P)y(w) = Pa(w) + Ta(w) and (P - V) g(w) = Py(w) - Py(w) for all
A € S and w € Q. Also, given any function f: R — R (e.g. f(z) = ax+ b with
a,b € R), let f(®) € II(2) be defined by f(®)a(w) = f(Pa(w)) for all A € S
and w € Q. The addition of two interactions ® and W is disjoint if &4 = 0
whenever ¥4 # 0 and viceversa. The interaction ® is single site if &4 = 0
whenever A is not a singleton, i.e. 4 = 0 if A # {«} for some x € S. Single
site interactions produce independent random fields.

Now the goal is to simulate generic configurations in §2 for the Gibbs mea-
sures i = ug associated to hamiltonian energy functions Fg¢ arising from
interactions ® € TI(2). This is possible by means of algorithms like Glauber
dynamics or Metropolis-Hastings for the Ising model. So let us first briefly
present the Ising model as example.

51In this work, S is always finite, hence any subset of it is also finite, nevertheless we stress the
fact that A is required to be finite (this is the meaning of the symbol €) because the main theory
is for contexts when S is infinite (when the so called “thermodynamic limit” comes into play).
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2.3 The Ising model

In the classical Ising model of size n > 1 in dimension d > 1, the set of sites is
the d-dimensional square grid of integers modulo n, that is,

S=22 7, x - xXZp (7)
N————

d times

where Z, = Z/nZ is the additive group of integers modulo n. Also the spin
configuration space is the complete set of configurations

Q= {+1,-1}%. (8)

The symbols +1 and -1 that represent the states in which a site can be are
thought as the actual integer values +1 and —1, respectively. There is the
notion of adjacency in Z¢ defined by the rule that makes two elements z,y € Z2
adjacent if and only if there are representatives of x and y in Z¢ that are at
euclidian distance one. In other words, the neighborhood of a site z € Z4 is
N(z) 2 {z +e:ec N(0)}, where N(0) £ {e € {~1,0,1}¢ : |le] = 1} (|| - |
denotes euclidian distance). The well known hamiltonian energy function for
the two-dimensional Ising model (d = 2) takes into account this adjacency and
is defined for every w € Q2 by

B ==Y Y J@ywuw, (9)

€S yeN(x)
—hY w, (10)
€S
where J(z,y) = J(y,z) = J € R is a (uniform) symmetric assignment of

“weights” (real numbers) on the edges of the Z< grid®, they represent the inter-
action energy of the states w, and w, of neighboring particles at sites z,y € S
(so that if J > 0, then the neighboring particles tend to have their spins aligned
and the system is ferromagnetic, otherwise, if J < 0, then neighboring par-
ticles tend to have opposite spins and the system is antiferromagnetic), and
h € R is to be interpreted as an external magnetic field”.

One way to define an interaction ® € II(2) that gives rise to F as given in
equations (9) and (10) is by first to declare that ®4 = 0 whenever A is not a
single site nor a site together with its neighborhood, and then let

(I){z}UN(w) (w) = 7‘]("}10(71'((*)) (11)
Dy (w) = —hw, (12)

SThis assignment of weights can be coded in a square n? x n® symmetric matrix that has

nonzero entries only where the adjacency matrix of the ZZ grid has nonzero entries.

“In the context of lattice gases, the particles attract or repeal each other, and the symbols +1
and -1 are thought as the integer values +1 and 0, respectively, and represent a particle that
occupies or not a site, respectively, and h is thought as a chemical potential.
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for every x € S, where 0, (w) £ Y. w,. Thus, from equation (6), we readily
yeEN (x
get By = E. ©
Above, the family of functions @0 = {®(,3: Q@ — R},cs defined by
equation (12) is an instance of a single site interaction®, it is quite simple what
each of these functions do, e.g. if h = 1, then ®,y(w) is the opposite state of
w,. On the other hand, consider the family @00 = {®)un(e) * 2 = Rizes
of functions defined by (11), it is not a single site interaction and so the
states in configurations are generally dependent of each other (unless J = 0 of
course). Observe that ® is the (disjoint) sum of both @@ and &IV, Figure 2
shows all the posible values of ® 4 for all the possible configurations on regions
A={z}UN(z) with x € S (with J =1).

[*] =
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Fig. 2 The values of ® 4 in the Ising model over all configurations on regions A = {a}UN ()
formed by a site € S and its neighborhood (here we have taken J = 1, see equation (11)).

2.4 Glauber dynamics and Metropolis-Hastings
simulations

Glauber dynamics is a Monte Carlo Markov Chain (MCMC) simulation that
produces generic configurations of the Gibbs measures in the classical Ising

model on & = Z2, with the interaction ® consisting of local energy functions

8When we say that a family ® of functions ®4: Q@ — R is an interaction but such a family is
incomplete in the sense that there are regions A € S such that ® possesses no functions ® 4 that
have been explicitly defined, we are thinking in the completion obtained by adding the functions
® 4 = 0 in such cases.
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as defined above in equations (11) and (12). It starts from an arbitrary random
configuration w € Q (e.g. generated from a random field indexed by S and
formed by independent Bernoulli(1/2) distributions on each site z € §). Then
the simulation process is as follows (see Figure 3):

e e Flip spin at = = [J e
w = .+ )+ - +| -] -0+ - :W/
éZCDA(w):(I)AQ_: >+<I>A( >+¢A<E})+@A< )+<I)A< ])
AES -
Adx
= -8
£ o) o (6B o (68 o (60 - 6D
AES -
Adzx
=0

Fig. 3 An instance of two configurations that differ only on one of its sites and their
corresponding local energies. Here, if the spin at = were to flip from +1 to -1, then the
change in energy from w to w’ would be AE,(w) = 8 (see equations (13) and (14)), hence
there is a high probability for this flip to occur (see equation (18)), and viceversa, if it were
to flip from -1 to +1, then we would have AE,(w’) = —8 and so transitioning from w’ to w
would be unlikely.

1. Choose a site z € S uniformly at random and then compute the local energy
of w at z, namely,

o) 2 @4() (13)

AES
Adx

—hw, — 2Jw,o,(w) — J Z Z Wy (14)

yEN (2) zeN (y)\{z}

2. Compute the change in energy AF,(w) of the configuration w if the spin
at o were to flip. To be precise, let w’ € Q be defined by the rule w; = Wy
if and only if y # x, and then let

AE,(w) 2 E(W) — E(w) (15)
=E, (W) — E;(w) (16)
= 2hw, + 4Jw,o,(w). (17)
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(a)

B=4, J=—-1, h=-1

(h)

Fig. 4 Simulations of generic configurations for the Ising model for different parameter
values (B is the temperature, J is the weight and h is the external magnetic field): (a) the
temperature is nearly zero, so the field behaves like an independent Bernoulli(1/2) random
field; (b) now the temperature is positive, the system is ferromagnetic and the preferred
configurations have large connected components of particles with the same spin that form
“islands” of +1s (positively charged, in white) and -1s (negatively charged, in black); (c)
in this case there is an external positive magnetic field that influences the energy and so it
eventually converges to the configuration made out of particles with positive spins; (d) now
the external magnetic field is negative and the preferred configuration is made out of particles
with negative spins; (e) the system is now antiferromagnetic (with no external magnetic
field) and, as a consequence, the preferred configurations have large components of particles
whose spins make checkerboards with a predetermined parity; these configurations have
boundaries which are the regions of adjacency of components of distinct parities and where
the checkerboard pattern is broken; (f) in this case the system is again antiferromagnetic but
now there is a positive external magnetic field acting on the system, it only influences the
boundaries that tend to be positively charged (white); (g) in this case the system is again
antiferromagnetic but now the external magnetic field is negative and so the boundaries tend
to be negatively charged (black); (h) this is like the previous case, the difference is that now
we have raised the temperature and the simulation yields convergence to metastable states
with large boundaries that are negatively charged due to the external magnetic field.

3. Accept the new configuration w’, i.e. change the state of w in site z, with

probability
1
1+ e BAB(w) (18)
4. Repeat 1-3.

Algorithms like the above converge to generic configurations in 2 with
respect to the corresponding Gibbs measure in the Ising model. In Figure 4
we present and describe the outcomes one can obtain for several parameter
values. Other similar algorithms that also converge to generic configurations
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have been used, e.g. the Metropolis-Hastings algorithm differs from Glauber
dynamics in that in step 1, the choice of the site x is deterministic (for example,
the site x is picked one by one, following some prescribed order in §), and also
in step 3 the acceptance probability always flips in favor of lowering the energy
since a flip always occurs if AE,(w) > 0 (here, the temperature is assumed to
be positive), otherwise the probability of accepting a flip is eBAE/T,

These type of models and simulations admit many variants and have been
generalized in many different directions. For example, they can incorporate
boundary conditions, also called frozen regions, as well as hard square type of
restrictions. Our goal is to adapt some of these ideas to the universe of musical
scales, to develop a robust enough model to perform systematic simulations
that can yield subsets of musical scales with precise properties. Let us move
now towards this direction.

3 The Scaletor model

In this section we describe the mathematical aspects in the implementation of
Scaletor, the open access application that adapts the ideas of the Ising model
in the context of configurations of musical scales. So the fist subsection 3.1
describes the general space of configurations of musical scales used in Scaletor
at any instant of time. To realize the code, we require a mathematical model
to construct all the musical scales, and for this we follow [12-14] and continue
thinking of the class of all musical scales” as the combinatorial class C of integer
compositions. So in the next subsection 3.2 we focus on the construction of C
and also address the modes of scales. In the Ising model there is a network
which corresponds to the square Z?-lattice, so we will also require networks of
musical scales and this is precisely the subject of subsection 3.3 (see also [13]).
Next, in subsection 3.4 we address the musical interactions that have been
implemented in Scaletor: intervalic interactions, balance interactions, modes
interactions and interpolation interactions. Subsection 3.6 aims to describe
additional features in Scaletor that in particular allow us to manipulate the
spaces of configurations of scales, frozen sites and the first symbol rule (for the
later see [12, 14]). The last subsection 3.7 addresses the simulation process in
Scaletor, in particular we explain how we realize the idea of external magnetic
fields.

3.1 Spaces of configurations of scales

The starting point is to think of the set of musical scales as the set of sites S.
Scaletor constructs this class inductively with a recursion formula (see equation
(21) below), it generates the (finite) sets C, € C of compositions of n > 1.
Recall that it is precisely C, the set that corresponds to all the scales in a
given tonality in the n-TET tuning system, thus we are naturally interested
in the case n = 12.

9We mean all the musical scales in a given tonality in the n-TET tuning system, for all n > 1.
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Initially, the spin configuration space is the complete set of configurations
Q= {+1,-1} (19)

(compare with equation (8)). More generally, we will be able to carry out
the simulations on predetermined restricted subsets of sites!® X C C, with
prescribed regions F C X that are frozen on the positive state and still they
do interact with the elements of X'\ F. To be precise, given (X, F), the space
of configurations on which the simulations are carried out is

Q=0X,F) & {z e {+1,-1}" : 2, = +1 Vs € F} (20)
(for example, equation (20) yields equation (19) when X = C,, and F = ).

3.2 Scales as integer compositions and modes as orbits of
cyclic shift actions

Let us recall formal definitions.

3.2.1 Integer compositions

Let N £ {1,2,3,...} be the class of positive integers. The class C of integer
compositions consists of all finite sequences of positive integers, that is, C =
Ur>1NE. Let s = (ng,...,nx) € C be an integer composition. The size of s
is |[s| = n 2 ny +--- 4+ ng and the length of s is £(s) £ k. Let C, denote
the class of integer compositions of size n > 1. For example, C; = {(1)},
Co ={(2),(1,1)}, C3 ={(3),(2,1),(1,2),(1,1,1)} and so forth. Also, for every
E>1,let C® 2 {s e C : {(s) =k} be the set of integer compositions of
length k, and for every subset A C C, let A®) £ ANCH) | e.g. Cr(lk) denotes the
set of compositions of n of length k.

Let sx12 (ny,...,ng_1,np+1) and so1 = (ny,...,ng_1,n%,1). Also, for
every subset A CC,let Ax12 {sx1|s€ S}and Aol 2 {sol|s € S}. Then
we have the recursive specification

Cos1 = (Cox 1)+ (Cno1) (21)

that in words says that any composition of size n+1 results from a composition
of size n by either adding a one to its last entry (in particular, the length
remains the same and the size increases by 1) or appending a new entry with a
one at the end of the sequence (in particular, in this case, both length and size
increase one unit each). Hence there are #C, = 2"~! compositions of n and

also there are #C,(,k) = (Zj) compositions of n of length k. The distribution of

£:C, — {1,...n} as arandom parameter on the probability space C,, where all
compositions are equally likely (uniform distribution) is Binomial(2"~1,1/2).

19The complement C, \ X is thought as a set of scales fixed in the Off state that do not interact
with the elements of X.
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In Figure 5 we illustrate the bell of scales, i.e the histogram of scales according
to length, that is, according to the number of pitch classes. The bell of scales
serves to visualize the whole set of musical scales in the n-TET tunning system
in a given tonality.

500
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1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5 The dark gray bars illustrate the bell of scales: the histogram of scales according to
the number of pitch classes for the 12-TET tuning system (for example, there are 462 scales
with either six or seven pitch classes). The light gray bars illustrate the histogram of scales
modulo the modes: for example, there are 80 and 66 mode classes with six and seven pitch
classes, respectively.

From equation (21), we can define a natural recursive order in C: the first
element is (1), then (2) and (1,1), then (3), (2,1), (1,2) and (1,1,1), and so
forth (for example, the compositions of n given by (n) and (1,...,1) are always
the first and last compositions in C,, and they occupy positions 27! and 2" —1
with respect to this recursive order, respectively).

The class C,, of compositions of n is identified with the class of all musical
scales in the n-TET tuning system in a given tonality like C. As in other sources
like in [15], geometrically, we can illustrate a composition s € C, of length
£(s) = k as a rooted k-gon that results from a rooted regular n-gon inscribed
in a circle after selecting the root and k — 1 other vertices separated according
to the composition s (we put the root always on top, at n o’clock, labelled by
the chosen tonality, e.g. we chose C, but we may choose any other tonality from
{C, C#, D, D#, E, F, F#, G, G#, A, A#, B}, see Figure 6. For example, (n)
and (1,...,1) are the monotonic and chromatic scales, respectively. Scaletor
uses the recursion in equation (21) to generate all the scales in the n-TET
tuning system, that is, to generate C,,.

3.2.2 Modes and cyclic shift actions

Let a: C — C be the cyclic shift action defined for every s = (n1,...,ng) by
a(s) = (n2,...,nk,n1) (note that af ) : e — CT(Lk)). The elements of the a-

orbit of s, namely O, (s) = {a™(s) : n € Z}, are the modes of s. The size of
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Fig. 6 The selected scale in the upper left corner is the Ionian (major) scale (in a given
tonality, in this case C), it is represented by the composition (2,2,1,2,2,2,1) of 12 (it
corresponds to the green bar in the bell of scales, in the 7th column, zoom in). The modes
of the Ionian scale are shown in the lower-left corner of the figure (they are represented as
red bars in the bell of scales, in the 7th column too, and in Scaletor, by default, the base
note in the modes remains the same for all as shown in this figure, but pressing the key
in the keyboard lets you switch back and forth between this default setting and to show the
modes with different base notes in a way that the pitch classes of the selected scale and all
its modes remain the same, e.g. Locrian would start in B, Mixolydian in G, etc.). The blue
bars in the bell of scales are all the scales that interpolate the Ionian scale (see subsection
3.3.2). For example, in the right part of the figure we illustrate all the tri-chords (triangles,
in the 3rd column), containing the root C, that interpolate into the major scale.

the orbit of s divides its length: #0,(s)|{(s). If A C C,, is a subset of scales, a
transversal is a set of scales T' = {s1, ..., 544} such that for ever s € A there
exists one and only one j € {1,...,¢(A)} such that s; € Ou(s). Transversals
always exist, the transversal dimension t(A) is a well defined positive integer,
and we can always choose T' C A. For more on mathematical aspects of modes
of scales see [12].

3.3 Networks of musical scales

We are going to construct various networks with C as the set of vertices. If
such a network is denoted by some generic symbol & and s € C, then we let
the neighborhood of s in ® be Ng(s) = {t € C : (s,t) is an edge in &}.

3.3.1 Composition tree

For every n > 2, we put a thick (resp. thin) edge between elements w € C,,_;
and v € C,, whenever v = wx1 (resp. v = wo1l). The composition tree T is the
resulting network ¥, it has a binary tree with thick and thin edges. We label
the vertices of T with the elements of C as shown in Figure 7 (¥ is the red
binary tree). In the composition tree, the set of vertices in the nth generation is
C,,. In Figure 7 the vertices are also shown either as filled or non-filled vertices
according to whether the last entry of the composition is or is not greater than
one, respectively. To be precise, a site u € C, is filled (resp. non-filled) if it
results from a site w € C,,—1 through u = w1 (resp. u = wo 1), i.e. if u is
connected in ¥ to its parent with a thick (resp. thin) edge.
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Fig. 7 The beginnings of the composition tree T (in red) and the interpolation network
J. At each stage n > 1 the induced interpolation network on C, is a hypercube (the root
is green, the segment is yellow, the square is blue, the cube is purple and the tesseract is
black). All the non-filled vertices correspond to compositions that end with 1.

3.3.2 Interpolation network

With the composition tree ¥, we can construct the interpolation network J. It
is also built by adding edges inductively, but in this case, in the nth iteration
only edges between certain pair of elements of C,, are added, and again there
will bee two types (thick and thin edges). Initially, there are no edges in C;. For
n > 1, there is a thick edge in the interpolation network J between u,v € C,
whenever they have the “same parent” in 7T, that is, whenever there exists
w € Cp—1 such that {u,v} = {w * 1,w o 1}. Next, the thin edges in the
interpolation network J only occur between elements in C,, of the same kind,
either filled or non-filled, and the rule is that two vertices u, v € C,, of the same
kind are adjacent in J with a thin edge whenever they have distinct parents
in ¥,_1 = C,—1 which are adjacent in J (no matter what type of adjacency,
either thick or thin). In words, the thin edges occur between cousins of the
same kind (either both filled, or both non-filled). This inductive process is
implemented in Scaletor, let us justify the purpose:

Definition 1 Two compositions s = (s1,...,5;) € Cp and t = (t1,...,t;) €
Cn interpolate if k = j + 1 (or 57 = k + 1) and there is ¢ € {1,...,k}
(or i € {1,...,5}) such that s = (t1,...,ti—1,8; Sit1,ti+1,..-,t;) (or t =
(81,...,Sifl,ti,ti+17si+1,...7Sk)),

In words, two scales interpolate if one results from the other by either
adding or subtracting a pitch class (distinct from the tonality). In particular,
the lengths of two scales that interpolate most differ exactly by one unit.
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The following conclusion easily follows by induction (we include the proof for
completeness, also see [13]).

Theorem 1 Two compositions in Cn interpolate if and only if they are adjacent in
the interpolation network. Furthermore, the induced interpolation network with vertex
set Cp, is a hypercube of dimension n.

Proof We do induction on the size n > 1. The result is true for n = 1,2,3 (see
Figure 7). Suppose that the result is true for every positive integer less than n > 4.
Let s = (s1,...,s) and t = (t1,...,t;) be two compositions in Cp, and let § € Cp—1
and t € C,—1 be their parents, respectively.

Suppose that s and t are adjacent in J. Clearly, if § = £ (i.e. if s and ¢ are adjacent
in J by a thick edge), then s and ¢ interpolate. Suppose that § # {. Since s and ¢ are
adjacent by assumption, they are of the same kind and § and { are adjacent. By the
inductive hypothesis, § and ¢ interpolate. If s and ¢ are filled vertices, i.e. if s, t; > 1,
then § = (s1,...,8; — 1) and £ = (¢1,..., t; — 1), and since they interpolate, clearly
so do s and t. Similarly, if s and ¢ are non-filled vertices, then s;, = t; = 1 and hence
§=(s1,...,8,_1) and £ = (t1,... ,tj—1), and they interpolate, hence, clearly, so do
s and t.

Now suppose that s and t interpolate. If § = £, then they are adjacent in J.
Suppose that § # . First let us show that s and ¢ most be of the same kind.
Interpolation implies k = j + 1 or j = k4 1. If s and ¢ would be of different kinds,
then we would have s = 1 and t; > 1 or viceversa. Suppose that s; = 1 and
t; > 1. If k = j+ 1, then we would have t; = s; for all 4 < j and t; = 5,1 + 1,
but this implies that § = ¢, a contradiction. If j = k£ + 1, then we would have
1 = s, =ty +tp41 > 1, again a contradiction. Similarly, supposing that s, > 1
and t; = 1 yields contradictions. Hence s and ¢ are of the same kind. In any case,
whereas s, =t; = 1 or si,t; > 1, we get that § and ¢ interpolate, hence the inductive
hypothesis implies that they are adjacent, thus so are s and t.

The fact that J restricted to Cyn is a hypercube of dimension 271 also follows:
to obtain C,4+1 we make two copies of C, and pass them through the composition
tree T, the binary tree that transform them into C, x 1 and Cy, ¢ 1 (see (21)). O

The previous Theorem 1, together with the inductive construction of all
musical scales (see equeations (21)), yield the algorithmic implementation in
Scaletor that constructs the integer compositions together with its interpola-
tion network. Furthermore, we can consider long range interpolation networks
as follows. Let u,v € C,, be two scales. For each k > 1, let the kT -step inter-
polation network J*+ have a directed edge from u to v if u results from v by
adding k new pitch classes, and similarly let the k™ -step interpolation network
3%~ have a directed edge from wu to v if there is a directed edge from v to u
in 3%+ (see Figure 8). For example, we can technically think of the interpola-
tion network J as the union of the 17-step and 1~ -step interpoletion (directed)
networks.
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Fig. 8 Each bell of scales has a scale under it (it corresponds to the green bar in the bell of
scales, zoom in). The blue bars in each bell of scales are the neighbors of the corresponding
scale in the kT -step and k™ -step interpolation networks J¥* and 35—, for all k > 1. The
first row starts with the monotonic scale s = (12) (in a given tonality, e.g. C), followed
by all the bi-chords s = (1,11),(2,10),...,(11,1) (all of them contain the tonal note C).
The second row are the complements, it starts with the chromatic scale s = (1,1,...,1),
followed by all the eleventh-chords s = (2,1,1,...,1),(1,2,1,...,1),...,(1,...,1,2) (again,
all of them contain the tonal note C). As before, the red bars represent to the modes of the
corresponding scale.
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3.3.3 Length network

The length network £ also has C as the set of vertices and the edges only occur
on pairs of elements of C,, There is an edge between two sites u, v € C,, whenever
£(u) = £(v). Clearly, the length network £ restricted to C,, is a disjoint union
of n cliques £l¢, = R, U Ry, U -+ U Ry, where R, denotes a clique on m
vertices and my, = (}7]) = #C" for every k = 1,...,n. In the bell of scales,
each column forms the set of vertices of each of these n cliques.

3.3.4 Modes network

The modes network 9 is also made out of disjoint unions of cliques: the clique
that contains s € C has vertex set Oy(s). Let T C C be a transversal of
C/a, that is, T satisfies that for every s € C there exists a unique x € T
such that x € O(s). Then we have M = | |, . Ruo, (s)- For example, in the
12-TET tuning system there are #(7 N C12) = 351 mode classes of scales
(i.e. equivalence classes modulo « of size 12) and, in particular, there are

#(T N C(s)) = 66 pentatonic mode classes (recall Figure 5).

3.3.5 Induced networks

Recall that the spaces of configurations Q = Q(X, F) that we will consider are
defined, in particular, by a subset X C C,, (see equation (20)). Here we have
defined a set of networks

ME{T,e,Mm 33 3.0 o) (22)
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and in general, if we are working in a proper restricted subset X C C in a
context in which some networks & € 91 are involved, then we are implicitly
assuming that such ®s are actually the induced networks with respect to X.

3.4 The interactions mix console

In Scaletor we developed generic modules or “tracks” (see item (b) in Figure
10), they are objects that carry components that serve to control (or mix)
the parameters of interactions of a specific general form discussed below. A
sequence of K > 1 interactions ®1), & . &) ¢ [1(Q) can be carried in
K of these tracks in a container object: the interactions mix console (see item
(¢) in Figure 10). Each mix will ultimately yield an interaction ® € II(Q), as
follows.

First of all, each track carries an / (or muting) button that is

modeled with Dirac delta functions, 0 = d1,...,0x (see Figure 9).

§=0 |G - =1

Fig. 9 States of a mute, or /7 button: it changes its current state when pressed.

At any instant of time, let

AOné{j:szl}g{l,...,K} and Aoffé{l,...,K}\Aon (23)

be the set of indices of tracks that are turned and , respectively.

Furthermore, the set of tracks {1,..., K} is also partitioned into two disjoint
sets A, and A,, called the additive and itersecting tracks. In Scaletor, the final
mix of interactions at the level of local energy functions is

®,4 = 6 - min min(@ff))ke/\ oy geef ) vaex| (2
. On jer

(above, 0 is yet another Dirac delta function that acts like the master

/, or muting, switch, recall Figure 9). For example, if all tracks are

intersecting and | ]|, then a configuration w that returns a negative weight

for at least one of the K interactions will be penalized and hence it will tend to
be rejected. The additive part is more subtle, accepting or rejecting depends
more on the average of the additive interactions (like in the Ising model), sort
of speak. To switch the mode of a track, from additive to intersecting or vicev-
ersa, just click the track in a region where there are no buttons nor sliders: the
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background of the track when turned will be either green (in the multi-

plicative case) or dark red (in the additive case). In Scaletor, on startup all
tracks are multiplicative (green).

According to equation (6), the resulting interaction ® = {®4: @ — R} g4ex
defines a hamiltonian energy function F¢ which in turn determines the unique
probability measure that maximizes the pressure, namely the Boltzmann dis-
tribution in equation (5). The global inverse temperature, i.e. the parameter
B € R in equation (5), is thought as the “master volume”. Item (a) in Figure
10 shows the component to manipulate 5. Other components shown in this
figure are to manipulate further parameters that we describe next.

(V) 32 33 o
Track 1 Track 2 Track 3 Track 4

=z =@ B8
2% 3 ED E@ ED  ED @ OO OO B0 SO @@ @0 8@

Fig. 10 Thermodynamic components in Scaletor: (a) Master volume. Component that
controls the inverse temperature 8 in equation (5). The buttons labelled + and — on both
the top and the bottom of the slider are to increase and decrease the maximum and minimum
values that 8 can take when moving the slider, and by default this interval is [—5,+5].
(b) Generic interaction track. The three sliders above with their dedicated buttons labelled
+ and — act in a similar way to the master volume described in the previous item, but
now they control the volume of the jth channel, namely 3;, and the corresponding panning
volumes B;‘ and ﬁj_, and below is the n-band equalizer made out of sliders that control

the parameters 5;’6) (the buttons labelled +1, 0 and —1 above the sliders of the equalizer

automatically set all the parameters ,B(.M in the equalizer equal to such a value when pressed).
The blank areas are meant to provide space for possible further controls when the generic
module is developed further in order to support the interaction that is being designed to
be carried on it. (c¢) Interactions mix console. A container component designed to carry
sequences ‘13(1), <I><2), ey ®(K) of interaction tracks, each one developed to capture specific
properties and all with a form given in equation (25). The scroll bar below serves to move
through all the K given channels.

To provide flexible and systematic control to manipulate the simulated
annealing processes, each track that carries one of the K interactions ®\) is
equipped with its own volume B; € R, its two panning volumes B;-F,B; eR
(they are meant to control how much a property is “favored” or “penalized”,
respectively), and moreover, the length network £ described in subsection
3.3.3 is also implemented (on each track), modeled as an n-band equalizer

ﬁ;l), BJ(-z), .. 76](”) € [-1,1]. To be precise, for every (finite) region A € X, the
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local energy functions @g) of each of the interactions ®) will have the form

o) =5, >80 (57 o) — g 0f)) (25)
k=1

(see items (b) and (c¢) in Figure 10). Combining equations (25) with (24) and
with further custom parameters will yield an interactions mix console with
plenty of control. It is time to define musical interactions.

3.5 Interaction tracks
To define interactions ®) with local energy functions of the form described in
equation (25), we must define their positive and a negative interaction compo-

nents <I>,(€j *) and <I>§Cj_) at each length k = 1,..., n, respectively. Equivalently,
for each (finite) region A € X, we must define the local energy functions of
the positive and negative interaction components at length k,

oV Q=R and @Y QR (26)

Let us see some explicit examples. In what follows, [-] denotes Iverson’s
brackets notation defined for every proposition P by

a J 1 if Pis true
[P] = {O otherwise. (27)

Also, for every region A € X and every configuration w € €, let

o3 (W) £ Y w, = +1]. (28)

yeA

3.5.1 Interval tracks

Let s € C,, be a scale in the n-TET tuning system. We say that an m-interval
occurs in s if two consecutive pitch classes in s differ by m units of tone, or
equivalently, if we think of s as a composition of n, an m-interval is nothing but
a summand in s that equals m (for the 12-TET tuning system, see Table 1).

m ‘ 1 2 3 4 5 6 7 8 9 10 11 12
Interval ‘ H W m3 M3 P4 TT P5 m6 M6 m7 M7 8

Table 1 Intervallic designations in the 12-TET tuning system: H = half tone, W = whole
tone, m3 = minor third, M3 = mayor third, P4 = perfect fourth, TT = augmented
forth/diminished fifth, P5 = perfect fifth, m6 = minor sixth, M6 = major sixth, m7 =
minor seventh, M7 = major seventh, 8 = octave.
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An interaction ® € II(€2) is intervalic if it returns information that depends
on the intervals. Interval tracks carry intervalic interactions. For example, con-
sider the combinatorial parameter x,,: C — NU{0} that returns the number of
summands equal to m € N, or to be precise, for every s = (n1,...,n4s)) €C,

= #{j e{l,...,4(s)}|n; = m}. In other words, x,, returns the num-
ber of m-intervals in a scale s formed by two consecutive pitch classes in s, e.g.
for the Ionian scale s = (2,2,1,2,2,2,1), x1(s) = 2, x2(s) = 5, and otherwise
Xm(s) = 0 for m > 3. With x,, we can define intervalic interactions in many
ways. A simple example, the one implemented in Scaletor, is as follows. Let

£ be a metasymbol representing any element of {<, <,=,#,> >}. For each
j€{0,...,n}, let ®; be the single site interaction defined for every s € C,, by

R .
‘I’Zs(w) [£(s) = K] - [xm (s) ~ il (29)
R .
1os(@) 2 [€(s) = k] - (1 = Dxm(s) ~ 5] (30)
Scaletor possesses twelve interval tracks with intervalic interactions
oMW .. ®12) Jike ® above: one for each m = 1,...,n. In each track that

carries these intervalic interactions, the value of the parameter j is controlled
with specific components'! as shown in Figure 11.

(T2[s]EsTel7Tsowhilz] M 1 [ 2 MEMC4 [ S [6 1 meEm 3 [ ¢+ | T e N > | S —
C< mcam > | E——— ca - .
() () (d) (e) (®)

(a)

Fig. 11 Components to set the parameter j and the metasymbol . The upper part is for
the parameter j for (a) H, (b) W, (c) m3, (d) M3, (e) P4, TT, (f) P5, m6, M6, m7, M7, 8.
By default, j = 0, and when a black button labelled with certain value j is pressed, then it
turns white and the corresponding parameter j is set to be such value, e.g. in both (c) and
(d) we have j = 2 (pressing a white button brings the value of j back to zero: j = 0) but
their metasymbols are < and # respectively.

3.5.2 Balance tracks

The concept of balance of a scale s € C, is easily defined when a scale of length
k > 1 is pictured as a polygon that results from choosing k points among n
equidistant points arranged in a circle (the way in which such & point depends
on the scale itself), as described before. We can suppose that such a circle is
unitary and is centered at the origin. Then the scale is determined by a set of
coordinates x() = (z1,71) = (0,1),x® = (29,12),...,x) = (Te(s) Yes))
in the unit circle. Then the center of balance of s is defined by

£(s) 1 £(s) £(s)

Z (k) @;xk’ Zyk ]2 (31)

1n the generic module, these specific components are located in the blank area described
before in item (b) of Figure 10.
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and the balance of s is b(s) = b(s). A scale is balanced if b(s) = 0 (equivalently
b(s) = 0 £ (0,0)). We will define a balance interaction, it is a single site
interaction defined for every s € C,. Once again, we will have a parameter
7 =20,1,...,9,10, which is also manipulated with a dedicated component as
shown in Figure 12.

DI[1[2[3]4]5T6[7[8]900

[ < . > ]

Fig. 12 Dedicated component to manipulate the parameter j in a balance track.

¢ [=] Equal case. Let

N [¢(s) = k] - [b(s) =0] ifj=0
;S( )= { [¢(s) = k] [[31;1 <b(s) < % if >0 (52)
Oy (w) £ [Us) = K] - (1= @ (). (33)
° Greater than or equal case. Let
N [4(s) = k] if7=0
P () £ { [¢(s) = k] - [55- < b(s)] ifj >0 (34)
D, (W) 2 [ls) = K] - (1 — @5 ,(w)). (35)
. Greater than case. Let
O (w) = [6(s) = k] - [[%0 <b(s)] (36)
(W) = [Us) = k] - (1 - @) (w)) (37)
U] Less than or equal case. Let
() £ 1) = K] [b(s) < 55] (38)
@,;S(w) 2 [4(s) = K] (1 - <I>;s(w)) (39)
. Less than case. Let
(@) 2 [0s) = K- [b(s) < & (40)
O (w) = [l(s) = K] - (1= @) ,(w)) (41)

Some of these cases are illustrated in Figure 13.
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Fig. 13 The balance interaction serves to identify scales with balance within certain ranges
(gray areas). (a) Here j = 0 and the case is [=]. (b) Here j = 7 and the case is again [ =].

(c) Here j = 7 again, but the case is now (or equivalently, j = 8 and the case is )
(d) Here j = 6 and the case is now (or equivalently, j = 7 and the case is )

3.5.3 Modes tracks

Modes tracks are tracks that carry interactions that capture properties of the
modes of the scales. Scaletor carries a modes track interaction ® that serves to
obtain modes orbitals and transversals of sets of scales (see [12]), it is defined
as follows. The regions A € X on which ®; 4 can be nonzero are mode classes,
that is, regions of the form A = {s} U Non(s) (note that for these regions, there
exists k = £(s) such that A € X that is, £(x) = {(y) = k for all z,y € A).
Henceforth in this subsection A represents such regions. There is going to be
a parameter j € {1,...,n} that controls the size and the number of elements
of a mode class in the On state.

¢ [=] Equal case. Let

° Greater than or equal case. Let

@;*A(w) 2[AC X [#A4> ] [0 (w) < 4] (44)
paw) 2 [AC AW [#£4 < j]. (45)

o Greater than case. Let

Of Jw) E[ACXP] [#A>j+1] - [0 (w) <j+1]  (46)
O 4(w) 2 [AC XP] - [#A < 4]. (47)

] Less than or equal case. Let

O 4w) £ [ACXV]- 03" (W) = j]. (48)
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° Less than case. Let
O 4(w) 2[ACXP]- [0 (w) > 5 —1]. (49)

As before, the parameter j and the corresponding case is controlled with a
custom component like in Figure 14.

+ [2[3]4]sT6]7[8]oiou1]

| < [ = [

Fig. 14 Component that controls the parameter j in the modes track and the corresponding
case (<, <, =,2>,>).

3.5.4 Interpolation tracks

To define an interpolation interaction ®, we will use two parameters J*, J~ C
{1,2,...,n — 1}. The regions A € X on which the local energy functions ® 4
can be non-zero will be of the form

A= U Nyj+(s) | U U Nyi-(s) for some seX (50)
jeJt JEJ~
and in this case we let

O AW) £ [U(s) = K] - [03"(w) > 0] (51)
@ aW) £ [U(s) = K] - [03"(w) = 0] (52)

>

Again, the module that carries the interpolation interaction is customized with

a control component that is shown in Figure 15, it serves to choose the subsets
JT,J.

Fig. 15 In this example, J* and J~ consist of the odd and even numbers, respectively.
The top left button labelled + is to set J* equal to either {1,...,n — 1} or the empty set,
and similarly the bottom left button labelled — for J—.

This is the last example of interaction tracks that is implemented in Scale-
tor. Before seeing examples, however, we still need to address a few more
features.

3.6 Dedicated functionalities in Scaletor
We need to explain a few more functionalities in Scaletor:

e the MCMC simulation can be both started and stoped;
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® the processes of setting subsets of restricted sites and frozen sites in the On
state;
® the capability of computing scales under the first symbol rule (see [12, 14]).

3.6.1 Starting and stopping the MCMC simulation machine

Scaletor executes a MCMC random process that can be started and stoped at
any time, and there is a dedicated button to do this (see Figure 16).

The MCMC starts running

L S

The MCMC stops running

Fig. 16 The two states of the start/stop button: In state (a) the MCMC is not running and
there is a fixed configuration z(°) € Q. When the button is pressed, the button transitions
to state (b) the MCMC starts running and a sequence of configurations z@ 2z eQis
constantly being generated according to the probability law of the process that corresponds
to the given parameters at the moment. When pressed again, the button transitions back
to (a) and the MCMC stops running with (%) = 2(No) where Np is the index of the last
configuration generated by the simulation before the button in state (b) was pressed.

When the MCMC is not running, there is a fixed (initial) configuration
() € Q. On startup, the MCMC is not running and this initial configuration
is, by default, £(®) = {+1}% = {+11% that is, all the scales in the n-TET
tuning system are in the On state. Otherwise, if the MCMC is running, then a
sequence of new configurations is constantly being generated according to the
laws of the underlying random process at that moment, say (9, (1) 22 . ¢
Q (perhaps the new configurations are eventually constant, e.g. when the Gibbs
measures are Dirac measures and the corresponding MCMC starts from a
configuration that eventually converge to the configuration on which the point
mass limit is based). When the MCMC stops running, let 20 = z(No) where
Ny is the index of the last configuration generated by the simulation before it
stopped.

3.6.2 Restricted subsets and frozen regions

Recall that Scaletor allows to restrict to subsets X C C,, of sites. Also, it admits
frozen regions F C X fixed on the positive state, {+1}7, so that the final
configuration space ) = Q(X, F) is as in equation (20). On startup, X = C,
and F = @, hence Q = {+1,-1}%» is the full space of configurations supported
on all the scales in the n-TET tuning system. But we could be interested in
making simulations on special subsets X of restricted sites, e.g. on scales with
k pitch classes, in which case we could consider, for example, leting X = Cflk)
(this scenario occurs e.g. when searchings trichords and/or pentatonic scales),
etc.
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As we shall see, allowing restricted subsets and frozen regions of sites will
be useful. The components that manipulate these two properties in the GUI of
Scaletor are shown in Figure 17. Now we move towards describing the processes
of setting restricted subsets and frozen regions of sites.

r e

s F
51[52[53[54[S5[S6[S7[S8[S9] [F1[F2[F3[F4[F5[F6
RS [RS[RS[RS[RS [RS[RS[RS RS RFRFRF[RF]

Release Sub

Fig. 17 The two dedicated components in the GUI of Scaletor to set (a) restricted subsets
of sites and (b) frozen regions in specific configurations.

3.6.3 Restricting and releasing restricted subsets of sites

Restricting sites can be done with the button (see (a) in Figure 17,

it is at the top). This button can be pressed any time any number of times,
whenever the MCMC simulation is running or not. It can be pressed even
when an (initial) restricted set of sites X = X(®) C C,, and/or a frozen region
determined by a subset F C X have already been established (recall that

X =C, and F = @ on startup). When the button is pressed, the

following inductive algorithm is executed:

0. Start with the current (initial) set of restricted sites X(®) = X and the
current (initial) configuration 2(®) € QX F).

1. Suppose that X@) and () are given. If the MCMC is running, then take one

step forward in such a random process and get a new configuration zU+1 e

Q(X(j),}") Otherwise, let 201D £ 2() if the MCMC is not running.

Let XU+ = {s € X0 : 2¥™) = 41} Observe that F C XU+ C x0).

3. Repeat steps 1 and 2 a finite but arbitrarily large number My € N of
times, with XU*D and 2U+Y) |41 playing the roles of XU) and z(),
respectively.

N

If all the parameters are kept fixed while the subspace algorithm is being
executed, then we will get a decreasing random sequence of subsets of sites
X© > xM > . that must eventually stabilize, so that if M is big enough,
then we will have

X 2 xMo) — y(Motk) v > 0, (53)

Observe that when stability is reached after My or more iterations, we will
always have 2(Motk) = [111% The speed of stabilization, i.e. how big M,
must be in order for equation (53) to hold, depends on the interactions and
the values of their parameters. In Scaletor, the default value for the number
of iterations is My = 20, which is usually enough (press the button several
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times if necessary). After pressing this button, in order to avoid awkward
outputs, do not press other buttons for a couple of seconds and let all the
iterations finish. For example, if the MCMC is running and the interaction ®
is trivial (i.e. when the mix is empty, in which case the random field consists
of independent Bernoulli(1/2) random variables), then as a result of pressing

the button (several times if necessary —but rather unlikely—), we will
surely obtain X = &. Thus, in a way, pressing the button has an effect

similar to that of a “stochastic intersection operator”, so to speak.
Below the button there are n buttons, with £k = 1,2,...,n

(again see (a) in Figure 17). These buttons act exactly like the button

but they are local in the sense that they only affect sites of length k.
Below the and buttons described above, there are the cor-

responding and n buttons, and they are precisely meant to
release restricted subset of sites. There is one large button and

also there are n local buttons, the buttons. On startup, all these release

subspace buttons are gray, as shown in item (a) of Figure 17, and they turn
dark red whenever there are restricted subsets of sites that can be released
with these buttons. Pressing the button sets X = C,, (hence the

button turns gray). Similarly, if X is the set of restricted sites before pressing

the local button below the button, then, after pressing such a local

releasing button, the new set of restricted sites is X UC,Sk) (and thus, similarly,
the button turns gray).

3.6.4 Freezing and releasing frozen regions

Freezing specific sites in the positive state On can be done with the large
button (in blue) at the top (see again Figure 17). It acts in a very similar
way as the Subspace buttons described before. It can be activated any time,
even when a subset of (initial) frozen sites F = F(©) C X has already been
established (recall again that on startup, 7 = &). When the button is

pressed, the following inductive algorithm is executed:

0. Start with the current (initial) configuration (9 € Q(x, F(©):

1. Suppose that F) and () are given. If the MCMC is running, then take

one step forward in such a random process, and, as a result, get a new

configuration U+t € Q = Q(X,}"(j)). Otherwise, let 20D £ (),

Let FUTD = {s € X : 29T = +1}. Observe that FU+H D F),

3. Repeat steps 1 and 2 a finite but arbitrarily large number My € N of times,
with FU+D and zU+D playing the roles of FU) and z(9), respectively.

o

If all the parameters are kept fixed while the freezing algorithm is being exe-
cuted, then we will get an increasing random sequence of subsets of sites
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FO ¢ FU C ... that must stabilize, and again the default value My = 20 is
enough for practical purposes. For example, if the MCMC is running and the
interaction @ is trivial (i.e the random field is formed by i.i.d. Bernoulli(1/2)

random variables), then, as a result of pressing the button (several times

if really necessary —a rather unlikely event—), we will surely get F = X, i.e. the
frozen region will consist of all the scales in the given restricted subset of sites
X. Thus, in a way, pressing the button has an effect similar to that of

a “stochastic union operator”, so to speak.

Below the large button there are n buttons, with k =1,2,...,n.

These buttons act exactly like the button but their actions are restricted

to sites of X of length k.

Also, just like the buttons to Release Subspaces of restricted sites, below
the blue freezing buttons described above, there are the corresponding buttons
that release, or unfreeze, frozen sites. Similarly again, there are one large and
n local buttons to unfreeze frozen sites. On startup they are all gray and they
turn blue whenever there are frozen sites that can be unfrozen by these buttons.
The large button makes F = & when pressed, i.e. it unfreezes any

frozen site in X. Similarly, the local buttons below each button with

k=1,2,...,n, when pressed, it unfreezes any frozen site in XﬂC,(Lk), ie. if Fis
the set of frozen sites before pressing such a local button, then, after pressing
it, the new set of frozen sites is F '\ Cﬁlk) (the release buttons are also gray, and
they turn dark blue when there are frozen sites that can be released).

In addition, in Scaletor there is always a selected scale, and pressing the
key in the keyboard Freezes the selected scale in the On state, that is, given
X, F,and z € X, then, as a result of pressing the key in the keyboard, we

get the new frozen region F U {z} in the On state. This will be useful. Also,
changing the selected scale can be done either by clicking on a scale in the bell

of scales or with the arrow keys (, =], , [<—]) that move a (green) cursor

along the scales in the On state.

3.6.5 First symbol rule

In [12-14] a method to produce scales from a symbolic sequences was intro-
duced and studied. In Scaletor there is a dedicated button that does this job.
More precisely, whenever the button is pressed, Scaletor reads the

text file'? sequence.txt as a finite sequence, or word, of length N > 0 over
an alphabet A, say w € A", and returns the corresponding set of scales that
results from the sequence under the first symbol rule:

e FIRST SYMBOL RULE. Let w = w;...wy € AYN. For each ky > 1 such
that kg < N —n + 1, consider the factor wig, ky1n) = W - - - Who+n—1. Let

12This file must have this name by default, and it most be saved in the same folder in which
Scaletor is located.
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52 wk, € A and then recursively define k,, = min{k > k,,_1 : wy,, = s}
for all m > 1 (eventually k,, = oo, when there is no k that satisfies the
condition). If k; — ko > n, then the scale that the factor wyi, ky+n) induces
under the first symbol rule is (n). Otherwise, if { > 1 is the greatest index
such k; < ko +n, then the scale that the factor wig, x,+n) induces under the
first symbol rule is

(/fl —k(),...,]i)l—kl,hn-i-k()—kl). (54)

When the is pressed, the resulting scales will be in the ON state

and all other scales will be in the Off state, also the MCMC automatically stops
running. Furthermore, only scales in restricted subsets of sites are considered,
and if there are frozen region of sites in the On state, they will remain On,
regardless of whether or not they are generated by the given sequence through
the first symbol rule.

3.7 Glauber dynamics in Scaletor

The simulation in Scaletor is essentially the same as Glauber dynamics in the
Ising model as described in subsection 2.4. To be precise, the following three
steps refer to the three steps described in the aforementioned subsection 2.4.

1. We start with step 1 and its equation (13), but certainly we use the hamil-
tonian for the Scaletor model instead of the hamiltonian for the Ising model
that yielded equation (14)).

2. Step 2 is also carried out similarly, with its equations (15) and (16).

3. The final step 3 is identical.

Furthermore, Scaletor possesses an additional simulation.

3.7.1 External magnetic fields

There is a useful alternative simulation that turns frozen regions of sites into
external magnetic fields sort of speak. This has effect only on the interac-
tions that involve the definition of oQ" (see equation (28)). When the external
magnetic field has been activated, Scaletor uses instead

o) g Y Jwy=+1]=[ANF]. (55)

yeEANF

To activate or deactivate the external magnetic field, press the key (on
startup the magnetic field is deactivated).
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4 Examples

Let us start with examples that have one single track that is turned and

that carries single site interactions. First we look at interaction tracks from
subsection 3.5.1.

Ezample 1 SINGLE INTERVAL TRACK. Consider the interactions mix console that
consists of one single track, i.e. there is only one track in the position, and it

carries the intervalic interaction ®*) = & obtained from equation (25) using the
interaction components defined by equations (29) and (30). For a mix where § # 0

(i.e. the master volume is )7 B > 0 (i.e. bring the slider of the master volume

all the way up), and B, ﬁ,‘:, B » B,gl), e 7ﬂl(€n) > 0 (i.e. bring the sliders of both the
three volumes of the track and the equalizer all the way up), if the MCMC machine
is running, then, for example, the following holds:

® In the equality case, the Gibbs measure is the point mass measure based on the
configuration of scales in 2 that has in the On state precisely the set of scales in
Q) with exactly j occurrences of an m-interval. For example, in the 12-TET tuning
system, if m = 2 and j = 5, then we obtain the configuration w € €2 that has in the
On position precisely the 21 scales with exactly five whole tones: the Ionian scale
(2,2,1,2,2,2,1) and its modes (Locrian, Phrygian, Aeolian, Dorian, Mixolydian
and Lydian, see again the left part in Figure 6), and another two mode orbitals
of size 7, one is from the Melodic Minor scale (2,1,2,2,2,2,1) and the other one
from the Neapolitan scale (1,2,2,2,2,2,1) (see Figure 18).

. Melodic Minor [ Neapolitan
2,1,2,2,2,2,1] [1,2,2,2,2,2,1]

- - - fo

» Altered Mixolydian b13 Superlocrian bb3 < Mixolydian #11 b13
1,2,1,2,2,2,2] [2,2,1,2,1,2,2] 1,1,2,2,2,2,2 [2,2,2,1,1,2,2]
] : | ¥ i P
v D - v o - - ¢ oo o e ©

Dorian b2 . Lydian b7 Locrian(2) b4 A& Lydian Aug. Dominant

X [1,2,2,2,2,1,2] [2,2,2,1,2,1,2] 12,1,1,2,2,2,2] [2,2,2,2,1,1,2

" | 2
Wi—— W ieei=— F———— —
3 ¢ o - D o od ¢ o
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o Locrian n9 Lydian #5 o Mixolydian b5 b13 Lydian Augmented #6
[2,1,2,1,2,2,2] Y [2.2,2,2.1,2,1] [2,2,1,1,2,2,2] 12,2,2,2,2,1,1]
e [Ny T e b ez
- D DI D= ¢ o

Fig. 18 The orbitals of the Melodic Minor scale and the Neapolitan scale. Together with
the orbital of the Ionian scale (see the left part in Figure 6), we obtain all the scales with
exactly 5 second majors formed with consecutive pitch classes.

® In the greater than or equal case, again with m = 2 and j = 5, we get 22 scales with
at least five whole tones: the previous 21 from the equality case (length 7), and
the Hexatonic scale (2,2, 2,2,2,2) (it has length 6, it corresponds to the chromatic
scale in the 6-TET tuning system, it is shown in Figure 21).
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Next, the balance interaction from subsection 3.5.2 is also a single site
interaction.

Ezample 2 SINGLE BALANCE TRACK. Consider the interactions mix console that
again consists of one single track and it carries the balance interaction o® = ¢
described in subsection 3.5.2 (e.g. for the equality case, &%) is defined through
equations (32) and (33)). Again let § # 0, 8> 0, and Bk,ﬁz,ﬁ;,ﬁél), e ,Blgn) > 0.
If the MCMC machine is running, then, for the equality case, the Gibbs measure
is a Dirac measure supported on the set of scales that satisfy b(s) = 0 if j = 0,
and % < b(s) < lio if 5 > 0. In Figure 20 the dark gray bars form the corre-
sponding histogram of scales according to their balance that is partition first for
perfect balance and then through these ten disjoint uniform consecutive intervals
(0, + 10 (1107 1—20], (107 1]. The light gray bars form the histogram modulo modes
(e.g. there are only 18 different shapes formed from a subset of a regular 12-gon with
perfect balance, see Figure 19).

I
¥
A ¢4

1 3 4 5 9 10 11 12

Fig. 19 The 18 shapes with perfect balance for the 12-TET tuning system.

In the next three examples we explore some basic parameter mixing and

features like the and buttons.

Ezample 3 COMPLEMENTS. Start from the Example 1, with m =2 and j = 5.

® Now let —8 > 0 (i.e. bring the slider of the master volume from all the way up to
all the way down). Then we get the complement, that is, in the equality case we
get the scales that do not have exactly five whole tones, and in the greater than
or equal case we get the scales that have less than five whole tones.

The same occurs of course if instead we let either one of the following;:

* B >0
® both —;f > 0 and -, > 0;
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Fig. 20 The dark gray bars correspond to the set of scales that satisfy b(s) = 0 if j = 0,

and jl;ol <b(s) < % if j =1,...,10. For example, there are exactly 50 scales with perfect

balance. The light gray bars correspond to the modes classes. At the bottom we see their
corresponding location in the bell of scales (the blue bars). The histogram with light gray
bars is for the mode classes, e.g. a modes transversal of the set of scales with perfect balance
always has cardinality 18.

[ —ﬁ]ij) >0forall j=1,...,n.
Furthermore, the following occurs:

® Again if we start from all the sliders all the way up but now we let —B,(cj) >0
only for some j € {1,...,n}, then, in the jth column of the bell of scales we will
see the complement restricted to compositions of n of length j.

Lastly, consider the following:

® In the less than case, again if we start from all the sliders all the way up but now
we let —3 > 0 (or anyone of the previous items), then we get the configuration of
scales in the second item of example 1.

Similar complements can be obtain with the balance track from example 2.

Ezample 4 THE BUTTON AND RESTRICTED SUBSETS OF SITES. Consider

again Example 1, but now let 3; = 0. In this case the Gibbs measure is no longer a
Dirac measure. Nevertheless, the preferred configurations are those that always have
in the On state the scales with exactly (in the equality case) 5 whole tones, but not
satisfying this property is not penalized because 8; = 0, so the rest of the scales are

distributed like Bernoulli(1/2). In this case we can observe how the button

works while the MCMC machine is running: if pressed, the decreasing sequence of
restricted subset of sites X'7) will converge to the set of scales with exactly (or with
at least, in the less than case) 5 whole tones, that is, to the set of scales in the On
position in the configuration w from example 1.
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Ezample 5 THE BUTTON AND FROZEN REGIONS IN THE ON STATE. Consider

again Example 1, again let 8; = 0 as in Example 4, but now also let —3 > 0. Again
in this case the Gibbs measure is not a Dirac measure. The preferred configurations
are those that always have in the Off state the scales with exactly (or with at least)
5 whole tones, and each of the rest of the scales are distributed like Bernoulli(1/2).

So now we can see how the button works while the MCMC is running: if

pressed, then the increasing sequence of frozen regions F () will converge to the
complement described in Example 3, that is to the set of scales in the Off position
in the configuration w from Example 1.

Now we continue with the other interactions we have defined, they are not
single site but “single region” interactions sort of speak (see equation (13)).
Let us start with the modes.

Ezample 6 SINGLE MODES TRACK. Consider the interactions mix console that carries
the modes interaction ¢ defined in subsection 3.5.3. Again turn it together with
the master volume and set all parameters > 0 by bringing all the corresponding
sliders all the way up. The following are examples of what can you get:

® In the equality case (equations (42) and (42)), we get Dirac measures for each
j=1,...,n. The support is precisely the scales with exactly 7 modes. For example,
if j = 1 then we get the 6 scales with exactly one mode: (12), (6,6), (4,4,4),
(3,3,3,3), (2,2,2,2,2,2), and (1,1,1,1,1,1,1,1,1,1,1,1), that is, the chromatic
scales in the k-TET tuning systems for all k | n (see Figure 21).

+~®-. 1-TET Monotonic ~®-« 2-TET Diatonic 3-TET Tritonic
.’ h [12 : " 6.6] [4,4, 4]

4-TET Tetratonic 6-TET Hexatonic Chromatic
\8313\ [22227 2] 1,1,1,1,1,1,1,1,1,1,1,1]
%W

Fig. 21 The six scales with exactly one mode. All but the first have perfect balance.

® Another instance of the equality case for example, we know that there are 462
scales of length 6 (e.g. recall Figure 5), but if we let j = 6 we see that there are
450 scales with exactly 6 modes, hence there are 12 scales of length 6 that have
less than six modes, so they must have j modes only for j = 1,2,3, and we have
quick access with the modes track. Let j = 3 and get the orbitals of three scales:
the Messiaen V scale (1, 1,4, 1,1,4), the Messiaen IT Truncated scale (1,2,3,1,2, 3)
and the Raga Indupriya India scale (1,3,2,1,3,2), for j = 2 we get the orbital of
the Raga Vasanta Pentachord 5aug scale (1,3,1,3,1,3), and certainly for j = 1
we get the 6-TET Hexatonic scale (2,2,2,2,2,2). See Figure 22.

® In the less than or equal case, the orbital of a scale is allowed to have at most one
element in the On state, so the Gibbs measure is not a Dirac measure, configura-
tions in which there are two or more elements of an orbital in the On state never
occur. Pressing the the button will yield a modes transversal of the scales
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Fig. 22 Orbitals of scales of length 6 with less than 6 elements.

(see again Figure 5, the histogram with light gray bars), the modes transversal
dimension of the set of scales is 351.

For examples of our last interaction, the interpolation interaction, recall
that a kernel in a graph G = (V,E) is a subset K C V that satisfies two
properties: (1) Independence: for every u,v € V, (u,v) ¢ E; (2) Absorbance:
for every u € V'\ K, there exists v € K such that (u,v) € E. In other words,
a kernel is a maximal independent set.

Ezample 7 SINGLE INTERPOLATION TRACK. Consider the interactions mix console
that again consists of one single track that is turned and that carries the

interpolation track ®*) = & described in subsection 3.5.4, that is, ® is defined
through equations (51) and (52).

® On startup, the Ionian scale is selected and the MCMC is not running. Freeze
the selected scale by pressing the key. Next, press the and [-] buttons to
set JT,J7 = {1,2,3,...} and activate the external magnetic field by pressing the
key once (a notification that the external magnetic field is activated is shown
in the GUI). Start the MCMC machine and observe how the frozen Ionian scale
transmits its energy to its neighbors for the configurations converge to the Ionian
scale together with the set of scales that interpolate the Ionian scale in any of the
ﬁki-step interpolation networks.

® Here is another way to obtain the configuration of the previous item (with-
out the external magnetic field). Again after startup, Freeze the selected scale
(Ionian). Start the MCMC machine and press the button, that is, run the

Subspace algorithm on the 7th column of the bell of scales that consists of an
ii.d. Bernoulli(1/2) random field except of the selected scale (e.g. Ionian) that
is frozen in the On state. As a result we get X = C; U --- U Cg U {Ionian} U
Cg--- UCi2. Set J¥ = {1} and then, using the equalizer, let the interpola-
tion track have effect only on scales of length < 6. The generic configurations
will have scales of length less that 6 in the On state whenever they jT-step

interpolate the Ionian scale. Press the buttons and for j =1,...,6
to set X = Nye+ (Ionian) U -+ U Nyi+ (Ionian) U {Ionian} U Cg--- U C12 and
F = Nyo+ (Tonian) U- - - U N41 (Ionian) U {Tonian}. Similarly, now let J© = @ and
J~ = {1} and then let the interpolation track have effect only on scales of length
> 6.
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® Set JT,J~ = {1} (hence the underlying network is the (undirected) interpolation
network J. If all the volumes are all the way up, then a scale will tend to be in
the On state if it interpolates with another scale that is already in the On state,
otherwise it will tend to be in the Off state. Thus, under this mix, starting from
a generic random configuration, the MCMC machine will surely converge to the
configuration with all the scales in the On state.
But now let us bring the main volume — 3 > 0 all the way down. In this case we do
not get the complement (i.e. the configuration with all the scales in the Off state).
Instead, we get configurations of scales with the property that the set of scales
in the On state form a maximal independent set in J. In other words, we obtain
kernels in the hypercube of dimension 11. In Figure 23 we show a histogram for
the cardinalities of a random sample of kernels obtained with Scaletor.
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Fig. 23 A histogram of the cardinalities of a random sample of kernels in the hypercube
of dimension 11, produced by the interpolation track mixed as in Example 7 (the size of the
sample is 500).

Ezample 8 FIRST SYMBOL RULE. With Scaletor we can verify results from [12-14] for
example. Indeed, recall subsection 3.6.5. The default content in the file sequence.txt

is an initial segment of the well known Thue-Morse sequence. So if the
button is pressed, then we obtain all the 18 scales reported in [14]. Freeze them by

pressing the button. Activate the magnetic field by pressing the key in
the keyboard. Turn the modes track with j = 1 and the > case, and set all

the parameters > 0 to obtain the modes orbitals of the Thue-Morse scales (and
there are indeed 49 scales in total). The same can be done for other sequences like
the ones that result from the Fibonacci and Feigenbaum substitutions and thus we
can readily verify all the claims in the aforementioned references. (Try finding scales
arising from the digits of 7 £ 3.14159....)

Ezample 9 MULTITRACK MIX. Turn the interval tracks of thirds, both minor

and major thirds (that is, when m = 3 and m = 4), with both j =1 and the > case
for both tracks, with all the sliders > 0 on both track too, and start the MCMC with
B> 0. As a result we obtain the 282 integer compositions of 12 with at least one 3
and at least one 4 because by default both tracks are multiplicative. Now make both
tracks additive by clicking each in its own area where none of its buttons sliders are
present (the background of the track will turn dark red). We will see the random
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configurations of scales that are accepted whenever the following two conditions are
satisfied:

1. if a site s € Cp, has no 3 or no 4, then it is in the Off state;
2. if a site s € Cy, has both at least one 3 and at least one 4, then it is in the On state.

We already had access to the 282 scales that satisfy condition 2, but we could get
them back again by pressing the button (several times if necessary). Press
the button in case you pressed the button to come back to

random configurations of scales that satisfy both conditions 1 and 2. To get the 1520
scales that satisfy 1, press the button (several times if necessary). Press the

button to go back again to random configurations of scales that satisfy

both conditions 1 and 2. Turn the modes track with ;7 = 1 and the < case, it imposes
on the following condition on random configurations of scales:

3. asite s € Cp, can be in the On state only when all the other members of its modes
class are in the Off state.

By default the modes track is multiplicative (green background) and at the cur-
rent moment the interval track controlling the occurrences of thirds should be both
additive (dark red backgrounds). Hence, we get random configurations of scales that

satisfy conditions 1, 2 and 3. Press back and forth the but-

tons (remember to wait a few seconds after pressing the former button) and get, in
the terminology of [13], transversals to the set of scales that satisfy condition 1, and
observe that the transversal dimension of this set is 259. To obtain transversals to the
set that satisfies condition 2, make the modes track additive and the interval tracks

and

mutiplicative, and press the button several times to produce transversals to

this set of transversal dimension 52.

5 Conclusions and related work

The paradigm of using statistical mechanics as a model to describe emerging
order in disordered systems has been successfully exported to fields like neu-
rosciences, economics, information theory and machine learning, to mention
just a few (in social networks for example, the Ising model has been adapted
to study phenomena like group polarization, echo chamber and cocoon effects
[16-18]). Music is not the exception, e.g. Euler’s Tonnetz have been used to
exhibit how ordered patterns emerge in music [19] (in this regard, generaliza-
tions of Tonnetz are very natural grounds for further exploration, consider for
example [20, 21]; see also [22] where self-organization is put in the context of
musical tuning systems). In particular, the Ising model has been adapted in
musical contexts like sonification [23, 24] and restricted Boltzmann machines
have been used to study musical sequences [25].

Scaletor is not only a complete catalog of musical scales in any given tonal-
ity, its scope encompasses educational purpose for it constitutes an interactive
tool that serves to understand the basic principles underlying these type of
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models of thermodynamic formalism that are certainly demanding'®, at least
when someone is first exposed to the subject. We find this kind of approach in
other works, e.g. software applications have been developed in quantum com-
puter music with educational purposes in particular (see [26] as part of the
whole volume [27]). Here we have effectively adapted the scenario of statistical
mechanics to the context of classification of musical scales, which are central
objects in music theory and still constitute a subject of current research (see
e.g. [28, 29], also [30-33]). The outputs can provide guidelines that musicians
can use for compositions, methods of study, and so forth. Furthermore, we
have seen that the network structures implemented in Scaletor allow us to find
kernels in (directed) graphs such as the hypercube (see [34-37], also [38, 39]
where independent sets are considered together with Glauber dynamics; also,
for more on networks in music see e.g. [40, 41]).

Scaletor comes with a handful set of interaction tracks, many of which are
related to the combinatorics of integer compositions (for more on combinato-
rial problems in the theory of music see e.g. see [42, 43]), but we have also
included balance which is a geometric property, and certainly there is room for
further exploration in this regard (see e.g. [44, 45]). We have seen just a few
basic examples but the possibilities are vast and more elaborate mixes require
careful interpretations. Furthermore, although here we have focused solely on
musical scales, the underlying structure applies just as well to rhythm struc-
tures. Scaletor has been designed to escalate, adding new tracks is a relatively
simple process and the code has been conceptually written in a way that the
condition n = 12 is not a restriction, so a project that incorporates both
scales and rhythms together with more and multiple musical interactions can
be developed, even with with MIDI capabilities.

6 Additional material

® Scaletor is available for download from its repository at GitHub:
https://github.com/gomiza/scaletor

The README file contains information about installation, launch instruc-
tions and additional material like video tutorials.
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