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Abstract. In [Har86] Harer explicitly constructed a spine for the decorated Teichmüller space
of orientable surfaces with at least one puncture and negative Euler characteristic. In this paper
we point out some instances where his computation of the dimension of this spine is off by 1
and give the correct dimension.

1. Introduction

Let F be an orientable closed connected surface of genus g and consider {p1, . . . , ps} a collec-
tion of distinguished points in F . The mapping class group Mods

g is the group of isotopy classes
of all orientation-preserving diffeomorphisms f : F s

g → F s
g , where F s

g := F − {p1, . . . , ps}. The
group Mods

g permutes the set {p1, . . . , ps} and the kernel of such action is the pure mapping
class group PMods

g. These groups are related by the following short exact sequence

1 → PMods
g → Mods

g → Ss → 1,

where Ss denotes the symmetric group on s letters. The groups Mods
g and PMods

g act on the
Teichmüller space T s

g of conformal equivalence classes of marked Riemann surfaces of genus g
with s distinguished points.

In the influential paper [Har86], J. L. Harer established several cohomology properties of
PMods

g, including the computation of its virtual cohomological dimension:

vcd(PMods
g) =


s− 3 if g = 0 and s ≥ 3

1 if g = 1 and s = 0

4g − 5 if g ≥ 2 and s = 0

4g − 4 + s if g ≥ 1 and s ≥ 1.

In particular, for s ≥ 1, 2g + s > 2, and ∆ = {p1, . . . , pm} with 1 ≤ m ≤ s, Harer explicitly
described a cell complex Y(= Ys,m

g ) inside the decorated Teichmüller space T s
g (∆) onto which

T s
g (∆) may be PMods

g-equivariantly retracted. In [Har86, Theorem 2.1] Harer states that the
dimension of Y is 4g − 5 + s + m. However, while revising the details of his construction
we observed that this computation is off by 1 when the parameter m < s; see for instance
Example 3.4 below. In this paper we compute the correct dimension of Y .

In what follows we refer to Y as Harer’s spine of the decorated Teichmüller space.

Theorem 1.1 (Dimension of Harer’s spine). Let s ≥ 1, 2g + s > 2, and 1 ≤ m ≤ s. The
dimension of the spine Y(= Ys,m

g ) is given by

dim(Y) =

{
4g − 4 + s+m if m < s

4g − 5 + s+m if m = s.

In the literature, Harer’s spine Y (when m = 1) has been cited to justify the existence of
a model for EMods

g, the classifying space for proper actions of Mods
g, of minimal dimension.
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This use of Harer’s spine is not correct when s ≥ 2, and part of our motivation to write this
paper is to clarify it. The misquotation comes from two directions:

a) The complex Y(= Ys,1
g ) is not a model for EMods

g when s ≥ 2. For 2g + s > 2, the
Teichmüller space T s

g is known to be a model for EMods
g; see for instance [JW10,

Proposition 2.3] and [Lüc05, Section 4.10]. When m = 1, Harer’s spine Y is a PMods
g-

equivariant deformation retraction of T s
g (∆) = T s

g and hence it is a model for E PMods
g.

On the other hand, from the definition of Harer’s spine, for m < s the complex Y only
admits a PMods

g-action; see Section 3 for details. Therefore, despite T s
g admitting a

Mods
g-action, the spine Y cannot be a Mods

g-equivariant retraction of T s
g , and it is not

a model for EMods
g when s ≥ 2. This misquotation appears in [JW10, Introduction],

[AMP14, Proof of Theorem 1.1], [Ji14, Introduction], [FGM20, Subsection 3.2], and
[JRLASS24, Proof of Theorem 1.5].

b) The dimension of Y(= Ys,1
g ) is not always equal to vcd(PMods

g). For the case g = 0,
s ≥ 3 andm = 1, and the case g ≥ 1 and s = m = 1, we have that dimY = vcd(PMods

g).
However, for g ≥ 1 and s ≥ 2, the computation in Theorem 1.1 shows that

dimY = 4g − 4 + s+ 1 = vcd(PMods
g) + 1

and hence Y is not a model of minimal dimension in this case. This misquotation
appears in [BV06, Section 1], [Mis10, Section 2.2] [AMP14, Introduction], [Ji14, In-
troduction], [HOP14, Section 10], [FGM20, Subsection 3.2], and [JRLASS24, Proof of
Theorem 1.5]. We indicate in Corollary 3.5 how the dimension of Harer’s spine when
s = m = 1, and the Birman exact sequence can be used to show the existence of a
model for E PMods

g of minimal dimension when s ≥ 2.

To the best of our knowledge it is still unknown whether there exists a model for EMods
g of

dimension vcd(Mods
g) for s ≥ 2. Although [AMP14, Corollary 1.3] claims the existence of such

models, their proof [AMP14, Remark 4.5] relies on an inductive argument using the Birman
short exact sequence and it only applies for pure mapping class groups. We want to point out
that [AMP14, Corollary 1.3] is cited for instance in [AJPTN18, Theorem 4.1, Proof of Theorem
1.5], [JPTN16, Introduction, Theorem 5.1], and [NP18, Proof of Proposition 5.3].

When s = m, it follows from Harer’s construction that the retraction of T s
g (∆) onto Harer’s

spine Y(= Ys,s
g ) is actually Mods

g-equivariant. Such spine Y is of dimension 4g − 5 + 2s and it
can be shown that it gives a model for EMods

g. Since T s
g (∆) is topologized as the product of

T s
g with an open (s−1)-simplex, and Mods

g acts diagonally, there is a natural Mods
g-projection

π : T s
g (∆) → T s

g . Hence, the image π(Y) is a Mods
g-equivariant deformation retract of T s

g

and it is a model for EMods
g of dimension at most 4g − 5 + 2s.

Question 1.2. Is π(Y) a model for EMods
g of minimal dimension when s ≥ 1 and 2g+ s > 2?

In a forthcoming paper [CJRLASS] we use Harer’s spine to construct a spine for the Te-
ichmüller space of non-orientable punctured surfaces N s

g (with s ≥ 1) with negative Euler

characteristic. When s = 1 this spine gives us a model of minimal dimension for EMod(N1
g ).

Some comments on spines for Teichmüller space Tg. A related question is whether
Teichmüller space Tg admits a Modg-equivariant deformation retraction onto a cocompact spine
whose dimension is equal to vcd(Modg), see [BV06, Question 1]. Since Harer’s construction
needs at least one marked point in the surface, it cannot be used to address this question.

For g ≥ 2, W. Thurston proposed a candidate for a spine for Tg in a hard to find preprint
[Thu85]; see also [Ji14, Remark 4.4]. M. Fortier Bourque proved in [FB24, Theorem 1.1] that
in general this spine is not of minimal dimension. In a recent preprint [Irm24, Theorem 1] I.
Irmer claims the existence of a Modg-equivariant deformation retraction of the Thurston spine
onto a CW-complex of dimension equal to vcd(Modg).
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On the other hand, for any genus g ≥ 1, S.A. Broughton proved in [Bro90, Theorem 2.7]
that Tg contains a Modg-subspace which is a strong Modg-deformation retract, and which is a
co-compact model for EModg; see also [Mis10, Section 3]. L. Ji constructed in [Ji14] a couple
of spines for Tg that give cocompact models for EModg. Ji proves that one his constructions
gives a spine of codimension at least 2 in Tg [Ji14, Proposition 4.3] and for genus g = 2 it is of
minimal dimension.

Furthermore, in [AMP14, Theorem 1.1] J. Aramayona and C. Mart́ınez-Pérez proved that
there exists a cocompact model for EModg of dimension vcd(Modg), for every g ≥ 0. Their
proof is not constructive and does not give a spine for Tg when g ≥ 2. For genus g = 2, their
argument has a flaw: it relies on the fact that Mod2 is a central extension of Mod6

0 by Z2, and it
assumes incorrectly that Harer’s spine gives a co-compact model for EMod6

0; see item a) above.
Instead, Ji’s spine of minimal dimension for genus g = 2 can be cited.

Organization of the paper. In Section 2 we recall the definition of the arc complexA = A(∆)
considered by Harer in [Har86, Section 1] and compute its dimension. This arc complex defines
an ideal triangulation A(∆)−A∞(∆) of the decorated Teichmüller space T s

g (∆) which Harer
used to construct his spine in [Har86, Section 2]. In Section 3 we review the definition of Harer’s
spine and compute its dimension proving Theorem 1.1.

Acknowledgments. We thank Javier Aramayona, Mladen Bestvina, Maxime Fortier Bourque,
John Harer, Conchita Mart́ınez-Pérez, and Andrew Putman for useful communication. The first
author was funded by CONAHCyT through the program Estancias Posdoctorales por México.
The third author’s work was supported by UNAM Posdoctoral Program (POSDOC). All authors
are grateful for the financial support of DGAPA-UNAM grant PAPIIT IA106923.

2. Arc systems and Harer’s complex of arcs

We recall the definition of Harer’s complex of arcs A = A(∆) from [Har86, Section1]. For the
sake of completeness we include a full-detailed computation of its dimension in Theorem 2.2.

Let F be a closed, orientable surface of genus g and let {p1, . . . , ps} be a collection of distin-
guished points in F . If ∆ = {p1, . . . , pm}, m ≤ s, we write P = {pm+1, . . . , ps} and F0 = F −P
so that the surface F0 has m distinguished points and s −m punctures. In what follows, the
parameters r and n appearing in [Har86, Section 1] are assumed to be zero.
A properly imbedded path in F0 between two points of ∆ will be called a ∆-arc. The isotopy

class in F0 (rel ∆) [α0, . . . , αk] of a family of ∆-arcs will be called a rank-k arc system if:

(1) αi ∩ αj ⊂ ∆ for distinct i and j, and
(2) for each connected component B of the surface obtained by splitting F0 along α0, . . . , αk,

the Euler characteristic of the double of B along ∂B −∆ is negative.

The condition (2) ensures that ∆-arcs are not null-homotopic (rel ∆), and no two distinct
∆-arcs are homotopic (rel ∆).

Remark 1. Let us give a detailed explanation of the connected components appearing in con-
dition (2). Consider the surface F0 and a collection of ∆-arcs α0, . . . , αk such that condition
(1) holds. Let Bo be one of the connected components of the open surface F0 −∪k

i=0αi. Hence
Bo is the interior of a surface B with non-empty boundary, and we have an attaching map
ϕB : ∂B → ∪k

i=0αi. Since ∪k
i=0αi is canonically a 1-dimensional CW-complex (with 0-skeleton

contained in ∆), we can pull-back that cellular structure to ∂B. By an abuse of notation we call
∆ the 0-skeleton of ∂B. We will be considering each B as a polygon possibly with punctures
and every edge will be labeled with the corresponding ∆-arc in the the system.

Remark 2. Assume s = m, that is we have no punctures and F0 = F . If each connected
component of F−∪k

i=1αi is homeomorphic to a disk, then the ∆-arcs determine a CW-structure
on F .
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Definition 2.1 (Harer’s complex of arcs). Let A = A(∆) be the simplicial complex that has
a k-simplex ⟨α0, . . . , αk⟩ for each rank-k arc system in F0 and such that ⟨β0, . . . , βl⟩ is a face of
⟨α0, . . . , αk⟩ if {[β0], . . . , [βl]} is contained in {[α0], . . . , [αk]}.

Theorem 2.2. The dimension of A(∆) is 6g − 7 + 2s+m.

The proof of this theorem follows directly from Lemma 2.4 (lower bound) and Lemma 2.6
(upper bound).

Lemma 2.3. Let A an arc system in F0 such that all the pieces of the splitting of F0 along
A are triangles except for one of the pieces which is a triangle T with m marked points and
n punctures within its interior. Then there is an arc system B, obtained by adding 3m + 2n
∆-arcs to A, that splits F0 into triangles and once-punctured monogons.

Proof. For m = 1 and n = 0, B is formed by adding three ∆-arcs, splitting T into three
triangles. For m = 0 and n = 1, B is constructed by adding two ∆-arcs and the pieces of the
splitting of T along B are two triangles and a one-punctured monogon. In the general case,
B is formed by adding three ∆-arcs for each marked point and two ∆-arcs for each puncture,
resulting in 3m+ 2n ∆-arcs, see Figure 1. □
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Figure 1. Maximal arc system in a triangle.

Lemma 2.4. There exists an arc system A in F0 of rank 6g − 7 + 2s +m that splits F0 into
triangles and once-punctured monogons.

Proof. For simplicity, let n = s−m denote the number of punctures of F0. We will show that
there is an arc system which has 6g − 6 + 3m + 2n ∆-arcs that splits F0 into triangles and
once-punctured monogons. The proof is divided into cases.

Case 1: g = 0.
For m = 1 and n = 2, A consists of a single ∆-arc surrounding one puncture, splitting F0 into

two once-punctured monogons. Note that 6(0)− 6+ 3(1) + 2 = 1, as expected. For m = 1 and
n ⩾ 3, we take three ∆-arcs based on the marked point and each of these surrounding a single
puncture. By splitting F0 along these three ∆-arcs, we obtain a triangle with n− 3 punctures
and 3 once-punctured monogons. By Lemma 2.3, we add 2(n− 3) ∆-arcs in the triangle with
n− 3 punctures, resulting in the desired arc system A, with 3+2(n− 3) = 6(0)− 6+3(1)+2n
∆-arcs. Similar procedures apply to cases where m ⩾ 2, by selecting ∆-arcs such that one of
the pieces resulting from the splitting F0 along these ∆-arcs is a triangle which contain the
remaining points of ∆ and the punctures. Then by Lemma 2.3, we add the remaining ∆-arcs.

Case 2: g ⩾ 1.
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Consider a ∆-arc system with 2g arcs, all based in a single point of ∆, such that the system
splits F in a 4g-polygon. Consider first the arc system A′ constructed using 2g ∆-arcs on the
sides of the polygon, and 4g−3 ∆-arcs that connect a vertex of the polygon with the remaining
ones. These 6g− 3 ∆-arcs are selected such that the splitting of F0 along them, only one piece
contains the n punctures and the remaining m − 1 points of ∆ in its interior (see Figure 2a).
Finally, by Lemma 2.3 we add 3(m−1)+2n ∆-arcs to the arc system A′ in the special triangle,
obtaining the desired arc system A, with 6g − 3 + 3(m − 1) + 2n = 6g − 6 + 3m + 2n ∆-arcs
(see Figure 2b).
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Figure 2. Arc systems A′ and A in a surface F0

□

Proposition 2.5 (Characterization of maximal arc systems). Let A be an arc system in F0.
The arc system A is maximal if and only if the pieces of the splitting of F0 along A are triangles
or once-punctured monogons.

Proof. Suppose that A is maximal, and let B be a piece of the splitting of F0 along A. We have
that B ∼= F n

h,b, where h is the genus of the surface, b is the number of boundary components,
and n is the number of punctures. Let ℓ be the number of marked points on the boundary of
B. Note that b, ℓ ⩾ 1, and there is at least one marked point in each boundary component. We
will prove that h = 0, b = 1 (a disk), and either n = 1 and ℓ = 1 (a once-punctured monogon),
or n = 0 and ℓ = 3 (a triangle). If h ⩾ 1, b ⩾ 2, n ⩾ 2, or ℓ ⩾ 4, we can add ∆-arcs as shown
in Fig. 3a to extend the arc system A into a new one, which contradicts the maximality of A.
Thus, h = 0, b = 1, n ⩽ 1, and ℓ ⩽ 3. We exclude the case n = 1 and ℓ = 2, 3 since we can
add new ∆-arcs to A and obtain a new arc system, contradicting the maximality of A (see
Fig. 3b). Additionally, we exclude when n = 0 and ℓ = 1, 2, since the boundary of the piece
B represents ∆-arcs of A, and in these cases, the piece B gives us two arcs that are isotopic
relative to ∆ (when ℓ = 2) or a ∆-arc which is isotopic to the marked point (when ℓ = 1).
Therefore B is either a triangle (h = 0, b = 1, n = 0, and ℓ = 3) or a once-punctured monogon
(h = 0, b = 1, n = 1, and ℓ = 1).

Now, consider an arc system A that splits F0 into triangles or once-punctured monogons.
Suppose A is not maximal. Thus, there exists an arc system A′ such that A ⊊ A′. Let
α ∈ A′ −A. Then, α lies in a piece B of the splitting of F0 along A, which is either a triangle
or a once-punctured monogon. Then, α is isotopic to a ∆-arc of A or a marked point. However,
this contradicts the assumption that A′ forms an arc system. Therefore, A is maximal. □
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Figure 3. ∆-arcs for extending the arc system

Lemma 2.6. Let A be a maximal arc system in F0. Then the rank of A is 6g − 7 + 2s+m.

Proof. Let A be a maximal arc system in F0. We have two cases m = s or m ̸= s. In the first
case, we have by Proposition 2.5 and Remark 2 that A induces a CW-structure in F . Denote
by V the number of vertices, E the number of edges, and T the number of triangles. Then
χ(F ) = V −E + T = m−E + T . Note that each arc labels exactly two edges of the triangles,
hence we have E = 3T

2
. Thus χ(F ) = 2− 2g = m− E + 2E

3
, it follows that E = 6g − 6 + 3m.

Therefore A has rank 6g − 7 + 3m.
Now suppose that s ̸= m. Note that any two once-punctured monogons in the splitting of

F0 along A cannot share a side unless the surface is homeomorphic to the sphere with two
punctures and one marked point. If F0 is the sphere with two punctures and one marked point
the claim is clear, then assume that we are not in this case. Therefore any once-punctured
monogon shares a side with a triangle.

Note that in the splitting of F0, there are exactly s − m pieces that are once-punctured
monogons. Additionally the closed surface resulting from F0 by capping the punctures is F .
Hence, by the previous observation, when we cap the punctures in F0 we need to remove
exactly 2(s−m) arcs to obtain an arc systems A′ in F . By the closed case we have rank(A′) =
6g − 7 + 3m. It follows that rank(A) = 6g − 7 + 2s+m. □

Proposition 2.7. Any arc system A = ⟨α0, . . . , αk⟩ in F0 is contained in a maximal arc system.
In particular, an arc system of rank 6g − 7 + 2s+m is maximal.

Proof. Suppose that A is not maximal. By Proposition 2.5, the splitting of F0 along the arc
system A yields at least one piece that is neither a triangle nor a once-punctured monogon. As
in the proof of Proposition 2.5, we can add a ∆-arc αk+1 as described in Fig. 3 extending the
arc system A into a new system A′. By Lemma 2.6 we add a finite number of ∆-arcs to obtain
a maximal arc system which contains A. □

3. Harer’s spine and its dimension

In this section we recall the definition of Harer’s spine Y from [Har86, Section 2] and compute
its dimension proving Theorem 1.1. Let 1 ≤ m ≤ s, ∆ = {p1, . . . , pm}, P = {pm+1, . . . , ps} and
F0 = F − P as in Section 2.
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The decorated Teichmüller space T s
g (∆) is the space of all pairs (R, λ) where R is a point

of T s
g and λ is a projective class of a collection of positive weights on the m points of ∆.

Topologically T s
g (∆) is homeomorphic to the product of T s

g and a open simplex of dimension
m − 1. There is a natural diagonal action of PMods

g on T s
g (∆) when m ≤ s, and only when

m = s it actually admits an action of Mods
g.

We say an arc system A fills up F0 provided every point in ∆ is the initial or final point
of an arc in A, and each connected component B of the splitting of F0 along A is either
homeomorphic to a disk or a once-puntured disk. As a direct consequence of Proposition 2.5
every maximal arc system fills up F0. Note that when P is empty, that is we have no punctures,
A determines a CW-structure on F such that ∆ is the 0-skeleton and the union of the arcs in
A form the 1-skeleton.

Let A∞(∆) be the codimension 2 subcomplex of A(∆) formed by all the arc systems that
do not fill up F0. From the definition we can see that PMods

g acts simplicially on A(∆) and
preserves the subcomplex A∞(∆). Notice that it admits an action of Mods

g only when s = m.
The following result states that A(∆)−A∞(∆) defines an ideal triangulation of the decorated
Teichmüller space T s

g (∆).

Theorem 3.1. [Har86, Theorem 1.3] There is a PMods
g-equivariant homeomorphism

ϕ : T s
g (∆) −→ (A(∆)−A∞(∆)).

Harer’s proof of this theorem in [Har86] is in the conformal category and is due to Mumford.
In [Har88, Chapter 2] Harer attributes to W. Thurston the original construction of this ideal
triangulation. A proof using hyperbolic geometry was provided by B.H. Bowditch and D.B.
A. Epstein [BE88]. See also the work of R. C. Penner [Pen87] for an alternative proof. In the
statement of Theorem 3.1 we can replace PMods

g by Mods
g when s = m.

Let us denote by A0 and by A0
∞ the barycentric subdivisions of the complexes A(∆) and

A∞(∆), respectively.

Definition 3.2 (Harer’s spine). Let Y(= Ys,m
g ) be the subcomplex of A0 spanned by the arc

systems that fill up F0. Therefore, the vertices of Y consist of the set of arc systems that fill
up F0 and an ℓ-simplex of Y is given by a chain of arc systems

A0 ⊂ · · · ⊂ Aℓ,

where all the inclusions are strict and all the Ai fill up F0. We call Harer’s spine both the
complex Y and the subspace ϕ−1(Y) ⊂ T s

g (∆).

Remark 3. We are mostly following the notation from [Har86]. However, instead of using
Y , Harer uses the notation Y 0 for the spine, since (as he explains) it coincides with the first
barycentric subdivision of a complex Y given by the dual of A.

Harer states the following result:

Theorem 3.3. [Har86, Theorem 2.1] The complex A0 equivariantly deformation retracts onto
the 4g − 5 + s + m dimensional complex Y. This retraction provides a PMods

g-equivariant

homotopy equivalence between A0 −A0
∞ and Y.

Harer’s computation of the dimension of Y is correct when m = s, however is off by 1 when
m < s as the following example and our proof of Theorem 1.1 below show.

Example 3.4 (Case g ≥ 1, s = 2, m = 1). Let F be a closed surface of genus g ≥ 1 with
s = 2 marked points {p1, p2} and we take ∆ = {p1} and P = {p2}. From [Har86, Theorem 2.1]
the dimension of Harer’s spine Y is equal to 4g − 2 = vcd(Mod2

g). However, let us exhibit a
(4g − 1)-simplex of Y .

Consider a CW-structure of the surface F given by the 0-cell p1 and 1-cells α0, . . . , α2g−1 that
cut the surface into a 4g-gon; see figure 4a. Notice that the arc system A0 = ⟨α0, . . . , α2g−1⟩
cuts the surface F0 = F − {p2} into a 4g-gon with a puncture in P , hence it fills up F0 and it
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gives a vertex of Y of minimal weight= 2g− 1. By adding the 4g− 3 orange arcs α2g, . . . α6g−4

and the 2 violet arcs α6g−3 and α6g−2 from figure 4b, we obtain an arc system A4g−1 of rank
6g − 2 which fills up the surface F0 and gives a vertex of Y of maximal weight= 6g − 2. Hence
we obtain the chain

A0 ⊂ A1 ⊂ · · · ⊂ A4g−1,

by adding an arc at a time, which defines a (4g − 1)-simplex of Y .

α0
α1

α0

α1

α2

α3

α3 α2

α4

α5

α2g−1

α2g−2

p1

p1 p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

...

p2

(a)

α0
α1

α0

α1

α2

α3

α3 α2

α4

α5

α2g−1

α2g−2

α
2
g
+
1

α
2
g
+
2α
2
g
+

3

α
2
g
+
6

α 2g
+
7

α
2g

α
2
g
+

4

α
2
g
+
5

α6g
−5

α6g−4

p1

p1 p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

...

α6g−2

p2

α6g−3

(b)

Figure 4. Arcs that give the arc systemsA0 of minimal weight andA4g−1 of maximal
weight.

Proof of Theorem 1.1. Note that, whenever A1 ⊂ A2 and A1 fills up F0, we have that A2 also
fills up. Recall that every maximal arc system in F0 fills up the surface and is of rank 6g− 7+
2s + m (Lemma 2.6), and every arc system is contained in a maximal one (Proposition 2.7).
Hence to compute the dimension of Y it is enough to determine the rank of a minimal arc
system that fills up F0. Now we split the proof into two cases.

Case 1: m < s. In this case the set P is non-empty and F0 is a punctured surface.
We claim an arc system A is minimal among the arc systems that fill up F0 if and only if it

splits F0 into pieces all of which are once-punctured discs. First assume that A fills up F0, it is
minimal and there is a connected component B of corresponding splitting that is homeomorphic
to a disc. Then, by connectedness of F0, an edge of B must have the same label as an edge
of another connected component (this connected component exists because P is nonempty).
Thus removing the corresponding arc we get a strictly smaller arc system that fills up F0. For
the converse, assume that A splits F0 into once-punctured discs and let B be a connected
component of the corresponding splitting. Then removing one arc from B will have the effect
of either gluing two different pieces or gluing two edges of the same piece, in either case the
resulting arc system do not fill up F0.
Let A a minimal arc system in Y , we claim the rank r of A is 2g+ s− 3. Then A induces a

CW-structure on F with m 0-cells, r+1 1-cells, and s−m 2-cells (one for each once-punctured
disc in the splitting of F0). Hence, as F is a closed surface of genus g, the Euler characteristic
of F leads to

2− 2g = m− (r + 1) + (s−m) = −r + s− 1,

hence r = 2g + s− 3. Therefore

dim(Y) = (6g − 7 + 2s+m)− (2g + s− 3) = 4g − 4 + s+m.

Case 2: m = s. In this case the set of punctures is empty, and any arc system that fills
up the surface determines a cellular structure on F = F0. We claim an arc system is minimal
among the arc systems that fill up if and only if it splits F into exactly one disc. The proof of
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this claim is similar to the analogous claim in the previous case. A similar Euler characteristic
computation as in the previous case implies that the rank r of a minimal arc system that fills
up F satisfies

2− 2g = s− (r + 1) + 1 = s− r,

hence r = 2g + s− 2. Therefore

dim(Y) = (6g − 7 + 2s+m)− (2g + s− 2) = 4g − 5 + s+m.

□

We end by explaining how the dimension of Harer’s spine when s = 1, and a Briman exact
sequence argument, imply the existence of a model for E PMods

g of minimal dimension for
s ≥ 2. In [Mis10, Theorem 4.2], G. Mislin also used a Birman exact sequence argument to show
the existence of co-compact models for E PMods

g; see also the argument in [AMP14, Remark
4.5] which applies for pure mapping class groups.

Recall that the proper geometric dimension of a group G, denoted gd(G), is the minimum
n for which there exists an n-dimensional model for EG. If G is virtually torsion free, then
vcd(G) ≤ gdG ([Lüc05, Theorem 5.23]).

Corollary 3.5. For s ≥ 1 and 2g + s > 2, there exists a model for E PMods
g of dimension

equal to vcd(PMods
g).

Proof. From Theorem 1.1, for g = 0 and s ≥ 3, the dimension of Harer’s spine Y is vcd(PMods
0) =

s − 3, and for g ≥ 1 and s = 1, we have that dimY = vcd(PMod1
g) = 4g − 3. Therefore, in

these cases Harer’s spine Y is a model of E PMods
g of minimal dimension.

Now let s ≥ 2 and g ≥ 1. Then π1(F
s−1
g ) is a nonabelian free group and recall that, due to

a well-known theorem by Dunwoody, any finite extension ∆ of a non trivial finitely generated
free group has gd(∆) = 1. Hence, from [Lüc05, Theorem 5.16] applied to the Birman short
exact sequence

1 → π1(F
s−1
g ) → PMods

g → PMods−1
g → 1

it follows from an inductive argument that

gd(PMods
g) ≤ gd(PMods−1

g )+1 ≤ gd(PMod1
g)+(s−1) = vcd(PMod1

g)+(s−1) = vcd(PMods
g).

□
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