TAREA IV

- 1. Es bien sabido que el intervalo (0,1) no es compacto. De un ejemplo de una cubierta abierta del intervalo (0,1) que no posea una subcubierta finita.
- 2. Sabemos que si $\{K_n\}$ es una sucesión de conjuntos compactos tal que $K_{n+1} \subseteq K_n$, entonces $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$. Demuestre que esto deja de ser un hecho si sustituimos "compactos" por "cerrados" ó bien por "acotados".
- 3. Sea I = [0, 1]. Describa el conjunto f(I) en cada uno de los siguientes casos e identifique sup f(I) e inf f(I). ¿En qué casos f alcanza el supremo y en qué casos alcanza el infimo?
 - a) f(x) = 1 + x para toda $x \in I$.
 - b) f(x) = 1 si x < 1/2 y f(x) = 2x en otro caso.
 - c) f(x) = x si x < 1 y f(1) = 2.
 - d) f(0) = 1, f(1) = 0 y f(x) = 3x para toda $x \in (0, 1)$.
- 4. En cada uno de los siguientes incisos encuentre (1) el máximo de la forma cuadrática $Q(\mathbf{x})$ sujeta a la condición $\mathbf{x}^T\mathbf{x} = 1$, (2) un vector unitario \mathbf{u} en el que se alcance el máximo y (3) el máximo de $Q(\mathbf{x})$ sujeta a la condición $\mathbf{x}^T\mathbf{x} = 1$ y $\mathbf{x}^T\mathbf{u} = 0$.
 - a) $Q(\mathbf{x}) = 5x_1^2 + 5x_2^2 4x_1x_2$
 - b) $Q(\mathbf{x}) = 7x_1^2 + 3x_2^2 + 3x_1x_2$
 - c) $Q(\mathbf{x}) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 4x_2x_3$
 - d) $Q(\mathbf{x}) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$
- 5. Si \mathbf{x} es un vector característico unitario correspondiente a un valor característico λ de una matriz A, entonces determine el valor de $\mathbf{x}^T A \mathbf{x}$.
- 6. Demuestre que si A es una matriz positiva definida, entonces existe una matriz positiva definida B tal que $A = B^T B$. (Sugerencia: Ecuentre una matriz diagonal D y una matriz invertible P tal que $A = PDP^T$ con $P^T = P^{-1}$. Encuentre una matriz diagonal C tal que $D = C^T C$ y define $B = PCP^T$.)
- 7. Demuestre que si A y B son matrices de $n \times n$ cuyos valores característicos son todos positivos, entonces los valores característicos de A+B son todos positivos. (Sugerencia: Piense en formas cuadráticas.)
- 8. Sea A una matriz simétrica invertible. Demuestre que A es positiva definida si y sólo si A^{-1} es positiva definida. (Sugerencia: Considere valores característicos.)
- 9. Encuentre y clasifique los puntos críticos (máximos y mínimos tanto locales como globales, o bien ninguno de ellos) de cada una de las siguientes funciones. En su caso, determine si la propiedad de ser máximo o mínimo local es global.

a)
$$f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$$

b)
$$f(x,y) = e^{2x}(x+y^2+2y)$$

$$c) f(x,y) = xy(a-x-y)$$

$$d) \ f(x,y) = x^2 + x^2y^2 - y$$

e)
$$f(x,y) = x^4 + y^4 - x^3$$

$$f) f(x,y) = (x^4/32) + x^2y^2 - x - y^2$$

$$g) f(x,y) = x \operatorname{sen} y$$

$$h) f(x,y) = -y\cos x$$

- 10. Encuentre el punto más cercano al origen de \mathbb{R}^3 que está en la intersección de los planos 3x+y+z=5 y x+y+z=1.
- 11. Maximize f(x, y, z) = yz + xz sujeta a la restricción de igualdad $y^2 + z^2 = 1$ y xz = 3.
- 12. Encuentre el máximo y mínimo de $f(x,y,z)=x+y+z^2$ sujeta a la restricción de igualdad $x^2+y^2+z^2=1$ y y=0.
- 13. Encuentra los máximos y mínimos de las siguientes funciones sujetas a las restricciones dadas:

a)
$$f(x,y) = xy$$
 sujeta a $x^2 + y^2 = 2a^2$.

b)
$$f(x,y) = 1/x + 1/y$$
 sujeta a $1/x^2 + 1/y^2 = 1/a^2$.

c)
$$f(x, y, z) = x + y + z$$
 sujeta a $x + y + z = 5$ y $xy + xz + yz = 8$.

d)
$$f(x, y, z) = x^2 + 2y - z^2$$
 sujeta a $2x - y = 0$ y $x + z = 6$.

14. Considere el siguiente problema:

Optimizar:
$$f(x, y, z) = z$$

Sujeto a: $x^2 + y^2$
 $x + y + z = 5$

- a) ¿Se cumple la condición de regularidad (o cualifican las restricciones)?
- b) Encuentre los puntos estacionarios.
- $c)\,$ Encuentre los máximos y mínimos globales. Justifique
- d) Si la primera restricción cambia 3.9 y la segunda a 5-2, ¿cuánto varía aproximadamente el valor mínimo de la función de valor?
- 15. Sea A una matriz simétrica. Resuelva el problema

$$\max f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$
 sujeto a $\mathbf{x} \cdot \mathbf{x} = 1$.