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Abstract

In this paper we study the integral cohomology of pure mapping class groups of surfaces,
and other related groups and spaces, as FI-modules. We use recent results from Church, Miller,
Nagpal and Reinhold to obtain explicit linear bounds for their presentation degree and to give
an inductive description of these FI-modules. Furthermore, we establish new results on represen-
tation stability, in the sense of Church and Farb, for the rational cohomology of pure mapping
class groups of non-orientable surfaces.
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1 Introduction

Let Σ be a compact connected surface with (possibly empty) boundary and let P = {p1, . . . , pn}
be a set of n distinct points in the interior of Σ, we call these points punctures. A compact surface
of genus g with r boundary components and n punctures will be denoted by Σn

g,r if it is orientable,
or by Nn

g,r if it is non-orientable. Let Diff(Σ, P ) be the group of all, orientation preserving if Σ is
orientable, diffeomorphisms h : Σ → Σ such that h(P ) = P and h restricts to the identity on the
boundary of Σ. The mapping class group Modn(Σ) is the group of isotopy classes of elements of
Diff(Σ, P ). The pure mapping class group PModn(Σ) is the subgroup of Modn(Σ) that consists of
the isotopy classes of diffeomorphisms fixing each puncture. If P = ∅, we write Mod(Σ).

In this paper we study the FI-module structure of the integral cohomology of the pure mapping
class groups of orientable and non-orientable surfaces and obtain the following result.

Theorem 1.1. Let Σ be a surface such that:

Σ = S2,T,Σ1
1 or Σ = Σg,r with 2g + r > 2, if the surface is orientable, or

Σ = RP 2,K or Σ = Ng,r with g ≥ 3 and r ≥ 0 in the non-orientable case.

Let k ≥ 0 and λ = 1 if Σ is orientable and λ = 0 if Σ is non-orientable.

(a) (Polynomial Betti numbers growth). If F is a field, then there are polynomials pΣ
k,F of

degree at most 2k such that

dimFH
k
(

PModn(Σ);F
)

= pΣ
k,F(n)

if n > max(−1, 16k − 4λ− 2) (and for all n ≥ 0 if the surface Σ has nonempty boundary).

∗This paper has been completed with the financial support from PAPIIT DGAPA-UNAM grant IA104010.
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(b) (Inductive description). The natural map

IndSn
Sn−1

Hk
(

PModn−1(Σ);Z
)
→ Hk

(
PModn(Σ);Z

)
is surjective for n > max(0, 18k − 4λ− 1) (for n > 2k if ∂Σ 6= ∅) and, for n > max(0, 34k −
8λ − 2) (for n > 2k if ∂Σ 6= ∅), the kernel of this map is the image of the difference of the
two natural maps1

IndSn
Sn−2

Hk
(

PModn−2(Σ);Z
)
⇒ IndSn

Sn−1
Hk
(

PModn−1(Σ);Z
)
.

Theorem 1.1 follows from Corollary 4.3 and Propositions 2.3 and 2.1 below. Corollary 4.3 is
a particular case of Theorem 4.2, which establishes explicit bounds for the presentation degree
of the integral cohomology of classifying spaces BPDiffn(M) of pure diffeomorphisms groups of
manifolds M of dimension d ≥ 2. This result is obtained by applying arguments from [CMNR18]
to spectral sequences arising from classical fibrations that relate the classifying spaces of groups of
pure diffeomorphisms with configuration spaces (see Section 4).

Theorem 1.1(a) is known to be true for all n ≥ 0 for pure mapping class groups of orientable
surfaces with boundary ([JR15, Theorems 1.2]) and in the stable range for orientable closed surfaces
([JR15, Theorem 1.5]). Furthermore, in [BT01, Theorem 1.1] Bödigheimer and Tillmann gave
a decomposition of the classifying space associated with the stable pure mapping class groups
of orientable surfaces with boundary PModn(Σ∞,r). Together with Harer’s homological stability
theorem [Har85] this implies that for any field F, in cohomological degrees ∗ ≤ g/2,

H∗(PModn(Σg,r);F) ∼= H∗(Mod(Σg,r);F)⊗ F[x1, . . . , xn],

where each xi has degree 2. The action of the symmetric group Sn on the left hand side corresponds
to the action of Sn on the polynomial ring in n variables by permutation of the variables xi.
Therefore, for an orientable surface Σ with non-empty boundary, it follows that for ∗ ≤ g/2 the
polynomials pΣ

∗,F(n) from Theorem 4.3(a) are given by

pΣ
∗,F(n) = dimFH

∗(PModn(Σg,r);F) =


dimFH

∗(Mod(Σg,r);F) if ∗ = 2k + 1,(
n+ k − 1

n− 1

)
+ dimFH

∗(Mod(Σg,r);F) if ∗ = 2k,

of degree 0 and k, respectively.
Theorem 1.1(b) gives an inductive description of the FI-module in terms of a explicit finite

amount of data. It is equivalent to the statement that the FI-module Hk(PMod•(Σ);Z) is centrally
stable at > max(0, 34k−8λ−2), in the sense of Putman’s [Put15] original notion of central stability,
which can be viewed as a reformulation of [CE17, Theorem C] (see for example [Pat17, Prop 6.2]).

Remark 1.1: In [Put12], a preprint version of [Put15], Putman proved that the homology of pure
mapping class groups of manifolds with boundary satisfies central stability. His result [Put12,
Theorem D] includes orientable and non-orientable manifolds, not necessarily of finite type, with
coefficients in a field (of characteristic bounded below or zero characteristic) and obtains an ex-
ponential stable range. In contrast, our approach for dimension 2 works over Z and gives linear
bounds for the stable range. It would be interesting to see whether the central stability techniques
used in [Put12] together with results from [CMNR18] could be used to obtain better bounds and
include mapping class groups for general manifolds.

1See Proposition 2.1 and Remark 2.2 for details.
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Furthermore, from [CEF15, Theorem 1.5, 1.13] (see also [CEF14, Proposition 3.9]) it follows
that Theorem 4.3 also implies that the rational cohomology of pure mapping class group of surfaces
satisfies representation stability and have characters that are eventually polynomial. From Proposi-
tion 2.7 and the upper bounds for stable degree and the local degree obtained in Corollary 4.3, an
explicit stable range is obtained.

Theorem 1.2. Let k ≥ 0 and consider Σ a surface as in Theorem 1.1. Let

N =

{
4k if ∂Σ 6= ∅,
max(0, 20k − 4λ− 1) otherwise, with λ = 1 if Σ is orientable and λ = 0 if not.

i) (Representation stability over Q). The decomposition of Hk
(

PModn(Σ);Q
)

into irre-
ducible Sn-representations stabilizes in the sense of uniform representation stability (as defined
in [CF13]) for n ≥ N .

ii) (Polynomial characters). For n ≥ N , the character χn of Hk
(

PModn(Σ);Q
)

is of the form
χn = Qk(Z1, Z2, . . . , Zr), where deg(χn) ≤ 2k and Qk ∈ Q[Z1, Z2, . . .] is a unique polynomial,
independent of n, in the class functions Z`(σ) := # cycles of length ` in σ, for any σ ∈ Sn.

iii) (Stable inner products). If Q ∈ Q[Z1, Z2, . . .] is any character polynomial, then the inner
product 〈χn, Q〉Sn is independent of n once n ≥ max(N, 2k + deg(Q)).

iv) (“Twisted” homological stability over Q). Let Q ∈ Q[Z1, Z2, . . .] be a character poly-
nomial and consider {WQ

n }n the associated sequence of virtual Sn-representations. Then the
dimension dimQ

(
Hk(Modn(Σ);WQ

n )
)

is constant for n ≥ N . In particular, the sequence
{Hk

(
Modn(Σ);Q

)
} satisfies rational homological stability for n ≥ N .

Theorem 1.2 above recovers [JR15, Theorem 1.1] for the pure mapping class group of orientable
surfaces and gives new representation stability results for the rational cohomology of pure mapping
class groups of non-orientable surfaces and low genus cases that were not worked out explicitly in
[JR15] and [JR11]. Using the theory of weight and stability degree from [CEF15] better bounds
can be computed for the stable range. However, if the surface Σ has nonempty boundary, from
Proposition 2.7 the stable range can be improved to N = 4k, which recovers the stable range
obtained in [JR15, Theorem 1.1] for orientable surfaces with boundary.

Theorem 1.2(iv) recovers rational homological stability “by punctures” for mapping class groups
of surfaces, this was previously obtained in [HW10, Propositon 1.5], with a better linear stable range,
for mapping class groups of connected manifolds of dimension ≥ 2 (see also [Han09, Theorems 1.3
& 1.4]).

With the same techniques, we obtain bounds for the presentation degree of the FI-module given
by the integral cohomology of the hyperelliptic mapping class group with marked points ∆n

g and
representations stability for its rational cohomology groups in Corollary 4.5.

Known results for pure mapping class groups of non-orientable surfaces. Wahl
proved in [Wah08, Theorem A] that for g ≥ 4k + 3, the homology groups Hk(Mod(Ng,r);Z) are
independent of g and r. This is the non-orientable version of Harer’s stability theorem for mapping
class group of orientable surfaces [Har85]. Homological stability for mapping class groups of non-
orientable surfaces with marked points was obtained in [Han09, Theorem 1.1]:

for fixed n ≥ 1 the homology groups Hk(Modn(Ng,r);Z) and Hk(PModn(Ng,r);Z)
are independent of g and r, when g ≥ 4k + 3.
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Wahl and Handbury also study the stable pure mapping class groups of non orientable sur-
faces with boundary PModn(N∞,r). In particular, [Han09, Theorem 1.2] shows that there exists
a homology isomorphism B PModn(N∞,r) → B PMod(N∞,r) × B(O(2))n. This isomorphism can
be used to explicitly compute, for ∗ ≥ 4k + 3 the polynomials pΣ

∗,Z2
(n) from Theorem 1.1(a) for

a non-orientable surface Σ with non-empty boundary. On the other hand, Korkmaz [Kor02] and
Stukow [Stu10] computed the first homology group for the mapping class group of a non-orientable
surfaces. In particular, they proved that

H1(PModn(Ng);Z) ∼= (Z2)n+1 if g ≥ 7,

see for instance [Kor02, Theorem 5.11]. This computation shows that that homological stability
fails integrally for the pure mapping class group with respect to the number of marked points, and
suggest a representation stability phenomenon.

For low genus, descriptions of the mod 2 cohomology ring have been obtained for the mapping
class group Modn(K) of the Klein bottle K with marked points ([HX18]), and for the mapping class
group Modn(RP 2) of the projective plane RP 2 with marked points ([MX17]).

Remark 1.2: This paper started from Remark A.14 in [MW18, Appendix A]. In [MW19, Remark
1.4], the authors suggest a method that could possibly improve the liner bounds for pure mapping
class groups and classifying spaces of pure diffeomorphisms groups.

Acknowledgements. I am grateful to Marco Boggi, Cristhian Hidber, Jeremy Miller, Jenny
Wilson and Miguel Xicoténcatl for useful discussions and generous explanations. I also want to thank
Jesús Hernández Hernández and Blazej Szepietowski for pointing out key references on mapping
class groups of non-orientable surfaces. I thank the referee for her/his useful suggestions to make
the paper more concise.

2 Preliminaries on FI-modules

We use the framework of FI-modules to study stability properties of sequences of symmetric group
representations. The purpose of this section is mostly of expository nature.

Notation: An FI-module (resp. FB-module) is a functor V from the category of finite sets and
injections (resp. and bijections) to the category of Z−modules ModZ. Given a finite set T we write
VT for V (T ) and for every n ∈ N we write Vn for V[n] = V ([n]) where [n] := {1, 2, . . . n}. The
category of FI-modules ModFI is abelian.

Definition 2.1 Let F be any ring. An FI-module V is an FI-module over F if the functor V :
ModFI → ModZ factors through ModF → ModZ.

The forgetful functor F : ModFI → ModFB has a left adjoint that we denote by I : ModFB →
ModFI. The FI-modules of the form I(V ) are called induced. The FI-modules that admit a finite
length filtration where the quotients are induced modules are named semi-induced.

Definition 2.2 An FI-module V is generated by a set S ⊆ tn≥0Vn if V is the smallest FI-submodule
containing S. If V is generated by some finite set, we say that V is finitely generated.

Finite generation of FI-modules is preserved when taking subquotients, extensions and tensor
products. Furthermore FI-modules over Noetherian rings are locally Noetherian i.e., every sub-FI-
module is finitely generated ([CEFN14, Theorem A]). Therefore an FI-module is finitely generated
if and only if it is finitely presented.
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2.1 Generation and presentation degree

Consider the functor U : ModFB → ModFI that upgrades each FB-module to an FI-module by
declaring that all injections which are not bijections act as the zero map. The left adjoint is called
FI-homology and it is a right-exact functor denoted by HFI

0 . Its ith left-derived functor is denoted
by HFI

i , and will be often regarded as an FI-module by post-composing with U .
The degree of a non-negatively graded abelian group M is degM = min{d ≥ −1 : Mn =

0 for n > d}. In particular, an FI-module or FB-module V gives a non-negatively graded abelian
group by evaluating on the sets [n] and deg V can be considered.

Definition 2.3 For an FI-module or FB-module V let ti(V ) := degHFI
i (V ). The generation degree

of V is t0(V ) and prd(V ) := max(t0(V ), t1(V )) is called the presentation degree of V . An FI-module
V is presented in finite degrees if t0(V ) <∞ and t1(V ) <∞.

Remark 2.1: A finitely generated FI-module is presented in finite degrees. However, being ‘finitely
generated’ is a stronger condition than being presented in finite degrees.

The category of FI-modules presented in finite degrees is abelian. These FI-modules admit the
following inductive description.

Proposition 2.1 (Prop 2.4 [CMNR18]). Let V be an FI-module.

(1) Then t0(V ) ≤ d if and only if IndSn
Sn−1

Vn−1 → Vn is surjective for n > d.

(2) Then t1(V ) ≤ r if and only if the kernel of IndSn
Sn−1

Vn−1 → Vn is the image of the difference

of the two natural maps IndSn
Sn−2

Vn−2 ⇒ IndSn
Sn−1

Vn−1 for n > r.

Remark 2.2: Observe that IndSn
Sn−p

Vn−p ∼=
⊕

f :[p]↪→[n] V[n]\im(f) for p ≥ 1. The two natural maps

IndSn
Sn−2

Vn−2 ⇒ IndSn
Sn−1

Vn−1 in Proposition 2.1 (2) are given by

di :
⊕

f :[2]↪→[n]

V[n]\im(f) →
⊕

f̄=f |[2]\{i}

V[n]\im(f̄)

defined by forgetting the element i from the domain [2] of the injective map f : [2] ↪→ [n] and the
maps V[n]\im(f) → V[n]\im(f̄) induced by the inclusions of sets

(
[n] \ im(f)

)
↪→
(
[n] \ im(f̄)

)
.

Furthermore, if V is an FI-module over a field F of characteristic zero, then V is finitely generated
if and only if the sequence {Vn}n of Sn-representations is representation stable in the sense of [CF13]
and each Vn is finite-dimensional (see [CEF15, Theorem 1.13]). The notions of weight and stability
degree introduced in [CEF15] can be used to obtain better explicit stable ranges for representation
stability over fields of characteristic zero.

2.2 Stable and local degree

In [CMNR18] the authors study the stable degree and the local degree of an FI-module and show
that they are easier to control in spectral sequence arguments than the generation and presentation
degree. The precise definitions of these invariants are stated in [CMNR18, Def. 2.8 & 2.12]. We
recall here the key properties that will be needed to obtain our main results. Proofs of these
statements can be found in [CMNR18, Section 3].
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The category FI has a proper self-embedding t? : FI→ FI given by S 7→ St{?} and a morphism
f : S → T extends to f? : S t {?} → T t {?} with f∗(?) = ?. The shift functor S : ModFI → ModFI

is given by V 7→ V ◦ t?. We denote by Sn the n-fold iterate of S.
The local degree hmax(V ) of an FI-module V quantifies how much V needs to be shifted so that

SnV is semi-induced:

Proposition 2.2 (Cor 2.13[CMNR18]). Let V be an FI-module presented in finite degrees. Then
SnV is semi-induced if and only if n > hmax(V ).

The natural transformation idFI → t? induces a natural transformation ι : idModFI
→ S. This is a

natural map of FI-modules ι : V 7→ SV which, for every finite set S, takes VS to (SV )S = VS∪{?} via
the map corresponding to the inclusion ιS : S ↪→ S∪{?}. The derivative functor ∆ : ModFI → ModFI

takes an FI-module V to the cokernel ∆V := coker(V
ι−→ SV ). We denote by ∆n is the n-fold iterate

of ∆. An element x ∈ V (S) is torsion if there is an injection f : S → T such that f∗(x) = 0. An
FI-module V is torsion if all its elements are torsion.

Definition 2.4 The stable degree of an FI-module V is δ(V ) := min{n ≥ −1 : ∆n+1V is torsion}.

Proposition 2.3 (Prop 2.14 [CMNR18]). Suppose F is a field, and let V be an FI-module over
F which is presented in finite degrees and with Vn finite dimensional for all n. Then there exists an
integer-valued polynomial p ∈ Q[X] of degree δ(V ) such that dimFVn = p(n) for n > hmax(V ).

It turns out that together, the stable degree and the local degree behave well under taking
kernels and cokernels and in finite filtrations.

Proposition 2.4 (Prop 3.2 & 3.3 [CMNR18]).

(1) Suppose the FI-module V has a finite filtration V = F0 ⊃ . . . ⊃ Fk = 0 and let Ni = Fi/Fi+1.
Then δ(V ) = maxi δ(Ni) and hmax(V ) ≤ maxi h

max(Ni).

(2) Let f : V → W be a map of FI-modules presented in finite degrees. Then we have the
following:

δ(ker f) ≤ δ(V ); δ(cokerf) ≤ δ(W );

hmax(ker f), hmax(cokerf) ≤ max
(
2δ(V )− 2, hmax(V ), hmax(W )

)
.

Furthermore, the stable and local degrees are easier to control in spectral sequence arguments. In
particular they allow us to obtain linear stable ranges in the “Type A spectral sequence arguments”.

Proposition 2.5 (Prop 4.1 [CMNR18]). Let Ep,qr be a cohomologically graded first quadrant
spectral sequence of FI-modules converging to Mp+q. Suppose that for some page d, the FI-modules
Ep,qd are presented in finite degrees, and set Dk = maxp+q=k δ(E

p,q
d ) and ηk = maxp+q=k h

max(Ep,qd ).
Then we have the following:

(1) δ(Mk) ≤ Dk

(2) hmax(Mk) ≤ max
(

max`≤k+s−d η`,max`≤2k−d+1(2D` − 2)
)
, where s = max(k + 2, d).

Finally, the stable degree and the local degree control the presentation degree of an FI-module
and viceversa [CMNR18, Proposition 3.1].
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2.3 FI#-modules

Let FI# denote the category with objects finite based sets and with morphisms given by maps
of based sets that are injective away from the basepoints: the preimage of all elements except
possibly the base point have cardinality at most one. This category is isomorphic to the original
one described in [CEF15, Def 4.1.1].

An FI#-module is a functor from FI# to ModZ. An FI#-module simultaneously carries an FI-
and an FIop-module structure in a compatible way. Church–Ellenberg–Farb [CEF15, Theorem 4.1.5]
proved that the restriction of an FI#-module to FI is an induced FI-module. Hence, for FI#-modules
we have better control of the presentation degree.

Proposition 2.6 (Cor 2.13, Prop 3.1 [CMNR18]). If V is a semi-induced FI-module, then
hmax(V ) = −1. Therefore, δ(V ) = t0(V ) and t1(V ) ≤ δ(V ).

For a finitely generated FI-module V defined over Q, we know that the sequence {Vn}n satisfies
representation stability. Moreover we can obtain upper bounds for the stable range in terms of the
local and stable degree of V .

Proposition 2.7. Let V be a finitely generated FI-module defined over Q. Then the sequence
{Vn}n satisfies representation stability for n ≥ 2δ(V ) +hmax(V ) + 1. If V is an FI#-module defined
over Q, then the sequence {Vn}n satisfies representation stability for n ≥ 2δ(V ).

Proof. Over Q, semi-induced modules are the same as FI#-modules (since FI#-modules are
semi-simple). By Proposition 2.2, if n > hmax(V ), then SnV is semi-induced. Then for N =
hmax(V ) + 1, the shifted FI-module SNV is an FI#-module defined over Q and by Proposition 2.6
it has generation degree t0(SNV ) = δ(SNV ) = δ(V ) (see also [CMNR18, Prop 2.9(b)]). Therefore,
by [CEF15, Corollary 4.1.8] the sequence {(SNV )k}k is representation stable for k ≥ 2δ(V ). Since(
SNV

)
k

= VN+k, this means that the sequence {Vn}n satisfies representation stability for n ≥
2δ(V ) +N = 2δ(V ) + hmax(V ) + 1.

3 FI [G]-modules

In [JR15, Section 5] we introduced the notion on an FI [G]-module in order to incorporate the action
of a group G on our sequences of Sn-representations. These FI [G]-modules allow us to construct
new FI-modules by taking cohomology with twisted coefficients and are key in the spectral sequence
arguments below.

Definition 3.1 Let G be a group. An FI [G]-module V is a functor from the category FI to the
category ModZ[G] of G-modules over Z. By forgetting the G-action we get an FI-module and all the
notions of degree from the previous section can be considered. We call V an FI [G]-module over F if
the functor V : ModFI → ModZ[G] factors through ModF[G] → ModZ[G].

Let V be an FI [G]-module and consider a path connected space X with fundamental group G.
For each integer p ≥ 0, the pth-cohomology Hp(X; ) of X is a covariant functor from the category
ModFI [G] to the category ModFI. We now see how the bounds on the stable and local degree of V
provide bounds for the FI [G]-module Hp(X; ).

Proposition 3.1 (Cohomology with coefficients in a FI [G]-module with finite prd). LetG
be the fundamental group of a connected CW complex X and let V be an FI [G]-module presented
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in finite degrees with δ(V ) ≤ D and hmax(V ) ≤ η. Then for every p ≥ 0, the FI-module Hp(X;V )
is presented in finite degrees with

δ
(
Hp(X;V )

)
≤ D and hmax

(
Hp(X;V )

)
≤ max(2D − 2, η).

Furthermore, if X has finitely many cells in each dimension and V is a finitely generated FI [G]-
module, then Hp(X;V ) is a finitely generated FI-module.

Proof.
Given that G = π1(X), the universal cover X̃ of X has a G-equivariant cellular chain complex

C∗(X̃). For each p ≥ 0, let Ap be the set of representatives of G-orbits of the p-cells. The group of
p-chains Cp(X̃) is a free G-module with a generator for each element in Ap.

To obtain the FI-module Hp(X;V ) we consider the complex of FI-modules

Cp−1(X,V )
δp−1−−−→ Cp(X,V )

δp−→ Cp+1(X,V )

where Cp(X;V ) is a direct product of FI [G]-modules
∏
α∈Ap

V given by

Cp(X;V )n := HomG(Cp(X̃), Vn) = HomZ[G]

( ⊕
α∈Ap

Z[G], Vn
) ∼= ∏

α∈Ap

HomZ[G](Z[G], Vn) ∼=
∏
α∈Ap

Vn.

In the category ModFI [G] direct products preserve exactness (since in ModZ[G] direct products pre-

serve exactness) and IndSn
Sn−1

∏
α∈Ap

V ∼=
∏
α∈Ap

IndSn
Sn−1

V (see for example [Lam99, Prop. 4.4]).

It follows from the definitions of stable degree and local degree that δ(
∏
α∈Ap

V ) = δ(V ) and

hmax(
∏
α∈Ap

V ) = hmax(V ) (in the case Ap is finite, this is just an immediate consequence from

Proposition 2.4 (1)). Therefore, for every p ≥ 0

δ
(
Cp(X;V )

)
≤ D and hmax

(
Cp(X;V )

)
≤ η.

Since
Hp(X;V ) = coker

(
Cp−1(X,V )→ ker

(
δp : Cp(X,V )→ Cp+1(X,V )

))
,

the FI-module Hp(X;V ) is presented in finite degrees and it follows from Proposition 2.4 (2) that

δ
(
Hp(X;V )

)
≤ δ
(

ker
(
δp : Cp(X,V )→ Cp+1(X,V )

)
) ≤ δ

(
Cp+1(X,V )

)
= δ(V ) ≤ D

and
hmax

(
Hp(X;V )

)
≤ max

(
2δ(Cp−1(X,V ))− 2, hmax(Cp−1(X,V )), hmax(ker(δp))

)
≤ max

(
2D − 2, η,max

(
2D − 2, η, η)

)
= max(2D − 2, η).

Finally, if X has finitely many cells in each dimension and V is is a finitely generated FI [G]-
module, then Hp(X;V ) is a subquotient of the finitely generated FI-modules Cp(X;V ).

Remark 3.1: If X has finitely many cells in each dimension and V is a finitely generated FI [G]-
module over Q with weight ≤ m and stability degree N , then Hp(X;V ) has weight ≤ m and
stability degree N ([JR15, Prop 5.1]).
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3.1 FI [G]-modules and spectral sequences

Let A be an abelian group. and let X be a connected CW-complex, x ∈ X and suppose that the
fundamental group π1(X,x) is G. Consider an FIop-fibration over X: a functor from FIop to the
category Fib(X) of fibrations over X. Let E : FIop → T op be the FIop-space of total spaces and H
the FIop-space of fibers over the basepoint x.

The functoriality of the Leray-Serre spectral sequence implies that we have a spectral sequence
of FI-modules (see [KM18, Proposition 3.10] for details) Ep,q∗ = Ep,q∗

(
E → X

)
converging to the

graded FI-module H∗(E;A).
The action of the fundamental group G on the cohomology of the fiber gives Hq(H;A) the

structure of an FI [G]-module, for all q ≥ 0. Then, the E2-page of this spectral sequence is given by
the FI-modules

Ep,q2 = Hp
(
X;Hq(H;A)

)
.

4 Cohomology of classifying spaces of pure diffeomorphisms groups

In this section we study the FI-module structure of the integral cohomology of classifying spaces of
groups of pure diffeomorphisms. We consider classical fibrations that allow us to relate these coho-
mology groups with the cohomology of configuration spaces. Using the spectral sequence arguments
from [CMNR18] together with their bounds on stable degree and local degree for cohomology of
configuration spaces (see Lemma 4.1 below) and our Proposition 3.1 we obtain the corresponding
bounds for classifying spaces of groups of pure diffeomorphisms in Theorem 4.2.

In sections 4.3 and 4.4 we describe how this gives us bounds for the presentation degree of
the integral cohomology of pure mapping class groups of orientable and non-orientable surfaces
(Corollaries 4.3 & 4.4) and hyperelliptic mapping class groups with marked points (Corollary 4.5).

4.1 Configuration spaces

For a topological space M , following the notation in [CMNR18], we denote by PConf(M) the
FIop-space that sends the set S to the space of embeddings of S into M . For a given inclusion
f : S ↪→ T in HomFI(S, T ) the corresponding restriction f∗ : PConfS(M) → PConfT (M) is given
by precomposition. In particular, for the set [n] = {1, ..., n} we obtain the configuration space
PConfn(M) =Emb([n],M) of ordered n-tuples of distinct points on M . By taking integral coho-
mology we obtain an FI-module Hk(PConf(M);Z). The following Lemma 4.1 is one of the main
applications in [CMNR18] of Proposition 2.5 and is a key ingredient in the proof of Theorem 4.2.

Lemma 4.1 (Theorem 4.3 [CMNR18] Linear ranges for configuration spaces). LetM be
a connected manifold of dimension d ≥ 2, and set

µ =

{
2 if d = 2

1 if d ≥ 3
λ =

{
0 if M is non-orientable

1 if M is orientable

Let A be an abelian group. Then we have:

(1) δ
(
Hq(PConf(M);A)

)
≤ µq,

(2) hmax
(
Hq(PConf(M);A)

)
≤ max(−1, 4µq − 2µλ− 2),

(3) t0
(
Hq(PConf(M ;A)

)
≤ max(µq, 5µq − 2µλ− 1),

(4) t1
(
Hq(PConf(M);A)

)
≤ max(µq, 9µq − 4µλ− 2).

9



4.2 Classifying spaces of pure diffeomorphisms groups

Let M be a connected, smooth manifold with (possibly empty) boundary of dimension d ≥ 2 and
p ∈ PConfn(M̊), in other words

(
p(1), p(2), . . . , p(n)

)
is an ordered configuration of n points in the

interior M̊ of M . We denote by Diff(M) the group of diffeomorphisms of M , with the compact-open
topology. By abusing notation, we use Diff(M) instead of Diff(M rel ∂M) if ∂M 6= ∅ and if M is
orientable, we can restrict to orientation-preserving diffeomorphisms.

Let Diffp(M) = Diff(M,P ) be the subgroup of Diff(M) of diffeomorphisms that leave invariant
the set P = p([n]) and PDiffp(M) = PDiff(M,P ) is the subgroup of Diff(M) that consists of
the diffeomorphims that fix each point in P . Since M is connected, if p, q ∈ PConfn(M̊), then
Diffp(M) ≈ Diffq(M) and PDiffp(M) ≈ PDiffq(M). We denote them by Diffn(M) and PDiffn(M),
respectively. An inclusion f : [m] ↪→ [n] induces a restriction PDiffp(M)→ PDiffp◦f (M).

We consider BPDiff•(M) : FIop → T op to be the FIop-space given by [n] 7→ BPDiffn(M), where
BPDiffn(M) is the classifying space of the group PDiffn(M). There is a fiber bundle

BPDiffn(M) −→ BDiff(M) (1)

where the fiber is Diff(M)/PDiffn(M) ≈ PConfn(M̊), the configuration space of n ordered points
in the interior of M . This gives us a functor from FIop to the category Fib

(
BDiff(M)

)
. We

now have all the ingredients to obtain linear bounds on the presentation degree of the FI-modules
Hk(BPDiff•(Σ);A), for any abelian group A.

Theorem 4.2. Let M be a connected real manifold with (possibly empty) boundary of dimension
d ≥ 2 and set

µ =

{
2 if d = 2

1 if d ≥ 3
λ =

{
0 if M is non-orientable

1 if M is orientable

Let A be any abelian group, then for k ≥ 0, the FI-module Hk(BPDiff•(M);A) is presented in
finite degrees and

(1) δ
(
Hk
(
BPDiff•(M);A

))
≤ µk,

(2) hmax
(
Hk
(
BPDiff•(M);A

))
≤ max(−1, 8µk − 2µλ− 2),

(3) t0
(
Hk
(
BPDiff•(M);A

))
≤ max(0, 9µk − 2µλ− 1),

(4) t1
(
Hk
(
BPDiff•(M);A

))
≤ max(0, 17µk − 4µλ− 2).

Furthermore, if M̊ has the homotopy type of a CW-complex of finite type and BDiff(M) has the ho-
motopy type of a CW-complex with finitely many cells in each dimension, then Hk(BPDiff•(M);A)
is finitely generated.

Proof. Associated to the fibrations (1) we have a cohomologically graded first quadrant Leray-Serre
spectral sequence of FI-modules converging to Hp+q(BPDiff•(M);A) with E2−term:

Ep,q2 = Hp
(
BDiff(M);Hq(PConf(M̊);A)

)
.

From the linear bounds from Lemma 4.1 and Proposition 3.1, we obtain

δ(Ep,q2 ) ≤ µq and hmax(Ep,q2 ) ≤ max(−1, 4µq − 2µλ− 2).
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Then
Dk = max

p+q=k
δ(Ep,q2 ) ≤ µk; ηk = max

p+q=k
hmax(Ep,qd ) ≤ max(−1, 4µk − 2µλ− 2).

Therefore, from Proposition 2.5 we obtain

δ
(
Hk(BPDiff•(M);A)

)
≤ µk;

hmax
(
Hk(BPDiff•(M);Z)

)
≤ max

(
max
`≤2k

η`, max
`≤2k−1

(2µ`− 2)
)

≤ max
(

max(−1, 4µ(2k)− 2µλ− 2), 2µ(2k − 1)− 2
)
≤ max(−1, 8µk − 2µλ− 2),

which are the bounds in (1) and (2). From [CMNR18, Proposition 3.1] we obtain

t0
(
Hk
(
BPDiff•(M);A

))
≤ µk + max(−1, 8µk − 2µλ− 2) + 1 = max(0, 9µk − 2µλ− 1) and

t1
(
Hk
(
BPDiff•(M);A

))
≤ µk + 2

(
max(−1, 8µk − 2µλ− 2)

)
+ 2 = max(0, 17µk − 4µλ− 2).

If M̊ has the homotopy type of a CW-complex of finite type, then the FI-modulesHq(PConf(M̊);A)
are finitely generated. Therefore if BDiff(M) has the homotopy type of a CW-complex with finitely
many cells in each dimension, then we get finite generation from Proposition 3.1.

Remarks 4.1:
• For dimension d ≥ 3, Theorem 4.2 is an integral version of [JR15, Theorem 6.6] that includes

the case of M being non-orientable. In the statement of [JR15, Theorem 6.6] the hypothesis
of M being orientable was not explicitly stated, but was necessary at that time since [CEF15,
Theorem 4] was only proven for orientable manifolds. Better bounds can presumably be
obtained using the improvement in the linear stable ranges obtained in [Bah18] and [MW19]
for configuration spaces.

• If M is an irreducible compact connected orientable 3-manifold with non-empty boundary,
then the classifying space BDiff+(M rel ∂M) has the homotopy type of a finite aspherical
CW-complex [HM97], and from Theorem 4.2 it follows that Hk(BPDiff•(M);A) is finitely
generated. If M is a closed 2-connected oriented smooth manifold of dimension d 6= 4, 5, 7,
then BDiff+(M) is homologically finite type [Kup19, Corollary C] and, from the fiber bundle (1)
and [Kup19, Lemma 2.5], so it is BPDiffn(M). Therefore, from Theorem 4.2 and Proposition
2.3 it follows that, for any field F, the Betti numbers dimFH

k(BPDiffn(M);F) are eventually
given by a polynomial on n of degree at most µk.

4.3 Pure mapping class groups of surfaces

Let M be a connected, smooth manifold with (possibly empty) boundary of dimension d ≥ 2. The
mapping group of M with marked points P = p([n]) ∈ PConfn(M̊) is defined as Modn(M) =
π0

(
Diffn(M)

)
. The pure mapping class group is given by PModn(M) = π0

(
PDiffn(M)

)
. When no

marked points are considered, we just write Mod(M). Following the notation in [JR11], we consider
the FIop-group PMod•(M) given by [n] 7→ PModn(M) and for an inclusion f : [m] ↪→ [n], the asso-
ciated homomorphism f∗ : PModn(M)→ PModm(M) is induced from the restriction PDiffp(M)→
PDiffp◦f (M). By taking integral cohomology we obtain an FI-module Hk(PMod•(M);Z) for k ≥ 0.

When M is a closed manifold, the diagonal action of Diff(M) on PConfn(M) gives rise to the
Borel fiber bundle

PConfn(M) −→ EDiff(M)×Diff(M) PConfn(M) −→ BDiff(M), (2)
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where

EDiff(M)×Diff(M) PConfn(M) ≈ EDiff(M)×Diff(M)
Diff(M)

PDiffn(M)
=

EDiff(M)

PDiffn(M)
≈ BPDiffn(M).

Then the fiber bundle (2) can be identified with (1) (see for example [Coh10, Theorem 3.2]). For
surfaces M = Σ, these Borel constructions frequently give K(π, 1)′s with fundamental group

π1

(
EDiff(Σ)×Diff(Σ) PConfn(Σ)

)
= π1

(
BPDiffn(Σ)

)
= PModn(Σ)

and the base space of the fiber bundle (2) has the homotopy type of a finite CW-complex. This is
the case for the sphere S2 with n ≥ 3 and the torus T with n ≥ 2 (see for example [Coh10, Section
9 & 10] and references therein); the projective plane RP 2 with n ≥ 2 ([EE69], [Wan02, Corollary
2.6]), and the Klein bottle K with n ≥ 1 [HX17, Theorems 6.1 & 7.1].

For the punctured torus Σ1
1 there is also a Borel construction

PConfn(Σ1
1)→ ESL(2,Z)×SL(2,Z) PConfn(Σ1

1)→ BSL(2,Z)

where the total space ESL(2,Z)×SL(2,Z) PConfn(Σ1
1) is a K(PModn(Σ1

1), 1) ([Coh10, Theorem 10.6])
for all n ≥ 1 and conclusions from Theorem 4.2 also apply for this case.

For Σ = Σr
g with 2g + r > 2 or Σ = N r

g with g ≥ 3, we have that BDiff(Σ) is a K(π, 1) (since
BDiff(Σ) ' BHomeo(Σ) and the components of Homeo(Σ) are contractible [Ham66, Theorems
5.1, 5.2, 5.3]), [EE69]). On the other hand, PConfn(Σ̊) is also also aspherical (this follows from
the Fadell–Neuwirth fibrations [FN62] by an inductive argument). Hence all occurring spaces in
the fibration (1) are aspherical and BPDiffn(Σ) is a K(PModn(Σ), 1). The long exact sequence
in homotopy groups for the fibration (1) results in the Birman exact sequence ([Bir74], [Kor02,
Theorem 2.1])

1→ π1(PConfn(Σ̊))→ PModn(Σ)→ Mod(Σ)→ 1. (3)

Furthermore, the groups Mod(Σ) are of type FP∞ (see for example [Iva87, Section 6]).
Hence, for the surfaces Σ considered in this section, Hk

(
BPDiff•(Σ);A

) ∼= Hk
(

PMod•(Σ);A
)

and Theorem 4.2 gives us the following.

Corollary 4.3 (Linear ranges for pure mapping class groups). Let Σ be a surface such that:

Σ = S2,T,Σ1
1 or Σ = Σg,r with 2g + r > 2, if the surface is orientable, or

Σ = RP 2,K or Σ = Ng,r with g ≥ 3 and r ≥ 0 in the non-orientable case.

and let A be any abelian group. Then for k ≥ 0, the FI-module Hk
(

PMod•(Σ);A
)

is finitely
presented with upper bounds for the stable, local, generation and presentation degrees as in Theorem
4.2 (with µ = 2).

Surfaces with boundary. If Σ has nonempty boundary, then Hk(PMod•(Σ);A) has an FI#-
module structure for k ≥ 0 (see for example [JR15, Prop 6.3]). Therefore, by Proposition 2.6, we
obtain better bounds for the presentation degree.

Corollary 4.4 (Surfaces with boundary). Let Σ = Σg,r with g ≥ 1 and r ≥ 1 or Σ = Ng,r with
g ≥ 3 and r ≥ 1. Then for any abelian group A and k ≥ 0 the cohomology Hk

(
PMod•(Σ);A

)
is

a finitely presented FI#-module with local degree = −1 and with stable degree, generation degree
and presentation degree bounded above by 2k.
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4.4 Hyperelliptic mapping class groups

For a surface Σg the hyperelliptic diffeomorphism is the order two map with 2g+ 2 fixed points and
which acts as a rotation of π around a central axis of Σg. We denote the mapping class of this
diffeomorphism in Mod(Σg) by ι.

Definition 4.1 The hyperelliptic mapping class group ∆g is the normalizer of 〈ι〉 ∼= Z2 in Mod(Σg).
The group ∆n

g , the hyperelliptic mapping class group with marked points, is defined as the preimage
of ∆g under the forgetful map PModn(Σg)→ Mod(Σg).

For g = 1, 2, we have that ∆g = Mod(Σg), but for g ≥ 3, ∆g is neither normal nor of finite
index in Mod(Σg). Moreover, there exists a non split central extension (see [BH71])

1→ Z/2Z→ ∆g → Mod2g+2(Σ0)→ 1. (4)

The cohomology ring of ∆g has been studied before, see for example [BCP01] and [Coh93]. In
particular, the map ∆g → Mod2g+2(Σ0) gives a cohomology isomorphism with coefficients in a ring
R containing 1/2. For g ≥ 3, by restricting the short exact sequence (3), we obtain a Birman exact
sequence for hyperelliptic mapping class groups :

1→ π1(PConfn(Σg))→ ∆n
g → ∆g → 1. (5)

We can consider the FIop-group ∆•g given by [n] 7→ ∆n
g and for each inclusion f : [m] ↪→ [n], we

restrict the homomorphism f∗ : PModn(Σg) → PModm(Σg) to f∗ : ∆n
g → ∆m

g . Therefore, for any

abelian group A and k ≥ 0, we obtain FI-modules Hk
(
∆•g;A

)
. From (4) it follows that ∆g is of

type FP∞. The Lyndon–Hochschild–Serre spectral sequences associated to the extensions (5) give
us a first quadrant spectral sequence of FI-modules converging to the graded FI-module H∗(∆•g;A).
Therefore we can follow the proof of Theorem 4.2 to obtain finite presentation and the same explicit
upper bounds. Moreover, with Q-coefficients, the proof of [JR15, Theorem 6.1] will give the same
upper bounds for the weight and stability degree.

Corollary 4.5. Let g ≥ 3 and k ≥ 0 and A be any abelian group, then the cohomology Hk
(
∆•g;A

)
is a finitely presented FI-module with upper bounds for the stable, local, generation and presentation
degrees as in Theorem 4.2 (with λ = 1 and µ = 2). Furthermore, over Q the FI-module Hk

(
∆•g;Q

)
has weight≤ 2k and stability degree ≤ 4k and the sequence {Hk

(
∆n
g ;Q

)
}n is representation stable

for n ≥ 6k.
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