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Abstract. We use matrices over formal power series to represent irreducible and positive
recurrent Markov chains and identify a natural class of good finitary isomorphisms
(magic word isomorphisms) as those arising from elementary matrix operations.
This extends the positive K-theory framework which has been used for other classification
problems in symbolic dynamics.

1. Introduction
One of the significant recent developments in symbolic dynamics is the ‘positive K-theory’
approach to classification and isomorphism [5], inaugurated in [13, 14] following earlier
applications of polynomial matrices [2, 3, 20, 31]. In the most important example, very
roughly, a shift of finite type is represented by a matrix A whose entries are polynomials
with Z+ coefficients; and multiplication of I − A by an elementary matrix satisfying a
positivity condition induces an isomorphism of shifts of finite type. This gives both a new
framework for classification [8] and a powerful method for constructing isomorphisms
[13, 14]. This approach has been generalized to the study of flow equivalence and group
extensions of shifts of finite type and continuous isomorphism of finite state Markov chains
[4, 6–8]. All of these cases involve continuous maps on compact spaces.

In this paper, we extend the approach to obtain an algebraic framework for good finitary
isomorphisms of positive recurrent irreducible Markov chains. A finitary isomorphism is
a measure-preserving isomorphism which is a homeomorphism after removal of a null set;
in §2, we review the place of finitary isomorphism in the classification theory of Markov
chains. Our ‘good’ finitary isomorphisms will be the magic word isomorphisms. We will
show that the class of magic word isomorphisms is exactly the class of isomorphisms
induced by elementary matrix operations in our positive K-theory setup.

Magic word isomorphisms are a very natural class. The few general techniques to date
for producing isomorphisms with finite expected coding time have produced magic word
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isomorphisms [1, 19–21, 23, 31, 32]; magic word isomorphisms are particularly natural for
exponentially recurrent chains (§7); and it is expected that finite state chains which are
isomorphic via a finitary isomorphism with finite expected coding time will be isomorphic
by magic word isomorphisms, so in this case our framework can be viewed as an algebraic
framework for (good) isomorphisms with finite expected coding time. The setup we
present is distinguished from previous ‘positive K-theory’ work in the following ways:
our matrix entries are formal power series rather than polynomials (corresponding to the
natural non-compactness of the finitary situation); and we use ‘intrinsically irreducible’
matrices to ‘mod out’ submatrices of I − A (corresponding to dropping a null set).

Let us be more explicit about our classification. We will describe a class M of N × N

finitely supported matrices A representing our Markov chains. Such a matrix A will be
intrinsically irreducible (there will be a unique ‘maximal’ irreducible component, defined
by having the maximum Perron value). An entry A(i, j) will be zero or the sum of
countably many terms of the form n[p]td . In such a term, d is a non-negative integer, p is a
positive real number (corresponding to a transition probability), n is a positive integer and
n[p] is an element of the integral group ring of the multiplicative real numbers. (The use
of this ring allows the matrix to track paths with weights. It was Parry and Tuncel [27]
who made this advance using the ring Z[exp], which is isomorphic to the integral group
ring we use.) In the special case that every d is positive, the corresponding Markov chain
will be isomorphic to the chain represented by a graph in which a summand [p]td of
A(i, j) corresponds to a path from i to j of d successive and otherwise isolated edges,
with p the product of the transition probabilities along the path. In particular, we may
think of d as a transition time. However, as in the continuous case [8], in order to represent
all our isomorphisms algebraically, it will be necessary for us to allow the possibility
d = 0. To clarify the corresponding finitary isomorphisms, we will define the Markov
chain associated to A as the path chain

∑
A.

We say a matrix is a basic elementary matrix if it equals the identity matrix except
perhaps in a single off-diagonal entry. If A and B are two matrices in M and E is a basic
elementary matrix such that E(I−A) = I−B or (I−A)E = I−B, then we will produce
a finitary isomorphism from

∑
A to

∑
B , which we call an elementary isomorphism.

We show such isomorphisms are magic word isomorphisms (Proposition 6.1) and in our
main result (Theorem 6.5) we show that all magic word isomorphisms are compositions of
elementary isomorphisms.

We can indicate now how the algebraic structure represented in this paper parallels the
structure of K1 in algebraic K-theory. (In the better-developed positive K-theory over Z,
there is a more than formal connection with algebraic K-theory [34].) It follows from the
definition of the class M that I − M is a subset of GL(∞,R), where R is a certain ring
of a formal power series and GL(∞,R) consists of the images under the map

M ↪→


M 0 · · ·
0 1 · · ·
...

...
. . .


 ∈ GL(∞,R)

of all n× n and invertible matricesM ∈ GL(n,R), for all n ≥ 1. The Whitehead Lemma
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(see [28]) states that the abelianization of GL(∞,R) is

GL(∞,R)/E(R) = K1(R),

where E(R) denotes the group generated by the basic elementary matrices. So for all
M,N ∈ GL(∞,R), M and N are the same in K1(R) if and only if they are connected
by a finite sequence of basic elementary matrix multiplications (and it is not too difficult
to check directly that two of our matrices I − A and I − B are the same in K1(R) if
and only if they have the same determinant). The equivalence of I − A and I − B for
the positive K-theory differs in two respects: in the sequence of basic elementary matrix
multiplications, each multiplication step must satisfy the positivity condition that it relates
two elements of I − M; and in each step, we only require equality to hold in entries
corresponding to the unique maximal components. The latter difference is consistent with
the fact that det(I −A) is not an invariant of the magic word isomorphism. (For finite state
chains, the residue of this determinant invariant is the beta function of S. Tuncel.)

The paper is organized as follows. In §2, we give definitions and recall background.
In §3, we explain how to represent Markov chains with matrices over power series, and we
define the path chains which we choose as the systems corresponding to the matrices. In §4,
we explain how multiplication by a basic elementary matrix induces an elementary finitary
isomorphism. In §5, we show how finitary isomorphisms associated with state splitting
can be given as compositions of elementary isomorphisms. We apply these results and
further construction in §6 to prove our main result. In §7, we make a few remarks about
exponentially recurrent chains.

2. Markov chains and their classification
Let P = P(i, j)i,j∈S be a stochastic matrix having its rows and columns indexed by a
countable set S called the state space. A state i ∈ S is recurrent if

∞∑
n=1

Pn(i, i) = ∞;

otherwise it is transient. For every pair of states i, j ∈ S, let f0(i, j) = 0, f1(i, j) =
P(i, j) and fn+1(i, j) = ∑

k �=i fn(i, k)P (k, j) for all n ≥ 1. A state i ∈ S is positive
recurrent if its mean recurrence time is finite, that is if

∞∑
n=1

nfn(i, i) < ∞;

otherwise it is null recurrent. The matrix P is positive recurrent if every state i ∈ S
is positive recurrent. The matrix P is irreducible if, for every i, j ∈ S, there exists
n = n(i, j) ≥ 1 such that Pn(i, j) > 0. If P is irreducible, then P is positive recurrent
if and only if there exists a positive recurrent state i ∈ S (see [11] and [16]). The (vertex)
shift space defined by P is the topological space∑

P

= {x = . . . x−1 � x0x1 . . . ∈ SZ | P(xn, xn+1) > 0 for all n ∈ Z}

with the relative topology obtained from the product topology on SZ and it represents all
doubly infinite paths in the graphG(P) = (S, E) with vertex set S and edge set E formed
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by putting an edge from i ∈ S to j ∈ S labelled by P(i, j) if and only if P(i, j) > 0.
Let WP = {i0 . . . in | n ≥ 0 and P(i0, i1) . . . P (in−1, in) > 0} be the set of all finite paths
in G(P) and let the length of a finite path γ = i0 . . . in ∈ WP be �(γ ) = n+ 1. If τ ∈ Z,
then let the cylinder set determined by γ and τ be [γ, τ ] = {

x ∈ ∑
P | xτ . . . xτ+n = γ

}
.

The collection of all cylinder sets forms a basis for the topology on
∑
P . If P is irreducible

and positive recurrent, then there exists a unique stationary distribution, i.e. a strictly
positive and stochastic vector π = π(i)i∈S satisfying πP = π (in fact, π(i)−1 is the
mean recurrence time of i ∈ S). In this case, let µP be the Borel probability measure
defined on cylinder sets by the rule

µP ([γ, τ ]) = π(i0)P (i0, i1) . . . P (in−1, in).

Then µP is ergodic with respect to the left-shift automorphism σP : ∑
P → ∑

P defined
by setting (σP x)n = xn+1 for all n ∈ Z. The triple

(∑
P , σP ,µP

)
is the irreducible and

positive recurrent Markov chain with transition matrix P .
Let P andQ be the transition matrices of two irreducible and positive recurrent Markov

chains. A measure-preserving transformation ϕ : ∑
P → ∑

Q is an isomorphism if it
is invertible and shift-commuting, i.e. ϕ ◦ σP = σQ ◦ ϕ. A measure-preserving and
shift-commuting transformation ϕ : ∑

P → ∑
Q is a finitary map (or simply finitary)

if it is continuous after restriction to the complement of a null set. For a finitary map
ϕ : ∑

P → ∑
Q and almost every x, y ∈ ∑

P , there exists a minimal positive integer
n = n(x) such that ϕ(y)0 = ϕ(x)0 if y−n . . . yn = x−n . . . xn. In this case, ϕ has finite
expected coding time (FECT) if and only if∫

n(x) dµP < ∞.

If ϕ : ∑
P → ∑

Q is a measure-preserving and shift-commuting transformation, then
a path ω ∈ WP is a magic word for ϕ if for all γ ∈ WP such that ωγω ∈ WP ,
there exists ϕ(γ ) ∈ WQ such that �(ϕ(γ )) = �(γ ) and ϕ(x) ∈ [ϕ(γ ), 0] for almost all
x ∈ [ωγω,−�(ω)]. Because σP is ergodic and µP ([ω, 0]) > 0, the set of points in

∑
P

that eventually stop visiting ω ∈ WP is a set of measure zero and, therefore, ϕ is a finitary
map. A finitary isomorphism ϕ : ∑

P → ∑
Q is an FECT isomorphism (respectively

a magic word isomorphism) if both ϕ and ϕ−1 have FECT (respectively a magic word).
A magic word isomorphism between exponentially recurrent irreducible Markov chains
(in particular, finite state irreducible chains) is an FECT isomorphism (see §7).

We finish this section with a brief sketch of the classification theory of finite state
mixing Markov chains. Ornstein and Friedman (see [23] and [10]) have shown that
entropy is a complete invariant for the measurable isomorphism of these chains. Keane and
Smorodinsky [12] have shown that this isomorphism could be constructed to be finitary.
This result both improves the niceness of the measurable isomorphism and indicates that a
finitary isomorphism can be terrifically complicated. FECT isomorphisms were suggested
as a class of more effective codes in 1979 by Parry [25], who showed that, in general,
it is not possible to find an FECT isomorphism between two finite state mixing Markov
chains with the same entropy [25]. The known invariants of FECT isomorphisms are
the multiplicative group 	 of ratios of weights of cycles of the same length [17], the
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multiplicative group 
 generated by the weights of cycles and the distinguished generator
c	 of the cyclic group 
/	 [26], and the β function, introduced in [32] as an invariant of
finite equivalence and proved to be an invariant of an FECT isomorphism in [30]. It has
been conjectured that the quadruple (	,
, c	, β) constitutes a complete invariant of an
FECT isomorphism between finite state irreducible Markov chains.

3. Path chains and matrices over power series
In this section, we explain how certain matrices over formal power series represent all
positive recurrent Markov chains as path chains. Path chain representations elaborate the
representations of shifts of finite type as path shifts [5, 8], which are constructed from
polynomial matrices with entries in Z+[t]. The path chain representation is needed for
conveniently modelling isomorphisms to be produced from elementary matrix operations.

Let R
∗+ be the multiplicative group of positive real numbers. Let Z[[R∗+]] be the set

of formal sums
∑
p∈R∗+ np[p], where np ∈ Z and np = 0 for all but countably many

p ∈ R
∗+. Let Z+[[R∗+]] be the subset of Z[[R∗+]] obtained by requiring np ∈ Z+, where

Z+ denotes the set of positive integers. Let R = Z[[R∗+]][[t]] be the set of formal power
series with coefficients in Z[[R∗+]] and let R+ be the subset of R obtained by requiring the
coefficients to be in Z+[[R∗+]].

Let A be an infinite square matrix over R+ and let N index the rows and columns of A.
Write A = A(i, j)i,j∈N, where

A(i, j) = A(i, j)(t) =
∞∑
d=0

ad(i, j)t
d

for some ad(i, j) ∈ Z+[[R∗+]], say

ad(i, j) =
∑
p∈R∗+

np,d (i, j)[p],

with np,d (i, j) = 0 for all but countably many p ∈ R
∗+. The matrix A induces a directed

and labelled graph GA = (VA, EA) as follows. First, let NA ⊂ VA be such that i ∈ NA if
and only if there is at least one non-zero entry in the row or the column ofA corresponding
to i. For every i, j ∈ NA, p ∈ R

∗+ and d ≥ 1, put np,d (i, j) paths of length d from
i to j and call them routes (the intermediate vertices of distinct routes of length two or
more are disjoint), and also put np,0(i, j) edges from i to j and call them zero-length
routes. Every route r is labelled by its weight wtA(r) = p. The vertex set VA is such
that VA − NA is the set of intermediate vertices. The set of routes, including the zero-
length routes, is denoted by RA and the edge set EA consists of all the edges that form the
routes in RA. For every edge e ∈ EA, if e is not a zero-length route, then let �(e) = 1,
otherwise let �(e) = 0. For every n ≥ 1, let WA(n) = {γ = e1 . . . en | e1, . . . , en ∈ EA}.
Let WA = ⋃

n≥1 WA(n) and if γ = e1 . . . en ∈ WA, then let i(γ ) and τ (γ ) be the
initial and terminal vertices of e1 and en respectively, and also let the length of γ be
�(γ ) = �(e1) + · · · + �(en). If i, j ∈ VA, then let WA(i, j) = {γ ∈ WA | i(γ ) =
i and τ (γ ) = j }, let WA(i, ·) = ⋃

k∈VA WA(i, k) and let WA(·, j) = ⋃
k∈VA WA(k, j).

If X ,Y ⊂ WA, then XY denotes the set of paths formed by the consecutive concatenation
of an element in X followed by an element in Y and X ∗ denotes the collection of paths
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which are finite concatenations of elements in X , including the empty path consisting of no
edges. Let R∗

A(0) = ∅ and for every n ≥ 1, let R∗
A(n) ⊂ R∗

A be the set of paths formed by
the consecutive concatenation of n routes (for example, R∗

A(1) = RA). If i, j ∈ NA, then
let RA(i, j) = RA ∩ WA(i, j), RA(i, ·) = RA ∩ WA(i, ·), RA(·, j) = RA ∩ WA(·, j)
and R∗

A(i, j) = R∗
A ∩ (WA(i, j) ∪ {i, j }), and if γ ∈ WA(i, j), then wtA(γ ) denotes the

weight of γ defined as the product of the weights of the routes that form γ .
Let A be the matrix that results from A after replacing each coefficient ad(i, j) by its

image under the map defined by the rule n[p] �−→ np for all n ∈ Z+ and p ∈ R
∗+.

If t ∈ R+ is a non-negative real number, then let A(t) be the matrix over R+ ∪ {∞} that is
obtained when evaluating A at t . We will always assume that the no Z+-cycles condition
of Boyle and Wagoner is satisfied (see [8] or [5]):

∞∑
n=1

tr(An(0)) =
∞∑
n=1

∑
i∈N

An(0)(i, i) = 0

(i.e. there exist no zero-length cycles).
To describe the set of all doubly infinite paths in GA, let a symbol be a pair (r, τ ) ∈

RA×Z. If (r1, τ1) and (r2, τ2) are two symbols such that τ (r1) = i(r2) and τ2 = τ1+�(r1),
then say that (r2, τ2) follows (r1, τ1) and write (r1, τ1) → (r2, τ2). A doubly infinite
sequence of symbols x = . . . x−1x0x1 . . . = . . . (r−1, τ−1)(r0, τ0)(r1, τ1) . . . such that
(rn, τn) → (rn+1, τn+1) for all n ∈ Z represents a doubly infinite path in GA, with (rn, τn)
indicating for all n ∈ Z that at time τn the route rn begins. However, more than one of
these sequences may represent the same doubly infinite path, so consider the equivalence
relation that makes two of these sequences x and x ′ equivalent if and only if for some
r ∈ Z, we have x ′

n = xn+r for all n ∈ Z. Let [x] denote the equivalence class of x and
define the path space

∑
A as the set of all the equivalence classes. Give to

∑
A the quotient

topology obtained from the relative topology of the product topology on the set∏
τ∈Z

(EA × Z).

Let γ = r1 . . . rn ∈ R∗
A(n), with n ≥ 1 and r1, . . . , rn ∈ RA, and let τ ∈ Z. The cylinder

set determined by γ and τ is the set [γ, τ ] ⊂ ∑
A, where [x] ∈ [γ, τ ] if and only if

there exists m ∈ Z such that xm+1 . . . xm+n = (r1, τ ) . . . (rn, τ + �(r1) + · · · + �(rn−1)).
The collection of cylinder sets forms a basis for the topology on

∑
A. If γ ∈ WA(i, j)

with i, j ∈ VA, then there exists a unique path in γ ∈ R∗
A containing γ and having

minimal length, say γ̂ = uγ v ∈ R∗
A for certain u, v ∈ WA and, in this case, let

[γ, τ ] = [γ̂ , τ − �(u)]. Also, if i ∈ VA, then let [i, τ ] = {[x] ∈ ∑
A | [x] ∈ [e, τ ]

for some e ∈ EA(i, ·)
}
. The left-shift map σA : ∑

A → ∑
A is defined for every

[x] = [. . . (r−1, τ−1)(r0, τ0)(r1, τ1) . . . ] ∈ ∑
A by σA([x]) = [. . . (r−1, τ−1 + 1)(r0, τ0

+ 1)(r1, τ1 + 1) . . . ].
Our next task is to define a Borel probability measure on the path space

∑
A. We first

suppose that A is irreducible, which means that for every i, j ∈ NA, there exists
n = n(i, j) such that An(i, j) �= 0. For every i, j ∈ NA and n ≥ 0, let

gn(i, j) = 1

n!
(
dn

dtn

∞∑
m=1

Am(i, j)(0)

)
.
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If i ∈ NA, then λA = limn→∞ n
√
gn(i, i) exists, is independent of i ∈ NA and is called the

Perron value of A (see [16]). We assume that λA < ∞. The matrix A is recurrent if there
exists i ∈ NA such that

∞∑
n=1

An(i, i)(λ−1
A ) = ∞.

For every i, j ∈ NA, let f0(i, j) = g0(i, j), f1(i, j) = g1(i, j) and fn+1(i, j) =∑
k �=i fn(i, k)f1(k, j). A recurrent matrix A is positive recurrent if there exists i ∈ NA

such that its mean recurrence time is finite, i.e. if
∞∑
n=1

nfn(i, i)/λ
n
A < ∞;

otherwise it is null recurrent. If A is positive recurrent, then there exists a non-negative
vector π such that π(i) > 0 for all i ∈ NA and A(λ−1

A )π = π . Let D and D−1 be the
diagonal matrices having D(i, i) = [π(i)] and D−1(i, i) = [π(i−1)] for all i ∈ N. Let

Ã = D−1AD

(
t

[λA]
)
.

The submatrix obtained from Ã(1) by removing the rows and columns corresponding to
the elements not in NÃ is stochastic, irreducible and positive recurrent and, hence, there
exists a unique, non-negative and stochastic vector π̃ such that π̃(i) > 0 for all i ∈ NÃ

and π̃ Ã(1) = π̃ . In fact, GA and GÃ are the same except for the weights assigned to the
routes. For every γ ∈ R∗

A(n), where n ≥ 1, define the transition probabilities (see [20])

pA(γ ) = wtÃ(γ ) = wtA(γ )π(τ(γ ))

λAπ(i(γ ))

and for every τ ∈ Z, let
µA([γ, τ ]) = π̃(i(γ ))pA(γ ).

Then µA determines a Borel probability measure on
∑
A which is invariant with respect

to σA. The triple
(∑

A, σA,µA
)

is the path chain defined by A.
Path chains are isomorphic to Markov chains as follows. If A is an irreducible and

positive recurrent matrix over R+, then the corresponding path chain is conjugate to the
Markov chain with transition matrix A#, the matrix over R+ associated to the graph GÃ
(see [5] for the way to construct a conjugacy that transforms matrices satisfying the
no Z+-cycles condition into matrices with no zero-length paths). Conversely, for an
irreducible and positive recurrent Markov chain with transition matrix P , let

P̂ =


tP 0 · · ·
0 0 · · ·
...

...
. . .


 .

Then P̂ is an irreducible and positive recurrent matrix over R+ and the path chain it
defines is conjugate to the Markov chain defined by P via the conjugacy defined for every
x = . . . x−1x0x1 . . . ∈ ∑

P by the map

x �→ [x] = [. . . (e(x−1, x0),−1)(e(x0, x1), 0)(e(x1, x2), 1) . . . ] ∈
∑
P̂

, (3.1)



1492 R. Gómez

where e(xn, xn+1) denotes the edge of G(P) from xn to xn+1 for all n ∈ Z. Observe that
(P̂ )# = P . Henceforth, the definitions concerning path chains and with a Markov chain
counterpart will be consistent (see [5], [11] and [16]).

Let A be a matrix over R+. An irreducible component of A is a maximal irreducible
submatrix of A. Say that A is intrinsically irreducible if there exists a unique irreducible
component A0 with maximal Perron value. In this case, define the Perron value of A as
λA = λA0 . An intrinsically irreducible matrix A is positive recurrent if every irreducible
component of A is positive recurrent. In this case, define an ergodic measure µA on

∑
A

by requiring
µA|∑

A0
= µA0 .

Any two intrinsically irreducible and positive recurrent matrices having the same
distinguished irreducible component determine the same path space modulo a set of
measure zero and will be considered the same.

Let M be the set of all the infinite matricesA over R+ which are intrinsically irreducible
and positive recurrent and have finite support, that is |NA| < ∞ (we will often abuse
notation and write elements in M as finite matrices). Then NA is a finite subset of vertices
containing at least one vertex of each cycle in GA. Subsets of vertices of this kind are called
cycle-passage domains of GA (see [11]).

For every pair of matrices A,B ∈ M, we translate word-by-word the definitions of an
isomorphism, a finitary map, a finitary map having FECT, an FECT isomorphism, a finitary
map having a magic word and a magic word isomorphism. For example, if ϕ : ∑

A → ∑
B

is a measure-preserving and shift-commuting transformation, then a path ω ∈ WA is a
magic word for ϕ if for all γ ∈ WA such that ωγω ∈ WA, there exists ϕ(γ ) ∈ WB such
that �(ϕ(γ )) = �(γ ) and ϕ([x]) ∈ [ϕ(γ ), 0] for almost all [x] ∈ [ωγω,−�(ω)].

For every i ∈ VA, let LA(i) be the set of cycles that start and end at i and do not visit i
otherwise.

PROPOSITION 3.1. Let P be the transition matrix of an irreducible and positive recurrent
Markov chain. Then there exist a matrix A ∈ M with at most one non-zero entry and a
continuous magic word isomorphism π : ∑

A → ∑
P̂ .

Proof. Let i ∈ NP̂ and f ∈ M be the power series representing LP̂ (i). Let A = f

and choose a length- and weight-preserving bijection 
 : LP̂ (i) → RA. If [x] ∈ ∑
A

visits i infinitely many times in the past and future, then abuse notation and write
[x] = [. . . (γ−1, τ−1)(γ0, τ0)(γ1, τ1) . . . ], where γn ∈ LP̂ (i) and τn ∈ Z, with τn+1 =
τn + �(γn). Let π([x]) = [. . . (
(γ−1), τ−1)(
(γ0), τ0)(
(γ1), τ1) . . . ]. Then π is a
finitary isomorphism with the desired properties. �

The map defined by equation (3.1) is a functor that assigns isomorphisms between
two irreducible and positive recurrent Markov chains with transition matrices P and Q
to isomorphisms between the path chains defined by P̂ and Q̂, and respects magic word
isomorphisms (see Proposition 6.2).

4. Elementary isomorphisms
We now come to the generators, the ‘elementary isomorphisms’.
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A basic elementary matrix E is an infinite square matrix over R such that every
diagonal entry is equal to 1 and there is at most one non-zero off-diagonal entry.
Elementary isomorphisms are constructed from a certain type of matrix multiplications
involving basic elementary matrices. The following proposition guarantees that the class
M is preserved under such operations.

PROPOSITION 4.1. Let A and B be two matrices in R+. If A ∈ M and there exists a
basic elementary matrix E such that either E(I −A) = I −B or (I −A)E = I −B, then
B ∈ M.

Proof. The matrix B satisfies the no Z+-cycles condition because

∞∑
n=1

tr(Bn)(0) =
∞∑
n=1

tr(An)(0) = 0.

The matrix B is intrinsically irreducible and positive recurrent because det(I − A) =
det(I − B). �

For a formal power series with zero constant term a = ∑∞
n=1 ant

n, let

a∗ = 1

1 − a
= 1 + a + a2 + a3 + · · · .

For the rest of this section, E will denote a basic elementary matrix and if E �= I , then
i0, j0 ∈ N will denote the corresponding row and column of the non-zero off-diagonal
entry of E.

LEMMA 4.2. Let A and B be two matrices over R+. Suppose that there is a basic
elementary matrix E such that either E(I −A) = I −B or (I −A)E = I −B. If E = I ,
then A(i, j) = B(i, j) for all i, j ∈ N. Otherwise,
• if E(I − A) = I − B, then A(i, j) = B(i, j) for every i �= i0, and j �= j0, then

A(i0, j) + A(i0, j0)A(j0, j0)
∗A(j0, j) = B(i0, j) + B(i0, j0)B(j0, j0)

∗B(j0, j);
and

• if (I − A)E = I − B, then A(i, j) = B(i, j) for every j �= j0, and if i �= i0, then
A(i, j0)+ A(i, i0)A(i0, i0)

∗A(i0, j0) = B(i, j0)+ B(i, i0)B(i0, i0)
∗B(i0, j0).

Proof. Suppose that E(I − A) = I − B. Then A(i, j) = B(i, j) for all
i �= i0, B(i0, j0) = A(i0, j0) + E(i0, j0)A(j0, j0) − E(i0, j0) and, for j �= j0,
B(i0, j) = A(i0, j) + E(i0, j0)A(j0, j). Then B(i0, j) + B(i0, j0)B(j0, j0)

∗B(j0, j) =
A(i0, j) + E(i0, j0)A(j0, j) + B(i0, j0)A(j0, j0)

∗A(j0, j) and, thus, it is enough to
prove that A(i0, j0)A(j0, j0)

∗A(j0, j) = E(i0, j0)A(j0, j)+B(i0, j0)A(j0, j0)
∗A(j0, j).

This happens if and only if A(i0, j0)A(j0, j0)
∗ = E(i0, j0) + (A(i0, j0) +

E(i0, j0)A(j0, j0)−E(i0, j0))A(j0, j0)
∗, if and only ifE(i0, j0)(1+A(j0, j0)A(j0, j0)

∗−
A(j0, j0)

∗) = 0, and this happens if and only if (1−A(j0, j0))A(j0, j0)
∗ = 1, which holds

by the definition of A(j0, j0)
∗.

A similar argument applies if (I − A)E = I − B. �

If A ∈ M and i, j, k ∈ NA, then the power series A(i, k) + A(i, j)A(j, j)∗A(j, k)
represents SA(i, j, k) = RA(i, k) ∪ RA(i, j)R∗

A(j, j)RA(j, k). Let B ∈ M and suppose
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that either E(I − A) = I − B or (I − A)E = I − B. If E = I , let PA = RA and
PB = RB . Otherwise, either let

PA =
( ⋃
i,j∈NA,i �=i0

RA(i, j)

) ⋃( ⋃
j∈NA,j �=j0

SA(i0, j0, j)

)

and

PB =
( ⋃
i,j∈NB,i �=i0

RB(i, j)

) ⋃ ( ⋃
j∈NB,j �=j0

SB(i0, j0, j)

)

or let

PA =
( ⋃
i,j∈NA,j �=j0

RA(i, j)

) ⋃ ( ⋃
i∈NA,i �=i0

SA(i, i0, j0)

)

and

PB =
( ⋃
i,j∈NB,j �=j0

RB(i, j)

) ⋃ ( ⋃
i∈NB,i �=i0

SB(i, i0, j0)

)
.

Hence, by lemma 4.2, we can choose a bijection
 : PA → PB such that for every γ ∈ PA,
�(γ ) = �(
(γ )) and wtA(γ ) = wtB(
(γ )) (that is, 
 is length- and weight-preserving),
and such that


(RA(i, j)) = RB(i, j) (4.1)

holds for all i, j ∈ N; otherwise either (4.1) holds only if i �= i0 but still if j �= j0, so that


(SA(i0, j0, j)) = SB(i0, j0, j)

or (4.1) holds only if j �= j0 but still if i �= i0, so that


(SA(i, i0, j0)) = SB(i, i0, j0).

If [x] ∈ ∑
A is formed by doubly infinite concatenations of paths in PA, then abuse

notation and write

[x] = [. . . (γ−1, τ−1)(γ0, τ0)(γ1, τ1) . . . ]
where γn ∈ PA and τn ∈ Z, with τn+1 = τn + �(γn), and let

ϕE([x]) = [. . . (
(γ−1), τ−1)(
(γ0), τ0)(
(γ1), τ1) . . . ].
The set corresponding to all doubly infinite concatenations of paths in PA is a full measure
subset of the path space

∑
A and a similar statement holds for B. Then ϕE : ∑

A → ∑
B

is a finitary isomorphism of Markov chains.

Definition 4.3. Let A,B ∈ M and let ϕ : ∑
A → ∑

B be a finitary isomorphism. Then ϕ
is an elementary isomorphism if there exists an elementary matrix E such that ϕ = ϕE or
ϕ = ϕ−1

E .

Remark 4.4. An elementary isomorphism depends on the defining bijection 
 and is
uniquely determined by the matrices E and A only up to the choice of this bijection.
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5. State splitting and loop systems
In this section we do most of the technical work for the main theorem.

Let A ∈ M, i ∈ NA and P = (X ,Y) be a partition of RA(i, ·). Then P induces
subpartitions Pj = (Xj ,Yj ) of RA(i, j) for all j ∈ NA. Write A(i, j) = xj + yj ,
where xj and yj are the power series corresponding to Xj and Yj . Let AP ∈ M be the
matrix obtained from A when out-splitting i into two vertices i[X ], i[Y] ∈ NAP , setting
AP(i[X ], i[X ]) = AP (i[X ], i[Y]) = xi , AP (i[Y], i[X ]) = AP (i[Y], i[Y]) = yi,

and for all other j ∈ N, AP (i[X ], j) = xj , AP(i[Y], j) = yj and AP (j, i[X ]) =
AP(j, i[Y]) = A(j, i). Given a labelling on EA, the induced labelling on EAP is such that
the label of γ ∈ WAP begins with a label corresponding to an element in X if and only if
i(γ ) = i[X ] and similarly for Y . The labelling map sends

∑
AP into

∑
A and is a finitary

isomorphism called a simple out-split map of i according to P .

PROPOSITION 5.1. Let A ∈ M, i ∈ NA and P = (X ,Y) be a partition of RA(i, ·).
Let π : ∑

AP → ∑
A be a simple out-split map of i according to P . Then π is a

composition of elementary isomorphisms.

Proof. Suppose, without losing generality, that i = 1 and that A(h, k) = 0 for all
h, k /∈ {1, . . . , n}. For each j = 1, . . . , n, write A(1, j) = xj + yj , where xj and yj
are the power series corresponding Xj and Yj , respectively. Let E0 be the elementary
matrix with E0(1, 0) = −1. For each j = 1, . . . , n, let Ej be the elementary matrix
with Ej(0, j) = −xj . Let En+1 be the elementary matrix with En+1(1, 0) = 1.
Let E0(I − A) = I − A1. For each j = 1, . . . , n, let (I − Aj)Ej = I − Aj+1.
Finally, let (I − An+1)En+1 = I − An+2. Then Aj ∈ M for all j = 1, . . . , n + 2.
Moreover, An+2 = AP and, by choosing the right bijections defining the elementary
isomorphisms induced by these elementary matrix multiplications, the inverse of the map
that results when composing these elementary isomorphisms coincides with π , the simple
out-split map of i according to P . �

Similarly, let A ∈ M, j ∈ NA and P = (X ,Y) be a partition of RA(·, j). Then P
induces subpartitions Pi = (Xi ,Yi ) of RA(i, j) for all i ∈ N. Write A(i, j) = xi + yi ,
where xi and yi are the power series corresponding to Xi and Yi respectively. LetAP ∈ M
be the matrix obtained fromAwhen in-splitting j into two vertices [X ]j, [Y]j ∈ N, setting
AP([X ]j, [X ]j) = AP ([Y]j, [X ]j) = xj , AP ([Y]j, [Y]j) = AP([X ]j, [Y]j) = yj ,
and for all other i ∈ N, AP (i, [X ]j) = xi , F(i, [Y]j) = yi and AP ([X ]j, i) =
AP([Y]j, i) = A(j, i). Given a labelling on EA, the induced labelling on EAP is such
that the label of γ ∈ WAP ends with a label corresponding to an element in Y if and only
if τ (γ ) = [Y]j and similarly for X . The labelling map sends

∑
AP into

∑
A and is a

finitary isomorphism called a simple in-split map of j according to P .

PROPOSITION 5.2. Let A ∈ M, j ∈ NA and P = (X ,Y) be a partition of RA(·, j).
Let π : ∑

AP → ∑
A be a simple in-split map of j according to P . Then π is a

composition of elementary isomorphisms.

Proof. The proof is similar to the proof of Proposition 5.1. �
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We now give a version of the higher block representation of a Markov chain (see, for
example, [19]), where the edges are replaced by routes. Let A ∈ M and suppose that P is
a finite partition of RA formed by subpartitions (X1(i, j), . . . ,Xn(i,j)(i, j)) of RA(i, j),
with i, j ∈ NA and n(i, j) ≥ 1. Write A(i, j) = x1(i, j) + · · · + xn(i,j)(i, j), where
x1(i, j), . . . , xn(i,j)(i, j) are the power series representing X1(i, j), . . . ,Xn(i,j)(i, j),
respectively. Let A[0,0]

P = A and for every two non-negative integers m, a ≥ 0 such

that m + a > 0, let A[m,a]
P ∈ M have its rows and columns determined by lists of m + a

adjacent components of P and write

i = [Xk−m(i−m, i−m+1) . . . ]i0[. . .Xka−1(ia−1, ia)] ∈ N
A

[m,a]
P

where i−m, . . . , ia ∈ NA and 1 ≤ ks ≤ n(is, is+1) for all −m ≤ s < a. If

j = [Xk−m+1(i−m+1, i−m+2) . . . ]i1[. . .Xka (ia, ia+1)] ∈ N
A

[m,a]
P

where ia+1 ∈ NA and 1 ≤ ka ≤ n(ia, ia+1), then A[m,a]
P (i, j) = xk0(i0, i1), otherwise

A
[m,a]
P (i, j) = 0. Given a labelling on EA, the induced labelling on E

A
[m,a]
P

is such that

if γ = γ−γ+ ∈ W
A

[m,a]
P

, where γ−, γ+ ∈ W
A

[m,a]
P

, then the label of γ− ends with a

label corresponding to an element in Xk−m(i−m, i−m+1) . . .Xk−1(i−1, i0) and γ+ begins
with a label corresponding to an element in Xk0(i0, i1) . . .Xka−1(ia−1, ia) if and only
if i(γ+) (or τ (γ−) if a = 0) is precisely [Xk−m(i−m, i−m+1) . . . ]i0[. . .Xka−1(ia−1, ia)].
The labelling map sends

∑
A

[m,a]
P

into
∑
A and is a finitary isomorphism called an [m, a]-

split map according to P .

PROPOSITION 5.3. Let A ∈ M and P be a finite partition of RA formed by subpartitions
(X1(i, j), . . . ,Xn(i,j)(i, j)) of RA(i, j), with i, j ∈ NA and n(i, j) ≥ 1, and let m, a ≥ 0
be non-negative integers. Let π : ∑

A
[m,a]
P

→ ∑
A be an [m, a]-split map. Then π is a

composition of simple in-split and out-split maps and, hence, of elementary isomorphisms.

Proof. First, a total of a rounds of simple out-split maps are performed. The first round
goes as follows. Choose i0, j0 ∈ NA and 1 ≤ s0 ≤ n(i0, j0). For every i, j ∈ NA and
1 ≤ s ≤ n(i, j) such that (i, j, s) �= (i0, j0, s0), apply a simple out-split map of i according
to the partition of the set of outgoing edges of i formed by the set of elements corresponding
to Xr (i, j) and its complement. Then vertex i out-splits into two new vertices, one denoted
by i[Xr (i, j)] and with the property that the label of a path γ begins with a label that
corresponds to an element in Xk(i, j) if and only if i(γ ) = i[Xk(i, j)], and the other
denoted again by i so that we can apply the same kind of simple out-split map of i, except
that when the last simple out-split map occurs, the other vertex has a similar property for
Xk(i, j) and, thus, is denoted by i[Xr (i, j)]. When the first round of simple out-split maps
is completed, the resulting matrix is A[0,1]

P . Each of the other a − 1 rounds of simple out-

split maps starts with the matrix A[0,n]
P , with 1 ≤ n < a, and is carried out similarly,

with the partition of the corresponding set of routes being such that for every pair of
vertices i0[Xk0(i0, i1) . . .Xkn−1(in−1, in)], i1[Xk1(i1, i2) . . .Xkn(in, in+1)] ∈ N

A
[0,n]
P

, with

i0, . . . , in+1 ∈ NA and 1 ≤ ks ≤ n(is , is+1) for all 0 ≤ s ≤ n, the corresponding
subpartition simply consists of one component denoted by Xk0(i0, i1) . . .Xkn(in, in+1).
When the a rounds of simple out-split maps are completed, the resulting matrix is A[0,a]

P .



Positive K-theory for finitary isomorphisms of Markov chains 1497

Next, a total of m rounds of simple in-split maps are performed. The first
round starts with the matrix A

[0,a]
P and goes as follows. For every pair of vertices

i−1[Xk−1(i−1, i0) . . .Xka−2(ia−2, ia−1)] and i0[Xk0(i0, i1) . . .Xka−1(ia−1, ia)] in N
A

[0,a]
P

,

with i−1, . . . , ia ∈ NA and 1 ≤ ks ≤ n(is, is+1) for all −1 ≤ s < a, apply a simple in-split
map of i0[Xk0(i0, i1) . . .Xka−1(ia−1, ia)] according to the partition of the set of incoming
edges of i0[Xk0(i0, i1) . . .Xka−1(ia−1, ia)] formed by the set of elements corresponding
to Xk−1(i−1, i0) and its complement. Then vertex i0[Xk0(i0, i1) . . .Xka−1(ia−1, ia)]
in-splits into two new vertices, one denoted by [Xk−1(i−1, i0)]i0[. . .Xka−1(ia−1, ia)]
and with the property that if γ = γ−γ+ is a path in the corresponding graph
formed by the consecutive concatenation of the paths γ− and γ+, then the label of
γ− ends with a label corresponding to an element in Xk−1(i−1, i0) and the label of
γ+ begins with a label corresponding to an element in Xk0(i0, i1) . . .Xka−1(ia−1, ia)

if and only if τ (γ−) = [Xk−1(i−1, i0)]i0[. . .Xka−1(ia−1, ia)], and the other denoted
again by i0[. . .Xka−1(ia−1, ia)] so that we can apply the same kind of simple in-
split map of i0[Xk0(i0, i1) . . . Xka−1(ia−1, ia)]. When the first round of simple in-

split maps is completed, the resulting matrix is A[1,a]
P . Each of the other m − 1

rounds of simple in-split maps starts with the matrix A[n,a]
P , with 1 ≤ n < m, and

is carried out similarly, with the partition of the corresponding set of routes being
such that for every pair of vertices [Xk−n−1(i−n−1, i−n) . . . ]i−1[. . .Xka−2(ia−2, ia−1)] and
[Xk−n(i−n, i−n+1) . . . ]i0[. . .Xka−1(ia−1, ia)] in N

A
[n,a]
P

, with i−n−1, . . . , ia ∈ NA and

1 ≤ ks ≤ n(is, is+1) for all −n − 1 ≤ s < a, the corresponding subpartition simply
consists of one component denoted by Xk−n−1(i−n−1, i−n) . . .Xk−1(i−1, i0). When the m

rounds of simple in-split maps are completed, the resulting matrix is A[m,a]
P .

The composition of the simple in-split and out-split maps described earlier, with the
right choice of bijections that define the elementary isomorphisms that compose each of
them, results in π , the [m, a]-split map according to P . �

Let A ∈ M, i ∈ NA and suppose that µA([i, 0]) > 0. Let f be the power series
representing LA(i) and choose a weight- and length-preserving bijection between LA(i)
and Rf . Given a labelling on EA, the induced labelling map sends

∑
f into the full-

measure subset of
∑
A consisting of all doubly infinite concatenations of elements in

LA(i), and then it is a finitary isomorphism called a loop system map of i.

PROPOSITION 5.4. Let A ∈ M, i ∈ NA and suppose that µA([i, 0]) > 0. Let f be
the power series representing LA(i) and let π : ∑

f → ∑
A be a loop system map of i.

Then π is a composition of elementary isomorphisms.

Proof. Suppose, without losing generality, that i = 1 and that A(h, k) = 0 for all
h, k /∈ {1, . . . , n}, and also that n ≥ 2 (otherwise the result is trivial). Let A0 = A

and for every r = 0, . . . , n − 2 and s = 1, . . . , n − r − 1, let m = rn − r(r + 1)/2 + s

and I − Am = (I − Am−1)Em, where Em is the basic elementary matrix defined by
Em(n− r, n− s) = Am−1(n− r, n− r)∗Am−1(n− r, n− s). Then Am ∈ M and for every
j = 1, . . . , n, the power series An(n−1)/2(j, j) corresponds to the first return loops to j
that do not visit 1, . . . , j − 1. Hence, An(n−1)/2(1, 1) = f is the irreducible component
of maximal entropy and π is the inverse of the map that results when composing the
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right elementary isomorphisms induced by the elementary matrix multiplications described
earlier. �

LetA ∈ M, γ = γ−γ+ ∈ R∗
A(m+a), withm+a > 0, γ− ∈ R∗

A(m) and γ+ ∈ R∗
A(a),

and suppose that µ([γ, 0]) > 0. Let LA(γ−γ+) be the set of cycles that begin at γ+, end
at γ− and visit γ only once. (All cycles that start with γ+ and end with γ− visit γ at
least once.) Let f ∈ M be the power series representing LA(γ−γ+) and choose a weight-
and length-preserving bijection between LA(γ−γ+) and Rf . Given a labelling on EA, the
induced labelling on Rf is such that the label of every route in Rf begins with the label
of γ+ and ends with the label of γ− and the label of γ occurs only when concatenating two
routes in Rf . The labelling map sends

∑
f into the full-measure subset of

∑
A consisting

of all doubly infinite concatenations of elements in LA(γ−γ+) and then it is a finitary
isomorphism called a loop system map of γ = γ−γ+.

PROPOSITION 5.5. Let A ∈ M, γ = γ−γ+ ∈ R∗
A(m+ a), with m+ a > 0, γ− ∈ R∗

A(m)

and γ+ ∈ R∗
A(a), and suppose that µ([γ, 0]) > 0. Let f ∈ M be the power series

representing LA(γ−γ+) and π : ∑
f → ∑

A be a loop system map of γ = γ−γ+. Then π
is a composition of elementary isomorphisms.

Proof. Let P be the partition of RA formed by the subpartitions of RA(i, j), with
i, j ∈ NA, induced by the partition of RA formed by the singletons Xs = {rs}, with
−m ≤ s < a, and the complement of their union. Let i0 = i(γ+) if a > 0 or i0 = τ (γ−)
if a = 0. There exist an [m, a]-split map, π1 : ∑

A
[m,a]
P

→ ∑
A, and a loop system map

of [X−m . . . ]i0[. . .Xa−1], π2 : ∑
f → ∑

A
[m,a]
P

, such that π = π2 ◦ π1. Then the result

follows from Propositions 5.3 and 5.4. �

Let A ∈ M, γ = γ−γ+ ∈ R∗
A(m + a), with γ− ∈ R∗

A(m) and γ+ ∈ R∗
A(a), and

suppose thatµ([γ, 0]) > 0 (ifm = a = 0, then suppose that γ = i0 ∈ NA). Let X �= ∅ be
a proper subset of LA(γ−γ+) and let Y be its complement. Let x and y be the power series
representing X and Y respectively. Then XY∗ is represented by the power series xy∗.
Choose a weight- and length-preserving bijection between XY∗ and Rxy∗ . Then, given a
labelling on EA, we get an induced labelling on Rxy∗ . If µ([γ, 0]) > 0, then the labelling
map sends

∑
xy∗ to the full-measure subset of

∑
A consisting of all doubly infinite paths

that never stop visiting elements of X and then it constitutes a finitary isomorphism called
a left-loop system map of X .

PROPOSITION 5.6. Let A ∈ M and γ = γ−γ+ ∈ R∗
A(m + a), with γ− ∈ R∗

A(m)

and γ+ ∈ R∗
A(a), and suppose that µ([γ, 0]) > 0 (if m = a = 0, then suppose

that γ = i0 ∈ NA). Let X �= ∅ be a proper subset of LA(γ−γ+) and let Y be its
complement. Let x and y be the power series representing X and Y , respectively, and let
π : ∑

xy∗ → ∑
A be a left-loop system map of X . Then π is a composition of elementary

isomorphisms.

Proof. There exist a loop system map of γ−γ+, π1 : ∑
f → ∑

A, a simple out-split map
of i(γ+) (or τ (γ−) if a = 0 or γ = i0 ∈ Nf if m = a = 0) according to the partition
P = (X ,Y), π2 : ∑

fP → ∑
f and π3 : ∑

xy∗ → ∑
fP a loop system map of i0[X ],

such that π = π3 ◦ π2 ◦ π1. Then the result follows from Propositions 5.5, 5.1 and 5.4. �
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Similarly, using the previous notation above, the set X ∗Y is represented by the power
series x∗y. Given a labelling on EA, we get an induced label on Rx∗y . The labelling map
sends

∑
x∗y to the full-measure subset of

∑
A consisting of all doubly infinite paths that

never stop visiting elements of Y and then it constitutes a finitary isomorphism called a
right-loop system map of Y .

PROPOSITION 5.7. Let A ∈ M and γ = γ−γ+ ∈ R∗
A(m + a), with γ− ∈ R∗

A(m)

and γ+ ∈ R∗
A(a), and suppose that µ([γ, 0]) > 0 (if m = a = 0, then suppose

that γ = i0 ∈ NA). Let X �= ∅ be a proper subset of LA(γ−γ+) and let Y be its
complement. Let x and y be the power series representing X and Y , respectively, and let
π : ∑

x∗y → ∑
A be a right-loop system map of Y . Then π is a composition of elementary

isomorphisms.

Proof. The proof is similar to the proof of Proposition 5.6. �

We finish this section by showing that if A ∈ M, then, up to a conjugacy, any finite
number of intermediate vertices can become elements of NA. More explicitly, let γ =
γ−γ+ ∈ RA, with γ−, γ+ ∈ WA, �(γ−) = m > 0 and �(γ+) = a > 0. LetA0 ∈ M be the
matrix obtained from A by subtracting [wtA(γ )]tm+a from A(i(γ ), τ (γ )) and by adding
a new vertex i0 ∈ NA0 , setting A0(i(γ ), i0) = [wtA(γ )]tm and A0(i0, τ (γ )) = [1]ta .
The graphs defined by A and A0 are identical but NA0 = NA ∪ {i0}, where i0 = τ (γ−).
Given a labelling on EA, there is an induced labelling on EA0 , and the labelling map
π : ∑

A → ∑
A0

is a topological conjugacy of Markov chains called the promotion map
of i0 ∈ VA.

PROPOSITION 5.8. Let A ∈ M and γ = γ−γ+ ∈ RA, with γ−, γ+ ∈ WA, �(γ−) = m >

0 and �(γ+) = a > 0. Let π : ∑
A → ∑

A0
be a promotion map. Then π is a composition

of elementary isomorphisms. Moreover, π is a homeomorphism.

Proof. Let i0 = τ (γ−) and let E1 and E2 be the basic elementary matrices having
E1(i0, i(γ )) = [1]ta and E2(i(γ ), i0) = wtA(γ )t

m. Then I − A = E2((I − A0)E1) and
the composition of the elementary isomorphisms induced by these matrix multiplications,
choosing the correct bijections that define them, results in π . Since the non-zero off-
diagonal entries of E1 and E2 are both polynomials, π is a homeomorphism. �

6. Magic words are elementary

In this section we prove our main result: magic word isomorphisms are compositions of
elementary isomorphisms.

LetA,B ∈ M and suppose that ϕ : ∑
A → ∑

B is an isomorphism. Letw = w−w+ ∈
WA and v = v−v+ ∈ WB , where w−, w+ ∈ WA and v−, v+ ∈ WB , and suppose that
if [x] ∈ [w,−�(w−)], then almost surely ϕ([x]) ∈ [v,−�(v−)]. In this case, say that
w− �w+ codes v− � v+ and write

w− �w+
↓

v− � v+
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Moreover, by writing
w1 �w2 � . . . �wn

↓ ↓ ↓
v1 � v2 � . . . � vn

it is meant that w1 . . . wn ∈ WA, with w1, . . . , wn ∈ WA, v1 . . . vn ∈ WB , with
v1, . . . , vn ∈ WB , �(ws) = �(vs) for all 1 < s < n and that for all 1 ≤ s < n,

w1 . . . ws �ws+1 . . . wn

↓
v1 . . . vs � vs+1 . . . vn

So if A,B ∈ M and ϕ : ∑
A → ∑

B is an isomorphism with a magic word w ∈ WA,
then for all γ ∈ WA such that wγw ∈ WA, there exists ϕ(γ ) ∈ WB such that
�(ϕ(γ )) = �(γ ) and

w � γ � w
↓ ↓
�ϕ(γ )�

PROPOSITION 6.1. Let A,B ∈ M and suppose that there is an elementary isomorphism
ϕ : ∑

A → ∑
B . Then ϕ is a magic word isomorphism.

Proof. Let E be a basic elementary matrix such that ϕ = ϕE (respectively ϕ = ϕ−1
E ).

Let i0, j0 ∈ N correspond to the non-zero off-diagonal entry of E (if E = I , the result is
trivial). If E(I − A) = I − B (respectively E(I − B) = I − A) is the equation defining
ϕE , then any element in SA(i0, j0, j), with j �= j0, is a magic word for ϕ and any element
in SB(i0, j0, j) is a magic word for ϕ−1. A similar argument applies when ϕE is defined
by the equation (I − A)E = I − B (respectively (I − B)E = I − A). �

PROPOSITION 6.2. Let A,B,C ∈ M and suppose that ϕ : ∑
A → ∑

B and ψ : ∑
B →∑

C are both magic word isomorphisms. Then ψ ◦ ϕ is a magic word isomorphism.

Proof. Let w ∈ WA and v ∈ WB be magic words for ϕ and ψ respectively. We can find
γ = γ−γ+ ∈ WA, with γ−, γ+ ∈ WA, such that γ− � γ+ codes �v, with i(γ ) = τ (w),
τ (γ ) = i(w) and �(γ+) ≥ �(v). Then wγw is a magic word for ψ ◦ ϕ. A magic word for
the inverse is found similarly. �

Let A,B ∈ M. Let ϕ : ∑
A → ∑

B be an isomorphism and suppose that w ∈ WA is a
magic word for ϕ. Then any pair w−, w+ ∈ WA containing w forms a magic pair for ϕ,
that is for every γ ∈ WA(n) such that w−γw+ ∈ WA, there exists ϕ(γ ) ∈ WB(n) such
that

w− � γ � w+
↓ ↓
�ϕ(γ )�

Then for every v = v−v+ ∈ R∗
B(m + a), with v− ∈ R∗

B(m) and v+ ∈ R∗
B(a), we can

always find w = w−w+ ∈ WA, with w−, w+ ∈ WA, such that w− � w+ codes v− � v+,
with (w±, w±) being magic pairs for ϕ. Moreover, up to recoding using Proposition 5.8,
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l h

b+r
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FIGURE 1. In this figure, the set of all paths from 0 to 2 corresponds to the loop system LA(w−w+) in Lemma 6.3,
and in this way, the relationship with the loop system LB(v−v+) that produces the decomposition into elementary

isomorphisms is exhibited.

we can assume thatw−, w+ ∈ R∗
A. Under these circumstances, for every γ ∈ LA(w−w+),

there is a unique image ϕ(γ ) ∈ (LB(v−v+))∗ and, hence, for θ ∈ LB(v−v+), we consider
the following two statements: (1) there exists γ ∈ LA(w−w+) such that θ begins ϕ(γ );
and (2) there exists γ ∈ LA(w−w+) such that θ ends ϕ(γ ). Let Pϕ(w−w+, v−v+) =
(B,L,R,H) be the partition of LA(v−v+) defined as follows:

B = {θ ∈ LA(v−v+) | both (1) and (2) hold};
L = {θ ∈ LA(v−v+) | (1) holds and (2) does not hold};
R = {θ ∈ LA(v−v+) | (2) holds and (1) does not hold};
H = {θ ∈ LA(v−v+) | (1) does not hold and (2) does not hold}.

The sets B, L, R and H are represented by power series b, l, r, h ∈ M.

LEMMA 6.3. Let A,B ∈ M and ϕ : ∑
A → ∑

B be a magic word isomorphism.
Suppose that we can find w = w−w+ ∈ R∗

A and v = v−v+ ∈ R∗
B , with (w±, w±)

and (v±, v±) being magic pairs for ϕ and ϕ−1, such that w− � w+ codes v− � v+ and if
Pϕ(w−w+, v−v+) = (B,L,R,H), then for every θ− ∈ B ∪ R and θ+ ∈ B ∪ L, we have
that θ− � θ+ codes w− �w+. Then ϕ is a composition of elementary isomorphisms.

Proof. If γ ∈ LA(w−w+), then ϕ(γ ) ∈ (LB(v−v+))∗ is a concatenation of routes that
begins with an element of B ∪ L and ends with an element of B ∪ R and such that a
concatenation in (B ∪R)(B ∪ L) never occurs in γ (otherwise γ would not be an element
of LA(w−w+)). This subset of (LB(v−v+))∗ corresponds to the set of paths that start at 0
and end at 2 in Figure 1 (for clarity, the reader may assume that b = 0, justified by applying
a left- or right-loop system map of B).

Then LA(w−w+) is represented by the power series

f = (b + l(l + h)∗(b + r))(r + h(l + h)∗(b + r))∗.

Given a labelling RA, we get an induced labelling on LA(w−w+), which induces a
labelling on Rf . Hence, ϕ is the composition of a left-loop system map of L ∪ H,
π1 : ∑

(l+h)∗(b+r) → ∑
B , followed by a left-loop system map of R∪H(L∪H)∗(B∪R),

π2 : ∑
f → ∑

(l+h)∗(b+r), followed by π3 : ∑
A → ∑

f , a loop system map of [w− �w+]
compatible with the labelling. �
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LEMMA 6.4. Let A,B ∈ M and suppose that ϕ : ∑
A → ∑

B is a magic word
isomorphism. Let i ∈ NA be such that µ([i, 0]) > 0. Then, up to a conjugacy, there
exist W−,W+ ∈ (LA(i))∗ and V−, V+ ∈ (LB(ϕ(i)))∗ for some ϕ(i) ∈ NB , such that
(1) (W±,W±) and (V±, V±) are magic pairs for ϕ and ϕ−1 respectively;
(2) W− �W+ codes V− � V+;
(3) �(V−V+) ≥ �(W±); and
(4) the only self-overlap of V−V+ is trivial.

Proof. Let θ be a cycle in i which is a magic word for ϕ. Let v ∈ (LB(ϕ(i)))∗ be a magic
word for ϕ−1. Up to a conjugacy (see Proposition 5.8), there exist w−, w+ ∈ (LA(i))∗
such that (w±, w±) are magic pairs for ϕ, with �(w±) ≥ �(v), and such that

w− �w+
↓
�v

Let u ∈ R∗
B be such that

w− � w+w− �w+
↓ ↓
�v u � v

If v = r1 . . . rn ∈ R∗
B(n), with r1, . . . , rn ∈ RB , then let α ∈ (LB(ϕ(i))− {r1})∗ be such

that �(α) ≥ �(vu). Let γ = γ−γ+ ∈ R∗
A be such that

w+γ− � γ+w−
↓
�αv

with �(γ+) ≥ �(αv). Let ε1,∈ LB(ϕ(i)) be such that

w− � w+γ− � γ+w−
↓ ↓
�v ε1 � αv

Let β ∈ (LB(ϕ(i))−{r1})∗ be such that �(β) ≥ �(vε1). Let ρ = ρ−ρ+ ∈ R∗
A be such that

w−ρ− � ρ+w+
↓
v � β

Let ε2 ∈ LB(ϕ(i)) be such that

w+γ− � γ+w−ρ− � ρ+w+
↓ ↓
�αv ε2 v � β

Then for every positive integerm ≥ 1, we have
W−︷ ︸︸ ︷

w− �w+w− � w+w− � . . . � w+w− � w+w− �
W+︷ ︸︸ ︷

w+γ− � γ+w−ρ− � ρ+w+
↓ ↓ ↓ · · · ↓ ↓ ↓ ↓ ↓
� v u︸ ︷︷ ︸

1

� v u︸ ︷︷ ︸
2

� . . . � v u︸ ︷︷ ︸
m−1

� v u︸ ︷︷ ︸
m︸ ︷︷ ︸

V−

� v ε1 � αv ε2 v � β︸ ︷︷ ︸
V+
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From the construction, (1), (2) and (3) are satisfied for all m ≥ 1. If m is large enough so
that m�(u) ≥ �(αvε2), then (4) is also satisfied. �

THEOREM 6.5. Let A,B ∈ M and suppose that ϕ : ∑
A → ∑

B is a magic word
isomorphism. Then ϕ is a composition of elementary isomorphisms.

Proof. Let W−W+ and V−V+ be as in Lemma 6.4. If θ− ∈ B ∪ R and θ+ ∈ B ∪ L,
then �(θ−θ+) ≥ (W−W+) because both θ+ and θ− begin and end with V+ and V−.
Since V−θ− � θ+V+ codes W− � W+, then θ− � θ+ codes W− � W+ because (V+, V−) is
a magic pair. The result follows from Lemma 6.3. �

7. Exponentially recurrent chains
In this section we make some brief remarks about the exponentially recurrent irreducible
Markov chains, which play a natural and prominent role in the theory of finitary
isomorphisms of Markov chains [9, 18, 29].

Recall that an irreducible Markov chain with transition matrix P is exponentially
recurrent if every open set E ⊂ ∑

P is exponentially recurrent, i.e. if

{µP (E ∩ (E − σP (E)) ∩ · · · ∩ (E − σnP (E)))}∞n=1

goes to zero exponentially fast for every open set E ⊂ ∑
P (it is not hard to check that

exponential recurrence is an invariant of finitary isomorphism). It is left as an exercise
to verify that in the category of all exponentially recurrent Markov chains, magic word
isomorphisms are FECT isomorphisms. One way to do this is to show that, in this
category, magic word isomorphisms code exponentially fast (a finitary map ϕ : ∑

P →∑
Q codes exponentially fast if {µP (Cn)}∞n=0 goes to zero exponentially fast, where Cn

consists of all x ∈ ∑
P such that it is not true that ϕ(y) ∈ [ϕ(x)0, 0] for almost all

y ∈ [x−n . . . x0 . . . xn,−n]) and then to show a finitary isomorphism coding exponentially
fast has finite expected coding time. It is also left to the reader to check that, although, in
general, compositions of FECT isomorphisms does not necessarily result in FECT isomor-
phisms, finitary isomorphisms coding exponentially fast are closed under composition.
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