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ABSTRACT. Building on the work of K. Mann and K. Rafi [MR23], we analyze the large scale
geometry of big mapping class groups of surfaces with a unique maximal end. We obtain a
complete characterization of those that are globally CB, which does not require the tameness
condition. We prove that, for surfaces with a unique maximal end, any locally CB big mapping
class group is CB generated, and we give an explicit criterion for determining which big mapping
class groups are CB generated. Finally, we answer [MR23, Problem 6.12] by giving an example
of a non-tame surface whose mapping class group is CB generated but is not globally CB.

1. INTRODUCTION

Let Σ be an infinite-type surface and Map(Σ) be the group of all isotopy classes of orientation-
preserving self-homeomorphisms of Σ. This group is called the (big) mapping class group of Σ.
If we equip the homeomorphism group with the compact-open topology then Map(Σ) is a Polish
group with respect to the quotient topology. For an overview about big mapping class groups the
reader may consult [AV20].

Recently, C. Rosendal [Ros21] used the notion of coarsely bounded sets in order to extend the
framework of geometric group theory to the broader context of topological groups.

Definition 1. Let G be a topological group. A subset of G is CB (coarsely bounded) if it has
finite diameter for every compatible left-invariant metric on G. The group G is locally CB if it
admits a CB neighborhood of the identity. If G is generated by a CB subset we say that G is CB
generated.

With this language, Rosendal extends Gromov’s fundamental theorem of geometric group the-
ory showing that if A1 and A2 are two CB generating sets of a Polish group G then the respective
word metrics on G are quasi-isometric [Ros21, Proposition 2.72]. In other words, a CB generated
Polish group has a well-defined quasi-isometric type. Moreover, it was proved that being locally
CB is a necessary condition for a Polish group to be CB generated [Ros21, Theorem 1.2].

Based on Rosendal’s framework, K. Mann and K. Rafi started in [MR23] the study of the
large scale geometry of big mapping class groups. They obtained a classification of locally CB
big mapping class groups [MR23, Theorem 1.4] and, under the assumption of tameness, the
classification of CB generated big mapping class groups [MR23, Theorem 1.6].

Studying the mapping class group of an infinite-type surface Σ can be complicated since it
involves understanding the homeomorphism group of the space of ends of Σ, which is denoted
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by E(Σ). In order to address this, Mann and Rafi introduced a preorder on the space of ends of a
surface and showed that the induced partial order always has maximal elements. We say that a
open subset U of an infinite-type surface Σ is a neighborhood of an end x ∈ E(Σ) if its end space
contains x, that is, x ∈ E(U). A surface Σ has a unique maximal end if there is only one end x
of Σ such that any neighborhood of x has a copy of some neighborhood of any other end y (see
Section 2 for a precise definition).

In this paper we focus our study on the large scale geometry of big mapping class groups
of surfaces with a unique maximal end. These surfaces have mapping class groups that have
exhibited a different behavior from the rest of big mapping class groups. For instance, Map(Σ)
has a dense conjugacy class if and only if every finite-type subsurface of Σ is displaceable and has
a unique maximal end, see [HHHM+, LV22]. In addition, some examples of big mapping class
groups that do not satisfy the automatic continuity property are in this class [MT23, Man23].

We start our study by giving an alternative characterization of locally CB big mapping class
groups for surfaces with a unique maximal end.

Theorem 1.1. Let Σ be an infinite-type surface with a unique maximal end x. Then Map(Σ) is
locally CB if and only if there is a connected finite-type subsurface K of Σ with the following
properties:

(1) Σ \ K = Σ0 t Σ1 t · · · t Σn, where the closure of each Σi in Σ is of infinite-type with one
boundary component, g(Σi) ∈ {0,∞} and x ∈ E(Σ0).

(2) For any subsurface U ⊆ Σ0 that is a neighborhood of x there is fU ∈ Homeo+(Σ) such
that either fU(Σ0) ⊆ U or fU(Σ \ U) ⊆ U.

Moreover, if Map(Σ) is locally CB then VK := { f ∈ Map(Σ) : f |K = IdK} is a CB neighbor-
hood of the identity.

Remark 1. Notice that our condition (1) in Theorem 1.1 is the same as item (1) in [MR23,
Theorem 1.4]. The differences between the statements lie in item (2). Briefly, for surfaces with
a unique maximal end, item (2) in [MR23, Theorem 1.4] consists of the following: i) E(Σ0) is
self-similar, ii) each complementary component of K different from Σ0 is mapped inside Σ0 by
a homeomorphism and, iii) if K is not empty, for each neighborhood U ⊆ Σ0 of the unique
maximal end there is a homeomorphism f such that f (Σ0) ⊂ U. In our result, we do not require
conditions i) and ii). Instead, we consider condition iii) and include the possibility that for
some neighborhoods U ⊆ Σ0 of the unique maximal end there exists a homeomorphism fU

such that fU(Σ \ U) ⊆ U. This last consideration does not appear in the statement of item (2)
of [MR23, Theorem 1.4]. We prove that this possibility can only appear if Map(Σ) is globally
CB and the subsurface K of Σ can be taken to be empty; see Lemma 3.3.

We use Theorem 1.1 to give an alternative proof of the self-similarity (see Definition 6) of the
space of ends of an infinite-type surface with a unique maximal end whose mapping class group
is locally CB; see also [MR23, Proposition 5.4].

Theorem 1.2. Let Σ be an infinite-type surface with a unique maximal end and suppose Map(Σ)
is locally CB. Then, the space of ends E(Σ) is self-similar.

The following notions where introduced in [MR23] to have some control on the topology of
the space of ends E(Σ).
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Definition 2. A neighborhood U of an end x is stable [MR23, Definition 4.14] if for every
neighborhood U′ ⊆ U of x there is a homeomorphic copy of U inside U′.

Definition 3. We say that a surface Σ is tame if every end of Σ which is either of maximal type
or any immediate predecessor of an end of maximal type has a stable neighborhood.

Remark 2. This notion was originally introduced in this form by Mann and Rafi, and it has
been used in the literature; see for instance [HQR22, Section 5], [FGM21, Section 5.1], [SC22,
Definition 2.15]. However, it differs from how it is stated in [MR23, Definition 6.11]. In Section
7 we show that these two definitions are equivalent, when the surface Σ has a unique maximal
end and Map(Σ) is locally CB but not globally CB.

In [MR23], Mann and Rafi give a characterization of globally CB big mapping class groups
under the hypothesis of tameness [MR23, Theorem 1.7]. We prove that in the case of surfaces
with a unique maximal end, the tameness hypothesis is not needed.

Theorem 1.3. Let Σ be an infinite-type surface with a unique maximal end and suppose that
Map(Σ) is locally CB. Then Map(Σ) is globally CB if and only if the genus of Σ is zero or infinite.

Thanks to Theorem 1.3 we have a better understanding of those surfaces with locally but not
globally CB mapping class group. In Section 5 below we prove the following result; see also
Proposition 7.3 for a more refined statement about the space of ends.

Corollary 1.4. Let Σ be an infinite-type surface with a unique maximal end and suppose that
Map(Σ) is locally CB but not globally CB. Then Σ has finite nonzero genus and the space of ends
of Σ is uncountable.

Under the assumption of tameness, [MR23, Theorem 1.6] states that a locally CB big mapping
class group is CB generated if and only if the space of ends of the surface is not of limit type and
is of finite rank, see [MR23, Definitions 6.2 & 6.5]. For surfaces Σ with a unique maximal end, it
can be shown that Map(Σ) is always of finite rank and not of limit type. We see that the tameness
hypothesis is actually not needed in order to be CB generated.

Theorem 1.5. Let Σ be an infinite-type surface with a unique maximal end and suppose that
Map(Σ) is locally CB. Then Map(Σ) is CB generated.

Recall that a necessary condition for a group to be CB generated is that the group is locally
CB. Our Theorem 1.5 shows that it is also a sufficient condition for big mapping class groups of
surfaces with a unique maximal end. Recently, T. Hill [Hil23] observed the same phenomena for
pure mapping class groups.

Additionally, it follows that our Theorem 1.1 and [MR23, Theorem 1.4] give explicit criteria
for determining which big mapping class groups are CB generated.

Remark 3. It follows from Theorem 1.5 and the work of Horbez, Qing and Rafi [HQR22, The-
orem 1 and Corollary 2] that for CB generated big mapping class groups of surfaces Σ with a
unique maximal end, either

(1) Map(Σ) is globally CB and therefore the quasi-isometric type of Map(Σ) is trivial or,
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(2) Map(Σ) admits a continuous and non-elementary action by isometries on a hyperbolic
space; in this situation, the space of non-trivial quasi-morphisms of Map(Σ) has infinite
dimension.

Answering a question of Mann and Rafi. Thanks to our Theorem 1.5 we get a positive answer
to [MR23, Problem 6.12].

Theorem 1.6. There exists a non-tame infinite-type surface whose mapping class group is CB
generated but it is not globally CB.

Remark 4. In [MR23, Example 6.13] Mann and Rafi constructed a non-tame surface with a
unique maximal end whose mapping class group is globally CB. We note that in this example
the set of immediate predecessors of the unique maximal end is countable. We can modify the
Mann-Rafi example by adding finite nonzero genus to obtain a non-tame surface with a unique
maximal end. However, by Proposition 7.3 below, this new surface is not locally CB because
the unique maximal end has countably many immediate predecessors. Our example (Section 7)
satisfies that the equivalence class of each immediate predecessor of the unique maximal end
is uncountable, the unique maximal end has stable neighborhoods, and some of the immediate
predecessors of the unique maximal end do not have stable neighborhoods.

Outline. In Section 2 we present the preliminaries, Section 3 is devoted to the proof of Theorem
1.1, Section 4 to the proof of Theorem 1.2 and Theorem 1.3, Section 5 to the proof of Corollary
1.4. Finally, in Section 6 we give the proof of Theorem 1.5, and in Section 7 we prove Theorem
1.6.
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217392. The first author acknowledges funding from a DGAPA-UNAM PASPA sabbatical fel-
lowship and the second author was supported a DGAPA-UNAM postdoctoral fellowship. We
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Hernández for helpful comments on an earlier draft of this paper. We are grateful to the referee
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2. PRELIMINARIES

Topological surfaces. All our surfaces are assumed to be connected, orientable and possibly with
non-empty boundary. The boundary of a surface Σ is denoted by ∂Σ and always supposed to be
compact. A surface is of finite type if its fundamental group is finitely generated. Otherwise, we
say that it is of infinite type. Unless otherwise specified, infinite-type surfaces will be assumed to
have empty boundary. Finite-type surfaces are classified, up to homeomorphisms, by their genus,
number of punctures and number of boundary components. An infinite-type surface Σ with empty
boundary is classified, up to homeomorphisms, by their genus (which can be infinite) and a pair
of nested topological spaces E∞(Σ) ⊆ E(Σ). The space E(Σ) is called the space of ends of Σ and
it is homeomorphic to a clopen subset of the Cantor space. The space E∞(Σ) is a closed subspace
of the space of ends and it encodes all ends of Σ which are accumulated by genus. Moreover,
Σ̂ := Σ ∪ E(Σ) is compact and it is called the Freudenthal compactification of Σ. We refer the
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reader to the work of Richards [Ric63] and the book of Ahlfors and Sario [AS15] for a detailed
discussion about classification of surfaces.

Any homeomorphism f : Σ → Σ has a unique homeomorphism extension f̂ : Σ̂ → Σ̂. In
particular, the restriction of f̂ to E(Σ) induces a homeomorphism of the nested pair (E(Σ),E∞(Σ))
to itself. From [Ric63] we have that if the nested pair of spaces (A, B) ⊆ (E(Σ),E∞(Σ)) is home-
omorphic to the nested pair (A′, B′) ⊆ (E(Σ),E∞(Σ)) then there is a homeomorphism f : Σ → Σ

such that its extension f̂ sends the nested pair (A, B) into (A′, B′). We assume that any homeo-
morphism between subsets of E(Σ) is induced by a homeomorphism of the surface Σ. Abusing
of notation, we will usually refer simply by f to the homeomorphism of the surface Σ or to its
extension to Σ̂.

A simple closed curve in Σ is an embedding of the circle into Σ. A simple closed curve is
essential if it is not homotopic to a point, a puncture, or a boundary component. All curves we
consider in this paper will be essential, so we refer to them simply as curves. We say that a curve
α in Σ is separating if Σ \ α is disconnected.

By a subsurface of Σ we mean a subspace S ⊆ Σ that is a surface itself (possibly with non-
empty boundary). If we do not specify it in the paper, we assume that all boundary curves of a
subsurface are separating curves in Σ. Furthermore, any subsurface of finite type is assumed to
have non-empty boundary.

Big mapping class groups. The mapping class group of a surface (of finite or infinite type) Σ, de-
noted by Map(Σ), is the group of all isotopy classes of orientation-preserving self-homeomorphisms
of Σ; if ∂Σ , ∅, then we require that all homeomorphisms and isotopies fix ∂Σ pointwise. If we
equip the homeomorphism group of Σ with the compact-open topology then Map(Σ) is a Polish
group with respect to the quotient topology. In recent literature, the mapping class groups of
infinite-type surfaces are often called big mapping class groups. For the rest of the paper, Σ

denotes an infinite-type surface. Moreover, any homeomorphism f of Σ to itself is assumed to
be orientation-preserving.

Given a subsurface S ⊆ Σ we denote byVS the subgroup of Map(Σ) defined by all the home-
omorphisms f : Σ → Σ such that f |S = IdS up to isotopy. By the Alexander’s method [FM12],
if S is a finite-type subsurface of Σ then VS is an open subgroup. Moreover, the collection of
open subgroups VS where S runs over all finite-type subsurfaces of Σ forms a base of neigh-
borhoods of the identity. Therefore, Map(Σ) is first countable and, in particular, Map(Σ) is a
non-Archimedian1 group. Throughout the article, we often use the following fact: for any neigh-
borhood V of the identity in Map(Σ) there is a finite-type subsurface S ⊆ Σ such thatVS ⊆ V .

Large scale geometry of Polish groups. We use the following characterization of coarsely
bounded sets (CB sets).

Theorem 2.1 (Proposition 2.7, [Ros21]). Let G be a Polish group and A be a subset of G. The
following are equivalent

(1) A is CB.
(2) For every neighborhood V of the identity in G, there is a finite subset F ⊆ G and some

k ≥ 1 such that A ⊆ (FV)k.
1A Polish group is non-Archimedian if the identity has a basis of open subgroups, see [BK96].
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Partial order on the space of ends. We recall the partial order on the space of ends E(Σ) of a
surface Σ introduced by Mann and Rafi in [MR23].

Definition 4. Let x, y ∈ E(Σ). We define the binary relation on E(Σ) where y � x if for any
neighborhood Ux of x in E(Σ) there is a neighborhood Uy of y and a homeomorphism f of the
surface Σ such that f (Uy) ⊆ Ux.

We obtain an equivalence relation on E(Σ) declaring that two ends x, y ∈ E(Σ) are of the same
type if y � x and x � y. Equivalently, x and y are of the same type if and only if there exists a
homeomorphism h of Σ such that h(x) = y; see [MR24, Theorem 1.2]. Define y ≺ x if y � x but
x and y are not of the same type. The relation ≺ defines a partial order on the set of equivalence
classes of ends.

Proposition 2.2 (Proposition 4.7, [MR23]). The partial order ≺ has maximal elements. More-
over, the equivalence class of a maximal element is either finite or a Cantor set.

We denote by E(x) the equivalence class of x ∈ E(Σ) and byM(Σ) the set of all maximal ends
for ≺.

Definition 5 (Unique maximal end). If |M(Σ)| = 1 we say that Σ has a unique maximal end.

Mann and Rafi also introduced the notion of self-similar space of ends that we recall now
along with some of their results that will be needed for our proofs below.

Definition 6. We say that the space of ends (E(Σ),E∞(Σ)) of an infinite-type surface Σ is self-
similar if for any decomposition of E(Σ) into pairwise disjoint clopen sets

E(Σ) = E1 t E2 t . . . t En

there exists a clopen set D in some Ei such that (D,D∩E∞(Σ)) is homeomorphic to (E(Σ),E∞(Σ)).

Definition 7. Let Σ be an infinite-type surface. A finite-type subsurface K of Σ, possible discon-
nected, is nondisplaceable if for each homeomorphism f of Σ we have that f (K) ∩ K , ∅.

Theorem 2.3 (Theorem 1.9, [MR23]). Let Σ be an infinite-type surface. If Σ contains a nondis-
placeable finite-type subsurface then Map(Σ) is not globally CB.

Proposition 2.4 (Proposition 3.1, [MR23]). Let Σ be an infinite-type surface of infinite or zero
genus. If E(Σ) is self-similar then Map(Σ) is globally CB.

Lemma 2.5 (Lemma 4.12, [MR23]). Suppose Σ is an infinite-type surface with a unique maximal
end and such that it has no nondisplaceable finite-type subsurfaces. Then E(Σ) is self-similar.

Theorem 2.6. Let Σ be an infinite-type surface with zero or infinite genus and with one maximal
end. Then Map(Σ) is globally CB if and only if E(Σ) is self-similar.

Proof. Suppose that Map(Σ) is globally CB. By Theorem 2.3, Σ does not have displaceable finite-
type subsurfaces, then by Lemma 2.5, E(Σ) is self-similar. The sufficiency part is given by
Proposition 2.4. �

Definition 8. Suppose Σ has a unique maximal end x and α is a separating curve in Σ.
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• The interior of α is defined as the only connected component of Σ \ α that is a neighbor-
hood of the unique maximal end x. We denote it by Int(α).
• The complement of Int(α)∪α in Σ is called the exterior of α and it is denoted by Ext(α).

Observe that for each homeomorphism f of Σ

Int( f (α)) = f (Int(α)) and Ext( f (α)) = f (Ext(α)).

If Σ has a unique maximal end x, then any neighborhood of x contains a subsurface with one
boundary component whose interior is a neighborhood of x. This fact is often used throughout
the work. Recall that we are assuming that subsurfaces have separating boundary curves.

3. PROOF OF THEOREM 1.1

First we prove the necessity condition of Theorem 1.1 and after three preparatory lemmas we
give the proof of the sufficiency part.

For the necessity part we use the following lemma that is a consequence of [MR23, Lemma
5.2].

Lemma 3.1. Let Σ be an infinite-type surface and K be a finite-type subsurface of Σ. If VK is
CB then every finite-type subsurface S (possibly disconnected) contained in Σ \ K is Map(Σ)-
displaceable.

Proof of the necessity part of Theorem 1.1. We assume that Map(Σ) is locally CB. Let V be a
CB neighborhood of the identity in Map(Σ). Take a connected finite-type subsurface K of Σ such
that VK ⊆ V . We have that VK is CB. By enlarging K (and therefore, shrinking VK) if it were
necessary, we can assume that K satisfies item (1), that is, the closure of each complementary
component of K in Σ is of infinite-type with one boundary component either with zero or infinite
genus. Without loss of generality, we can assume that the unique maximal end x is an end of Σ0.

Now we prove item (2). Let U be the interior of a connected subsurface of Σ0 with one
boundary component that is a neighborhood of x in Σ. If U is isotopic Σ0 it is enough to find fU

isotopic to IdΣ such that fU(U) = Σ0. Now, suppose that U ⊆ Σ0 is not isotopic to Σ0. Then there
is a pair of pants P ⊂ Σ0 such that ∂U t ∂Σ0 ⊆ ∂P and Σ \ P = (Σ \ Σ0) t U tW. AsVK is CB,
by Lemma 3.1 there is a homeomorphism f such that f (P) ∩ P = ∅.

We claim that, up to replacing f by its inverse, we can assume that f (P) ⊂ U. Indeed, observe
that either f (P) ⊂ U or f (P) ⊂ Σ \ U. If f (P) ⊂ Σ \ U then P ⊂ Int( f (∂U)). Given that U =

Int(∂U) and U is a neighborhood of the unique maximal end then Int( f (∂U)) = f (Int(∂U)) =

f (U); then f −1(P) ⊂ U.
Assume f (P) ⊆ U and we set fU := f . Again, as U is a neighborhood of x and ∂U is

a separating curve in Σ, there are two possibilities for fU(∂U): either Int( fU(∂U)) ⊆ U or
Ext( fU(∂U)) ⊆ U. Since fU(Σ0) is a neighborhood of the unique maximal end x and Int(∂U) ⊆
Int(∂Σ0), if Int( fU(∂U)) ⊆ U then necessarily Int( fU(∂Σ0)) ⊆ U. In this case we obtain that
f (Σ0) ⊆ U because Σ0 = Int(∂Σ0), see Figure 1 a). Finally, since Ext(∂U) = Σ \ (U ∪ ∂U)
and Ext( fU(∂U)) = fU(Ext(∂U)), if Ext( fU(∂U)) ⊆ U then fU(Σ \ U) ⊆ U, see Figure 1 b). In
conclusion, either fU(Σ0) ⊆ U or fU(Σ \ U) ⊆ U. �
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FIGURE 1. a) If Int( fU(∂U)) ⊆ U then fU(Σ0) ⊆ U. b) If Ext( fU(∂U)) ⊆ U then
fU(Σ \ U) ⊆ U.

For the proof of the sufficiency part of Theorem 1.1 we use three lemmas. Assume that Σ has a
unique maximal end x and let K be a connected finite-type subsurface of Σ with complementary
subsurfaces Σ0,Σ1, . . . ,Σn, i.e,

Σ \ K = Σ0 t Σ1 t · · · t Σn.

Additionally, suppose that the closure in Σ of each Σi is an infinite-type surface of zero or
infinite genus with one boundary component and that Σ0 is a neighborhood of the unique maximal
end x.

In what follows, the support of a homeomorphism f : Σ → Σ, denoted by supp( f ), is defined
as the closure in Σ of the set {s ∈ Σ | f (s) , s}.

Lemma 3.2. Suppose U ⊆ Σ0 is a neighborhood of x such that for each subsurface Ũ ⊆ U
that is a neighborhood of x there is a homeomorphism fŨ such that fŨ(Σ0) ⊆ Ũ. Then for each
1 ≤ i ≤ n there exists a homeomorphism fi such that fi(Σi) ⊆ U.

Remark 5. The hypothesis of Lemma 3.2 implies that U is a stable neighborhood of x, see
Definition 2. We point out that Lemma 3.2 can be obtained using [MR23, Lemma 4.18]. Here
we provide a self-contained proof.

Proof. Let 1 ≤ i ≤ n be fixed. Observe that E(U) contains a homeomorphic copy of E(Σi).
Indeed, given that U is a neighborhood of the unique maximal end x and E(Σi) is a compact subset
of E(Σ) then there is a finite collection {N j}

m
j=1 of disjoint clopen subsets that covers E(Σi) and

such that each N j is mapped inside E(U) by a homeomorphism h j. Now, we use the hypothesis
of the lemma to make the collection {h j(N j)}mj=1 disjoint inside of E(U).

Now, since Σi has zero or infinite genus, we can find a homeomorphic copy Σ′i of Σi contained
in U. In order to obtain the desired homeomorphism fi, let P ⊆ Σ be a pair of pants such that
∂P contains the boundary curves of Σi and Σ′i , see Figure 2. Then fi is the homeomorphism
supported on P ∪ Σi ∪ Σ′i and sends Σi onto Σ′i .

�
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FIGURE 2. Σi and Σ′i are homeomorphic subsurfaces in Σ. Then there is a homeomor-
phism f with support in P ∪ Σi ∪ Σ′i that sends Σi onto Σ′i .

Lemma 3.3. Let W be a subsurface of Σ that is a neighborhood of x (may be equal to Σ) and
suppose that for each subsurface U ⊆ W that is a neighborhood of x there is a homeomorphism
fU such that fU(Σ \ U) ⊆ U. Then Map(Σ) is globally CB.

Proof. We prove that any finite-type subsurface of Σ is displaceable; in particular, Σ has zero
or infinite genus. Let S be a finite-type subsurface of Σ. Then we can construct a connected
subsurface US ⊆ W that defines a neighborhood of x and such that US ∩ S = ∅. Applying the
hypothesis of the lemma, there is a homeomorphism f such that f (Σ \US ) ⊆ US . As S ⊆ Σ \US

we obtain that f (S ) ∩ S = ∅.
Now, by Lemma 2.5, E(Σ) is self-similar and, by Theorem 2.6, Map(Σ) is globally CB. �

Lemma 3.4. Let T be a finite-type subsurface of Σ containing K and let UT be the only connected
component of Σ\T which is a neighborhood of x. Suppose that there is a homeomorphism f0 with
f0(Σ0) ⊆ UT , and assume that for each 1 ≤ i ≤ n there is a homeomorphism fi with fi(Σi) ⊆ Σ0.
ThenVK ⊆ (FVT )4n+2 where F = { f ±1

i }
n
i=0.

Proof. Let g ∈ VK . Then g = g0g1 · · · gn where each gi has its support in Σi. Observe that
f −1
0 (T ) ⊆ Σ \ f −1

0 (UT ) ⊆ Σ \ Σ0. Since g0 has its support on Σ0 then f0g0 f −1
0 ∈ VT . Therefore

g0 ∈ (FVT )2.
Now, let 1 ≤ i ≤ n. We notice that figi f −1

i has its support on Σ0. This is because gi has
its support on Σi and supp( figi f −1

i ) = fi(supp(gi)). As in the previous paragraph we have that
figi f −1

i ∈ (FVT )2 and therefore gi ∈ (FVT )4. Putting all together we obtain the desired result.
�

Proof of the sufficient part of Theorem 1.1. Let K be a finite-type subsurface of Σ satisfying the
requirements of the statement of Theorem 1.1. We prove that VK is CB. Let V be an arbitrary
neighborhood of the identity in Map(Σ). By Theorem 2.1, we need to show that there exists a
finite set F ⊂ Map(Σ) and m ≥ 1 such thatVK ⊆ (FV)m.

Take T a finite-type subsurface of Σ where each boundary component is a separating curve,
with K ⊆ T and such thatVT ⊆ V ∩VK . Define UT as the unique connected component of Σ \T
that is a neighborhood of the unique maximal end x.
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There are two cases for UT :

1) There is a connected subsurface U ⊆ UT that is a neighborhood of x for which there
exists a homeomorphism fU such that fU(Σ0) ⊆ U.

2) If item 1) does not hold then for every U ⊆ UT a connected subsurface with one boundary
component and x ∈ E(U) there is a homeomorphims fU with fU(Σ \ U) ⊆ U.

Suppose we are in item 1). Applying again the hypothesis to U we have two possibilities:

i) there is a connected subsurface Ũ ⊆ U that is a neighborhood of x for which there exists
a homeomorphism fŨ such that fŨ(Σ \ Ũ) ⊆ Ũ.

ii) Item i) does not hold. Then for every connected subsurface Ũ ⊆ U that is a neighborhood
of x there is a homeomorphism fŨ such that fŨ(Σ0) ⊆ Ũ.

If item i) holds, then letting f0 := fU and fi := fŨ for each 1 ≤ i ≤ n in Lemma 3.4 we have
thatVK ⊆ (FVT )4n+2 ⊆ (FV)4n+2 where F := { f ±1

i }
n
i=0.

Now, suppose item ii) holds. We set f0 := fU and we use Lemma 3.2 to obtain for each
1 ≤ i ≤ n a homeomorphism fi such that fi(Σi) ⊆ U ⊆ Σ0. Applying Lemma 3.4 we conclude
thatVK ⊆ (FVT )4n+2 ⊆ (FV)4n+2 where F := { f ±1

i }
n
i=0.

Finally, if item 2) holds then by Lemma 3.3 Map(Σ) is globally CB and, in particular, it is locally
CB. �

4. PROOF OF THEOREMS 1.2 AND 1.3

We use the following result.

Lemma 4.1 (Lemma 4.10, [MR23]). E(Σ) is self-similar if and only if for any decomposition
E(Σ) = A1 t A2 into clopen subsets there is some Ai that contains a homeomorphic copy of E(Σ).

Proof of Theorem 1.2. If Σ has no nondisplaceable subsurfaces of finite type then the result is
given by Lemma 2.5.

Suppose Σ has a nondisplaceable finite-type subsurface S ⊆ Σ. We use Lemma 4.1 to prove
that E(Σ) is self-similar. Let E(Σ) = A1 t A2 be a decomposition of E(Σ) into clopen subsets. Let
K be a finite-type subsurface as in Theorem 1.1. Since S is of finite-type then there is U ⊆ Σ0 a
neighborhood of the unique maximal end x such that U∩S = ∅. Given that S is a nondisplaceable
subsurface of Σ, the subset U satisfies that for any Ũ ⊆ U that is a neighborhood of x there is a
homeomorphism fŨ such that fŨ(Σ0) ⊆ Ũ. Hence, U is a stable neighborhood of x. Without lost
of generality we can suppose that A1 contains x. If necessary, we can take U small enough such
that E(U) ⊆ A1.

By the property satisfied by U, there is a homeomorphic copy Σ′0 of Σ0 contained in U. On
the other hand, by Lemma 3.2, for each i = 1 . . . , n, there is Σ′i ⊆ U homeomorphic to Σi.
Finally, let P denote the set of ends of Σ contained into K. Remember that P consist of a finite
number of punctures. Given that Σ has a unique maximal end there is a copy P′ of P inside E(U).
Now, using again the property of U we can make that the collection {Σ′i}

n
i=0 pairwise disjoint and

disjoint from P′. This implies that E(U) (and therefore A1) contains a homeomorphic copy of
E(Σ). �
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Proof of Theorem 1.3. If Σ has zero or infinite genus, combine Theorems 1.2 and 2.6 to conclude
that Map(Σ) is globally CB. If Σ has finite non-zero genus then Map(Σ) is not globally CB by
Theorem 2.3. �

5. PROOF OF COROLLARY 1.4

We first prove the following corollary of Theorem 1.1.

Corollary 5.1. Let Σ be an infinite-type surface with a unique maximal end x and 0 < g(Σ) < ∞.
Then Map(Σ) is locally CB if and only if there is a connected finite-type subsurface K of Σ with
the following properties:

(1) Σ \ K = Σ0 t Σ1 t · · · t Σn where the closure of each Σi is a surface of infinite-type with
one boundary component, g(Σi) ∈ {0,∞} and Σ0 is a neighborhood of x and,

(2) for any subsurface U ⊆ Σ0 that is a neighborhood of x there is a homeomorphism fU

such that fU(Σ0) ⊆ U.

Proof. Suppose that Map(Σ) is locally CB and K is a finite-type subsurface as in Theorem 1.1.
If additionally 0 < g(Σ) < ∞, then all the genus of Σ is contained in K and therefore for any
subsurface U ⊆ Σ0 whose interior is a neighborhood of the unique maximal end x does not exist
a homeomorphism f satisfying that f (Σ \ U) ⊆ U. �

Proof of Corollary 1.4. (By contradiction) Suppose that E(Σ) is countable. We prove that Map(Σ)
is not locally CB by showing that item (2) in Corollary 5.1 does not occur for any finite-type
subsurface K satisfying item (1). So, let K be a finite-type subsurface of Σ satisfying (1) of
Corollary 5.1. As E(Σ) is homeomorphic to ωα + 1 with α a countable ordinal and Σ0 is a
neighborhood of the unique maximal end x. The ordinal α can be either a successor ordinal or
a limit ordinal. In either case, E(Σ \ Σ0) has a finite number of maximal ends. Taking U ⊆ Σ0

neighborhood of x such that E(Σ \ U) contains more maximal ends than E(Σ \ Σ0) we have that
for this U there does not exist a homeomorphism fU such that fU(Σ0) ⊆ U. �

6. PROOF OF THEOREM 1.5

A globally CB group is in particular CB generated. Suppose that Map(Σ) is locally CB but not
globally CB. By Theorem 1.3, the surface Σ has finite nonzero genus. Let K ⊆ Σ be a finite type
subsurface as in Theorem 1.1, that is,

Σ \ K = Σ0 t Σ1 t · · · t Σn,

where each Σi is of infinite type and has genus zero, Σ0 is a neighborhood of the unique maximal
end of Σ and, VK is a CB neighborhood of the identity. Denote by PK to the union of all Σi for
i = 1, . . . , n. Observe that E(Σ) is self-similar (by Theorem 1.2), K is compact with g(K) = g(Σ)
and it has n + 1 boundary components.

We use the following lemma that appears in [MR23, Observation 6.9]. By abuse of notation,
given a finite-type subsurface S of Σ with compact boundary we think of an element of Map(S )
as an element of Map(Σ) by extending it by the identity on the complement of S in Σ.
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Lemma 6.1 (Observation 6.9, [MR23]). Let Σ be an infinite-type surface possibly with nonempty
boundary and S ⊆ Σ be a finite-type subsurface. Then there is DS ⊆ Map(Σ) a finite set of Dehn
twist such that for any finite-type subsurface S ′ ⊆ Σ

Map(S ′) ⊆ 〈DS ∪VS 〉 ⊆ Map(Σ).

Proof of Theorem 1.5. Applying Lemma 6.1 to the subsurface K, let DK be a finite set of Dehn
twists such that for every finite type subsurface S ′ of Σ, Map(S ′) is contained in the group
generated by DK ∪VK . As E(Σ) is self-similar, there is gK ∈ Map(Σ) such that gK(PK) ⊆ Σ0. Let
G be the subgroup of Map(Σ) generated by the CB set {gK} ∪ DK ∪ VK . We show that Map(Σ)
coincides with G.

Let f ∈ Map(Σ). First we prove that there exist f ′, f ′′ ∈ G such that f ′ f −1 f ′′|PK = IdPK .
Indeed, take U ⊆ Σ0 a neighborhood of the unique maximal end x of Σ such that f (U) ⊆ Σ0. As
the space of ends of Σ is self-similar, E(U) contains a homeomorphic copy of E(Σ), and therefore
there is P′K ⊆ U homeomorphic to PK . In particular, f (P′K) ⊆ Σ0. Now, as Σ0 has genus zero there
is h ∈ Map(Σ0) such that h f (P′K) = gK(PK). So, f −1h−1gK(PK) ⊆ Σ0. As gK(PK) is also contained
into Σ0, there is h′ ∈ Map(Σ0) such that h′ f −1h−1gK(PK) = gK(PK) and h′ f −1h−1gK |∂PK = gK |∂PK ,
in other words, g−1

K h′ f −1h−1gK(PK) = PK and g−1
K h′ f −1h−1gK |∂PK = Id∂PK . Finally, we can find an

element w ∈ Map(PK) ⊆ VK such that the restriction of wg−1
K h′ f −1h−1gK to PK is equal to IdPK .

Letting f ′ := wg−1
K h′ and f ′′ := h−1gK we obtain the desired result.

Let g := f ′ f −1 f ′′ and put S ′ := K ∪ g(K). Again, by Lemma 6.1, Map(S ′) is contained in
the group generated by DK ∪ VK and then it is contained in the group G. Now, observe that
∂Σ0 and g(∂Σ0) are essential separating curves of the same topological type in S ′. Then there is
g′ ∈ Map(S ′) ⊆ G such that g′g is the identity on K, that is, g′g ∈ VK . Therefore, f ∈ G. �

7. PROOF OF THEOREM 1.6

In the first part of this section we recall the original definition [MR23, Definition 6.11] of a
tame surface in the case when the surface has a unique maximal end. We show that this definition
is equivalent to Definition 3 given in the Introduction of this paper. In the second part of the sec-
tion we prove Theorem 1.6 by constructing a non-tame infinite-type surface with CB-generated
but not globally CB mapping class group.

The following lemma is inspired by the first point of [MR23, Lemma 6.10].

Lemma 7.1. Let Σ be an infinite-type surface with a unique maximal end x. Suppose that Map(Σ)
is locally CB and that for any N ⊆ E(Σ0) clopen neighborhood of x there is fN ∈ Homeo+(Σ)
such that fN(E(Σ) \ N) ⊆ E(Σ) \ E(Σ0) (compare with Theorem 1.1, item 2)). Then there exists a
clopen neighborhood N(x) ⊆ E(Σ0) of x such that the clopen subset Wx := E(Σ0) \ N(x) satisfies

(1) E(z) ∩Wx , ∅ if and only if E(z) ∩ (E(Σ0) \ {x}) , ∅,

in other words, Wx has representatives of each end in E(Σ0) \ {x}.

Proof. The proof is done by contradiction. Suppose that for each clopen neighborhood N ⊆
E(Σ0) of x there is an end z ∈ E(Σ0) \ {x} such that E(z) ∩ (E(Σ0) \ N) = ∅ . Then there exists
a decreasing sequence of nested closed neighborhoods of x, N1 ⊇ N2 ⊇ · · · , with

⋂
i∈N Ni = {x},



ON THE LARGE SCALE GEOMETRY OF BIG MCGS OF SURFACES WITH A UNIQUE MAXIMAL END 13

Ni ⊆ E(Σ0) and such that for each i ∈ N there is zi ∈ E(Σ0) \ {x} with E(zi) ∩ (E(Σ0) \ Ni) = ∅

and zi ∈ Ni \ Ni+1. By hypothesis, for each i ∈ N there is a homeomorphism fi such that
fi(E(Σ) \ Ni+1) ⊆ E(Σ) \ E(Σ0). Consequently, for every i ∈ N there is z′i = fi(zi) in E(zi)
contained in E(Σ) \ E(Σ0). Let y′ ∈ E(Σ) \ E(Σ0) be an accumulation point of the sequence {z′i}.
Since x is the unique maximal end of Σ there exists an end y equivalent to y′ contained in N1.
Let us take V a neighborhood of y such that V is disjoint from Nm for some m ∈ N. Recall that
y′ is equivalent to y and the latter is an accumulation point of the sequence {z′i}. Then, for some
j ≥ m, there exists w ∈ E(z j) contained in V and hence w ∈ E(z j) ∩ (E(Σ0) \ N j), which is a
contradiction. �

Remark 6. In particular, the hypothesis of Lemma 7.1 are satisfied if Map(Σ) is locally CB but
not globally CB; see Theorem 1.3 and Corollary 5.1. Notice that there are cases when Map(Σ) is
globally CB and the argument in Lemma 7.1 cannot be applied to obtain a clopen Wx neighbor-
hood of x. For example, take Σ to be the infinite-type surface of genus zero with space of ends
homeomorphic to the ordinal number ωω + 1, then Map(Σ) is globally CB. However, it is not
possible to find a neighborhood of the unique maximal end of Σ such that its complement has
representatives of all non maximal ends.

With the notation introduced in Lemma 7.1, we are able to state [MR23, Definition 6.11] for
the case of surfaces with a unique maximal end. We refer the reader to Definition 2 for the
definition of stable neighborhood.

Definition 9 (Tame surface). Let Σ be a surface with a unique maximal end x and suppose that
Map(Σ) is locally CB and not globally CB. We say that Σ is tame if the unique maximal end x
has a stable neighborhood and every maximal end of Wx has a stable neighborhood.

Suppose Σ has a unique maximal end and Map(Σ) is locally CB but not globally CB. The
equivalence of Definition 9 and Definition 3 in this case follows from the Proposition 7.2 be-
low. In the proof of this proposition we repeatedly use the following observation, which is a
consequence of the fact that Wx is closed in E(Σ).

Remark 7. If y, z ∈ Wx then y � z in Wx if and only if y � z in E(Σ).

Proposition 7.2. Let Σ be an infinite-type surface with a unique maximal end x and suppose that
Map(Σ) is locally CB but not globally CB. Then y is an immediate predecessor of x if and only if
there is a representative of y which is maximal in Wx.

Proof. Suppose that y is an immediate predecessor of x. By Lemma 7.1 the clopen Wx has
representatives of each end in E(Σ0) \ {x}. Since x is the only accumulation point of E(y), we
can assume, up to equivalence, that y ∈ Wx. We show that y is maximal in Wx. Let z ∈ Wx such
that y � z in Wx, then by Remark 7 we have that y � z in E(Σ). Given that y is an immediate
predecessor of x we conclude that y is equivalent to z in E(Σ). Again, by Remark 7, we have that
y is equivalent to z in Wx and hence y is a maximal end in Wx.

Reciprocally, suppose that y ∈ Wx is a maximal end of Wx. We show that y is an immediate
predecessor of x. Let z ∈ E(Σ) \ {x} such that y � z in E(Σ). Since E(y) accumulates in {x}
(because x is the unique maximal end of Σ) and Wx has representatives of each end in E(Σ0) \ {x},
without loss of generality we can assume that z is contained in Wx. By Remark 7, it follows that
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y � z in Wx. The maximality of y in Wx implies that z is equivalent to y in Wx. Applying again
Remark 7, we have that z is equivalent to y in E(Σ) and therefore y is an immediate predecessor
of x. �

The following result refines the conclusion of Corollary 1.4 about the space of ends. It gave
us some insight for constructing the example for the proof of Theorem 1.6 below.

Proposition 7.3. Let Σ be an infinite-type surface with a unique maximal end x and suppose
Map(Σ) is locally CB but not globally CB. Then the set of immediate predecessors of x is not
empty. Moreover, the equivalence class of each immediate predecessor of x is uncountable.

Proof. The first part is consequence of Lemma 7.1 and Proposition 7.2.
Now, as Map(Σ) is not globally CB, by Theorem 1.3, Σ has finite nonzero genus. Let K be the

finite-type subsurface of Σ satisfying items 1) and 2) of Corollary 5.1. The proof of the moreover
part is done by contradiction. Let y be an immediate predecessor of x and suppose that E(y)
is countable. Since x is the unique accumulation point of E(y) then E(Σ \ Σ0) contains a finite
number of elements of E(y). Taking a neighborhood U ⊆ Σ0 of x such that E(Σ\U) contains more
elements of E(y) than E(Σ \ Σ0), we have that for such U there does not exist a homeomorphism
fU such that fU(Σ0) ⊆ U. This contradicts item 2) of Corollary 5.1. �

Proof of Theorem 1.6. Our example is inspired by the constructions carried out at [MR24, Sec-
tions 2 & 3]. For each n ∈ N, let Dn be the surface of genus zero with one boundary component
and such that: 1) E(Dn) = Cn t Qn where Cn is homeomorphic to a Cantor set and Qn is a count-
able set, 2) E(Dn) has Cantor-Bendixson rank n and, 3) for each derived set Ω of E(Dn) that has
isolated points, the accumulation set of the isolated points of Ω contains Cn; see Figure 3. From
the construction it follows that the ends in Cn are not comparable with the ends in Cm if n , m.

Let T be the surface obtained from the Cantor tree surface by placing 2n copies of Dn at
each nth-level of the tree, one for each bifurcation. Let C denote the set of ends of T coming
from the ends of the Cantor tree surface. Observe that each end x in C does not have stable
neighborhoods. Indeed, take U a neighborhood of x and let nU be the smallest natural number
such that CnU ∩ E(U) , ∅. By construction, we can find a neighborhood V ⊆ U of x with E(V)
not containing points of CnU . Given that the ends in Cn are not comparable with the ends in Cm

if n , m, V cannot contain homeomorphic copies of U.
Let g be a nonzero natural number and Fg be the surface of genus g and space of ends home-

morphic to ω + 1. Finally, we define Σ to be the surface obtained from Fg by replacing a neigh-
borhood of each of its isolated ends with a copy of the surface T ; see Figure 4.

Note that the space of ends of Σ is self-similar, Σ has a unique maximal end and therefore the
unique maximal end of Σ has stable neighborhoods. Moreover, each maximal end of T is an
immediate predecessor end of the unique maximal end of Σ and, more importantly, some of them
have no stable neighborhoods as we explained before. Therefore the surface Σ is not tame. Since
Σ has finite nonzero genus, then Map(Σ) is not globally CB. Let K be the compact subsurface of
Σ with two boundary components, of genus g and complementary components Σ0 and Σ1, where
Σ1 is exactly the first copy T and Σ0 contains the remaining copies of T in the construction of Σ.
The reader can verify that K is the desired subsurface in Theorem 1.1 for which VK defines a
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FIGURE 3. Surface Dn+1 with one boundary component and whose space of ends
has Cantor-Bendixson rank n + 1 with (n + 1)th-derived set homeomorphic to a
Cantor set Cn+1 and, each point of Cn+1 is accumulated by points homeomorphic
to ωn + 1.

CB-neighborhood of the identity. So, Map(Σ) is locally CB and therefore it is CB generated by
Theorem 1.5. �

FIGURE 4. Non-tame surface with a unique maximal end and whose mapping class
group is CB generated but not globally CB.
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