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Abstract

The mapping class group Γ1
g of a closed orientable surface of genus g ≥ 1 with one

marked point can be identified, by the Nielsen action, with a subgroup of the group
of orientation preserving homeomorphims of the circle. This inclusion pulls back the
powers of the discrete universal Euler class producing classes En ∈ H2n(Γ1

g;Z) for all
n ≥ 1. In this paper we study the power n = g, and prove: Eg is a torsion class which
generates a cyclic subgroup of H2g(Γ1

g;Z) whose order is a positive integer multiple of
4g(2g + 1)(2g − 1).

1 Introduction

The mapping class group Γ1
g of a closed orientable surface Σg of genus g ≥ 1 with one marked

point can be identified, by the Nielsen action, with a subgroup of the group Homeo+ S1

of orientation preserving homeomorphims of the circle. The inclusion ρ ∶ Γ1
g ↪ Homeo+ S1

pulls back the powers of the discrete universal Euler class producing classes En ∈H2n(Γ1
g;Z)

for all n ≥ 1. At the threshold n = g we prove the following.

Theorem A. The cohomology class Eg generates a finite cyclic subgroup of H2g(Γ1
g;Z)

whose order is a positive integer multiple of 4g(2g + 1)(2g − 1).

The cohomology H∗(Γ1
g;Z) is the ring of characteristic classes of Σg-bundles with a

section. Some of the first homological calculations for mapping class groups are due to
Harer [6] who computed H2(Γ1

g;Z) for genus g ≥ 5; see also the work of Korkmaz and

Stipsicz [10]. For g ≥ 1, the Euler class E is a generator of H2(Γ1
g;Z). The existence of

torsion in Γ1
g implies that the powers En are non-trivial classes in H2n(Γ1

g;Z) for n ≥ 1; see
for example [9, Theorem A]. Furthermore, for genus g ≥ 2, Morita proved in [14, Theorem
7.5] that the classes En are torsion-free when n ≤ g/6. This range was improved to n ≤ g/4
by Bödigheimer and Tillmann [2, Corollary 1.2].
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On the other hand, the moduli space Mg,1 of Riemann surfaces of genus g with one
marked point is a rational model for the classifying space of the mapping class group Γ1

g

and H∗(Mg,1;Q) ≅ H∗(Γ1
g;Q) when g ≥ 2. For more about this isomorphism see for

example [1], [5] and references therein. The Euler class E corresponds to the restriction
of the ψ1-class of Mg,1 from its Deligne-Mumford compatification Mg,1. The class ψ1

is a tautological class defined as the first Chern class of the cotangent bundle over Mg,1

associated to the marked point. Using this algebro-geometric perspective, Looijenga [11]
proved that for n ≥ g the power En vanishes as a cohomology class with rational coefficients.
This is also a consequence of a more general result of Ionel [7, Theorem 0.1]. In particular,
this implies that the powers En are non-trivial torsion classes in H2n(Γ1

g;Z) when n ≥ g.
The non-triviality of the g-th power of the Euler class Eg, and the fact that its order

is a multiple of 4g(2g + 1) follow from the existence of torsion elements in Γ1
g of order

4g and 2g + 1; see for example [9, Theorem A]. Our Theorem A gives new information
about the order of the g-th power Eg of the Euler class by showing that it is divisible by
2g − 1. This result requires a more involved argument since this torsion in cohomology is
not constructed using periodic elements in the mapping class group.

For g = 1 Theorem A holds, and the lower bound is sharp since it is known that the
Euler class of Γ1

1 ≅ SL(2,Z) is a torsion class of order 12. See Example 5.10 below where
we work the details of this case to illustrate our approach.

Overview of the proof of Theorem A. All powers of the Euler class E are non-
trivial, effectively because Γ1

g has non-trivial finite cyclic subgroups; see for instance [9,
Theorem A]. So a basic component of the proof of Theorem A is distinguishing finite cyclic
from infinite cyclic, or in the language of the Universal Coefficient Theorem, determining
whether Eg lies in the Ext-term or in the Hom-term. Associated to an action of the group
Γ1
g there is a bi-simplicial set, a double chain complex and a total chain complex which

compute the homology and cohomology of the group. On the chains of the complex at the
base of the bi-simplicial set we construct a 2g-chain “dual” to a representative of the class
Eg, and we attempt to lift it to a 2g-cycle on the total complex. If it lifts the class Eg is
in the Hom-term. We show however that there is an obstruction to the lifting, hence the
class Eg is in the Ext-term.

A special feature of the lifting process is that it is technically difficult to construct and
analyze the obstruction in the double chain complex determined by the Nielsen action, but
manageable for a modified action which we call the inversive action. For the inversive action
we consider Γ1

g as acting on homotopy classes of un-oriented based loops on a closed surface
of genus g by identifying an element of the fundamental group of the surface with its inverse;
see Section 3.2. Then, even though Γ1

g no longer acts directly on the fundamental group
of Σg, the formal bi-simplicial constructions still determine the homology and cohomology
of Γ1

g and there is a cohomology class which pulls back to the class E. It is in this context
that we present the discrete Euler class E in Section 4, and study the behavior of Eg.

Lifting using the inversive action is carried out in Section 5. It follows closely the
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analysis in [8] using a “projective action”. It is assumed in [8, Section 10] that the action
can be defined on the circle, but the inversive action, which is the correct formulation,
cannot be constructed in that way. The projective action leads to a discrepancy in the
torsion calculation. We obtain 4g(2g + 1) as a factor of the torsion whereas [8, Theorem
3a) & Theorem 7] obtains 2g(2g + 1).

Remark 1.1. One advantage of the inversive action is that the obstruction to the lifting
lies within a single summand of the total complex associated to the action where a combi-
natorial analysis leads to a formula for the cycle. We call the obstruction to the lifting the
transition cycle, and 2g the threshold dimension, since we expect the power g of the Euler
class of Γ1

g marks the transition from infinite cyclic to torsion.

In Section 6 we show that Eg is a non-trivial torsion class in H2g(Γ1
g;Z); see Theorem

B and Section 6.4. This can be deduced indirectly from the fact that all the powers En

of the Euler class are non-trivial in integer cohomology [9, Theorem A], but are known to
be trivial in rational cohomology when n ≥ g by algebro-geometric techniques [7, Theorem
0.1],[11]. Our intrinsic proof in Sections 6.3 and 6.4 enables us to detect torsion of order
2g − 1. As opposed to torsion of order 4g and 2g + 1, it is not constructed using periodic
elements in the mapping class group. We expect that additional torsion in cohomology
exists and can be discovered by constructing periodic simplicial actions of Γ1

g.
To carry out the torsion calculation we consider the transition cycle both as an ob-

struction, and as a boundary in the total complex associated to the inversive action. As
an obstruction it naturally determines an infinite cyclic 1-dimensional homology class in
a discrete groupoid associated to the inversive action, as we show in Proposition 6.1 and
Corollary 6.2. As a boundary it is dual to a representative of the g-th power of the Euler
class in the relevant Ext term, see Proposition 6.4. We seek classes in the groupoid so that
a non-trivial multiple equals the class of the transition cycle. This is technically difficult in
the groupoid so we “homotop” the calculation to one in a group, in particular the stabilizer
of a chosen base point. The formalities of the homotopy are classical, see Proposition 5.3.
How the homotopy applies to enable the calculation is the content of Propositions 6.5 and
6.6. Finally in Section 6.4 we use these results to prove Theorem A.

Organization of the paper. Section 2 deals with preliminaries on bi-simplicial sets
and homology. In Section 3 we discuss the Nielsen action and the inversive action of the
mapping class group Γ1

g, and Section 4 presents the discrete Euler class in the context of
the constructions in the previous two sections. Lifting using the inversive action is carried
out in Section 5. In Section 6 we show that Eg is a non-trivial torsion class and prove
Theorem A.
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version of the paper and for suggesting revisions that improved the exposition. This paper
was partially written while the second author was visiting Northeastern University with
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this project started. We thank Nestor Colin for the figures in this document.

2 Preliminaries

2.1 Homeomorphisms of the circle and the universal Euler class

Consider the group Homeo+ S1 of orientation preserving homeomorphisms of the circle S1

with the discrete topology. Let Homeo+(S1)τ denote the same group with the compact-
open topology. The starting point for our analysis of the discrete Euler class is the theorem
of Mather and Thurston [12, 16], statement c) below. We state some fundamental results.

a) Homeo+(S1)τ is homotopy equivalent to S1.

b) The classifying spaceBHomeo+(S1)τ is aK(Z,2), and its cohomology is a polynomial
algebra over Z on a generator Eτ of degree 2, called the universal Euler class.

c) (Mather–Thurston) The identity id ∶ Homeo+ S1 → Homeo+(S1)τ induces an algebra
isomorphism id∗ ∶H∗(BHomeo+(S1)τ ;Z) →H∗(BHomeo+ S1;Z).

d) Any inclusion ι ∶ Zm ↪ Homeo+ S1 induces an epimorphism of polynomial algebras
ι∗ ∶H∗(BHomeo+ S1;Z) →H∗(BZm;Z).

A discussion of these results is included in [9] and references therein. See [16] for a
general version of c) and Section 4.1 of this paper for a specific proof in the case of home-
omorphisms of the circle. In what follows we will not distinguish between the homology of
a group and the homology of its classifying space.

Definition 2.1. The universal discrete Euler class E in H2(Homeo+ S1;Z) ≅ Z is the
pullback by id ∶ Homeo+ S1 → Homeo+(S1)τ of the universal Euler class Eτ .

Notice that the n-th power of the universal discrete Euler class En is a generator of
H2n(Homeo+ S1;Z) ≅ Z for n ≥ 1, hence a non-trivial torsion-free cohomology class.

2.2 Homology of a group derived from an action

Suppose a group G acts on a set S. Then it acts on S∞ which is the infinite simplex on
the set. For each p ≥ 0 the action on the p-simplices S∞p gives rise to a groupoid ΛpG
whose objects in dimension p are the p-simplices, whose morphisms are (g, σ) ∈ G × S∞p ,
and whose source and target maps are s(g, σ) = σ and t(g, σ) = g(σ). The composition of
morphisms (g, σ) and (f, g(σ)) is (fg, σ). For the simplicial constructions which follow
see also [8, Section 4.1].
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The action ofG gives ΛpG the structure of a simplicial groupoid and extending by nerves
in the q direction produces a bi-simplicial set ΛG = Λp,qG. The horizontal simplicial set
for fixed q is the simplical set associated to the simplicial complex Gq ×S∞. The simplicial
complex S∞ is contractible which implies that the realization of ΛG is homotopically
equivalent to BG.

The bi-simplical set ΛG = Λp,qG gives rise to a double chain complex C = Cp,q which
computes the homology of G. Each horizontal simplicial set of ΛG is associated to a sim-
plicial complex so oriented chains can be used to form a double chain group. For each
fixed q let the chain complex C∗,q be the classical oriented chain complex of the simpli-
cial complex Gq × S∞. Then the free abelian group Cp,q is generated by chains of the
form (f1, . . . , fq)[v0, . . . , vp] where [v0, . . . , vp] denotes an oriented p-simplex of S∞ and
f1, . . . , fq ∈ G.

This double chain complex determines a total complex TC given by TCn = ⊕p+q=n Cp,q
with differential ∂ = ∂h + ∂v, where the horizontal and vertical boundary homomorphisms
are given on summands by ∂h ∶ Cp,q → Cp−1,q, ∂

v ∶ Cp,q → Cp,q−1 and satisfy ∂h∂v + ∂v∂h = 0.
Then the homology of the total complex H∗(TC) is H∗(G).

We define the orbit chain complex Hv
0C of the action of G by taking p↦Hv

0 (Cp,∗). It is
the chain complex at q = 0 in the E1-term of the spectral sequence obtained by computing
the vertical homology of Cp,q. Explicitly Hv

0 (Cp,∗) is the free abelian group on the orbits of
oriented p-simplices under the action of G.

There is a chain map q ∶ TC →Hv
0C defined as follows. Given c = c0 + c1 +⋯ + cp ∈ TCp,

with ci ∈ Cp−i,i, let
q(c) = [c0]v ∈Hv

0 (Cp,∗),

where [c0]v denotes the vertical homology class of the chain c0 ∈ Cp,0. We we call q the orbit
chain map of the action of G.

The homology of a group G computed using the total complex TC is related to its
cohomology by the Universal Coefficient Theorem:

0→ Ext(Hp−1(TC),Z) αÐ→Hp(TC;Z) βÐ→Hom(Hp(TC),Z) → 0. (1)

A non-trivial class in Hp(TC;Z) is either in the image of α, in which case it is finite cyclic,
or in the image of β, in which case it is infinite cyclic.

3 The mapping class group and its actions

Consider a closed oriented surface Σg of genus g ≥ 1, and let z ∈ Σg. The mapping class
group Γ1

g is the group of orientation preserving homeomorphisms of Σg which fix z, modulo
isotopies which fix z. For an orientation preserving homeomorphism f of Σg such that
f(z) = z, let f∗ denote the induced automorphism of π1(Σg, z). The assignment [f] ↦ f∗
gives a well-defined monomorphism from Γ1

g to the automorphism group Aut(π1(Σg, z)),
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that identifies Γ1
g with an index 2 subgroup of Aut(π1(Σg, z)) by the Dehn–Nielsen–Baer

Theorem (see for instance [3, Theorem 8.1]).

3.1 The Nielsen action of Γ1
g

The Nielsen action of Γ1
g on S1 is given by a monomorphism ρ ∶ Γ1

g ↪ Homeo+ S1 that we

recall next. For g = 1, the group Γ1
1 ≅ SL(2,Z) acts faithfully on rays starting at the origin

in the Euclidean plane and ρ is the corresponding monomorphism.
For g ≥ 2, we choose a hyperbolic metric on Σg, so that its universal cover is isometric

to the hyperbolic disk D and the origin in D is mapped to the marked point z ∈ Σg. Each
non-trivial γ ∈ π1(Σg, z) acts on D as a hyperbolic isometry with a unique translation axis
with forward endpoint γ∞ ∈ ∂D ≈ S1. Since the action of π1(Σg, z) on D is cocompact,
the set Γ∞ = {γ∞ ∶ γ ∈ π1(Σg, z), γ ≠ 1} is dense in ∂D. Hence, any automorphism φ of
π1(Σg, z) induces a homeomorphism ∂φ of ∂D ≈ S1 that takes γ∞ ∈ Γ∞ to φ(γ)∞. Pre-
composing with the action of Γ1

g on π1(Σg, z) gives the homomorphism ρ ∶ Γ1
g → Homeo+ S1

which turns out to be injective. See for example [3, Sections 5.5.4 & 8.2.6] for more details.
In particular, for the computations of this paper we consider π1(Σg, z) presented as the

free group on 2g elements a0,a1,a3,a4, . . . ,a2g−1 with the relation

a0⋯a2g−1 = a2g−1⋯a0. (2)

a0

a3a2
a1

a0

a3 a2

a1

a1

a2

a3
a2

a1
a0

Figure 1: Tiling of the hyperbolic disk D for genus g = 2.

Let us place a 4g-gon in the plane, with directed edges labeled counterclockwise by
a0,a1, ...,a2g−1,a

−1
0 ,a−1

2 , ...,a−1
2g−1 in such a way that the point at the beginning of the edge

ai is at the origin and the polygon generates a tiling of the hyperbolic disk D for g > 1,
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and of the Euclidean plane when g = 1. The resulting tiling will have 4g polygons forming
a wreath at the origin. There will be 4g rays emanating from the origin, 2g labeled by the
ai’s and 2g labeled by their inverses which are antipodal to the ai’s. Figure 1 illustrates
the case g = 2. We consider the hyperbolic metric on Σg induced by this tiling, through the
projection D → Σg, to define the Nielsen action ρ as described above. For each generator
ai of π1(Σg, z), the corresponding translation axis is a geodesic line through the origin of
D that connects two antipodal points of ∂D ≈ S1. We label the forward endpoint of the
translation axis by ai and the backward endpoint by a−1

i .
The wreath of polygons at the origin can be organized as follows. Proceeding clockwise

from the first polygon, the second polygon has a0 pointing outward, and a1, (which precedes
it in the relation defining π1(Σg, z)), directed inward. The third has a−1

1 directed outward
and a−1

2 directed inward, and so on ending with a 4g-polygon, having edges a2g−2 pointing
inward and a2g−1 directed outward. After halfway through the process the labelling of the
rays by letters repeats, but opposite directions are assigned. It follows that the points
{ai

±1} are ordered clockwise in S1 by

a0 < a−1
1 < a2 < ⋯ < a−1

2g−1 < a−1
0 < a1 < a−1

2 < ⋯ < a−1
2g−2 < a2g−1. (3)

3.2 The inversive action of Γ1
g

Let w be an element of π1(Σg, z). The equivalence relation determined by the relation
w ∼ w±1 divides π1(Σg, z) into equivalence classes which we refer to as inversives. The
action of Γ1

g on π1(Σg, z) preserves these equivalence classes and induces an action on the

set I of inversives which we call the inversive action of Γ1
g. We denote the inversive of ai

by Ai.
The Nielsen and inversive actions each determine a bi-simplicial set, a double chain

complexes, and a total complex. The group Γ1
g acts on the orbit of a point; we choose the

point to be a0 for the Nielsen action and A0 for the inversive action. We will, when appro-
priate, denote constructions for the actions by subscripts N and I. There is a bi-simplicial
map of bi-simplicial sets ν ∶ ΛNΓg1 → ΛIΓ

g
1, induced by the quotient map π1(Σg, z) ↠ I.

Proposition 3.1. The map ν induces a chain map from TCN to TCI which is an isomor-
phism ν∗ on homology and ν∗ on cohomology.

Proof. Each of the bi-simplicial sets realizes as the product of a K(Γ1
g,1) and an infinite

simplex. On the realizations the map induced by ν is the product of the identity and
a homotopy equivalence, and therefore a homology equivalence on their associated total
complexes.
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3.3 Elementary morphisms

Consider the presentation of π1(Σg, z) from Section 3.1 and let a−1
2g = a0a1⋯a2g−1. As before,

we label the forward endpoint by a2g and the backward endpoint by a−1
2g in ∂D of the line

joining the two points. Whether considering the a±i as elements of π1(Σg, z) or points in
S1 there exist mapping classes which determine orientation preserving homeomorphisms of
the circle, S of order 4g and T of order 2g + 1, given by

S ∶ a0 → a1 → ⋯→ a2g−1 → a−1
0 → ⋯→ a−1

2g−1 → a0 T ∶ a0 → a1⋯ → a2g−1 → a2g → a0.

The mapping class d2g = S−1T acts on π1(Σg, z) by taking a2g to a−1
2g−1 while fixing all ai

and their inverses for 0 ≤ i ≤ 2g−2. More generally, let d2g−k ∶= T−k(S−1T )T k for 0 ≤ k ≤ 2g.
It takes a2g−k to a−1

2g−k−1 mod(2g+1), and keeps all ai and their inverses, with indices other
than 2g − k and 2g − k − 1, fixed.

Remark 3.2. An alternative justification of the clockwise ordering (3) of the points {ai
±1}

in S1 uses the di’s as follows. The mapping class d0 takes a0 to a−1
2g , and fixes all the other

a’s so those two must be consecutive in the cyclic ordering of points on the circle. Whether
a−1

2g , is the next clockwise entry or counterclockwise entry is a matter of choice, and depends
on how the first polygon is constructed relative to the orientation of the circle. The same
argument applies to the pair a−1

2g , a2g−1, and to the remaining points to complete the
determination of their ordering.

Notice d0 maps a0 to a−1
2g and keeps all other ai fixed. The ordering (3) must be

preserved so, since a0 is between a2g−1 and a−1
1 the image of a0 is either between a0 and

a2g−1 or between a0 and a−1
1 . Moreover d2g maps a−1

2g to a2g−1 keeping all remaining points
fixed, so only the first of the two possibilities can hold. From the ordering (3) and this
observation we have that the points, including a2g, are ordered clockwise in S1 as follows.

a0 < a−1
1 < a2 < ⋯ < a−1

2g−1 < a2g < a−1
0 < a1 < a−1

2 < ⋯ < a−1
2g−2 < a2g−1 < a−1

2g (4)

Definition 3.3. Let Ai denote the inversive represented by ai. For 0 ≤ j ≤ 2g, we refer to
dj as a elementary mapping class. It determines an elementary morphism in the double
chain complex CI of the inversive action, which we write as

[A0,A1, ..., Âj−1,Aj , ...,A2g]dj ∈ (CI)2g−1,1.

The mapping classes S and T act on the set {A0, ...,A2g} as follows

S ∶ A0 → A1 → ⋯→ A2g−1 → A0, T ∶ A0 → A1 → A2⋯ → A2g−1 → A2g → A0.

Furthermore, the elementary mapping class d2g−k takes A2g−k to A2g−k−1 mod(2g+1), and
fixes all the inversives Ai, with indices other than 2g − k and 2g − k − 1.

These mapping classes satisfy the following identities in Γ1
g:

d2gd2g−1⋯d0 = (S−1T )(T−1S−1T 2)⋯(T−2gS−1T 2g+1) = (S−1)2g+1T 2g+1 = S−1

(d2gd2g−1⋯d0)2g = S2g & (d2gd2g−1⋯d0)4g = 1Γ1
g
.

(5)
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4 The Euler class and its cocycle representatives

4.1 The universal Euler class

The group G = Homeo+ S1 acts on the contractible simplicial complex which is the infinite
simplex on S1 . In this section we let C = Cp,q be the double chain complex of oriented
chains associated to the action, with TC the corresponding total complex and Hv

0C the
orbit chain complex. The following homology computation uses the fact that Homeo+R
is acyclic, [15, 13], and [4] for a new proof. The essential components of Theorem 4.1
can be found in [8, Section 5], but because the formula for the universal orbit class in
Theorem 4.1a) plays a crucial role in the calculations which follow we include the proof
here, including some additional material. In particular, we make the application of oriented
and ordered simplices more explicit, and we discuss the failure of the Universal Coefficient
Theorem in the orbit chain complex and its implications.

Theorem 4.1. Consider G = Homeo+ S1 acting on the infinite simplex on S1 .

a) The homology and cohomology of Hv
0C is Z in even dimensions and 0 in odd. A gen-

erator of H2p(Hv
0C) is represented by the cycle op ∶= [0,2p,1, ...,2p − 1]−[0,1,2, ...,2p]

in Hv
0C, where 0 < 1 < 2 < ⋯ is a countable set of clockwise oriented points of the

circle.

b) The orbit chain map q ∶ TC →Hv
0C induces a homology equivalence.

Proof. To prove a) we show that Hv
0C is given by Z ← Z2 ← Z ← Z2 ← ⋯. Any clockwise

ordered (p + 1)-tuple, (x0, ..., xp), of points of the circle can be mapped to {0,1,2, ..., p} in
some order. Hence there are at most two orientation classes of p-simplices, one represented
by [0,1,2, ..., p] and one represented by any odd permutation of the vertices. When p is
even, a cyclic permutation of the coordinates of a p-simplex determines a new simplex in the
same orientation class, so that there are two orientation classes and the group of oriented
p-chains is isomorphic to Z, with +1 and −1 representing the classes [0,2p,1, ...,2p − 1]
and [0,1,2, ...,2p], respectively. Note that [0,1,2, ...,2p] = −[0,2p,1, ...,2p − 1]. When p is
odd a cyclic permutation of the coordinates of a p-simplex determines a simplex in the
opposite orientation class, so there is one class of order 2, and the p-th chain group is
isomorphic to Z2. The homology of Hv

0C is Z in even dimensions and 0 otherwise, and is
therefore generated in dimension 2p by the class of the cycle op = 2[0,2p,1, ...,2p − 1] or
equivalently [0,2p,1, ...,2p − 1]− [0,1,2, ...,2p]. The cohomology of Hv

0C is isomorphic to Z
in even dimensions and 0 in odd. This completes the proof of a).

For b) we will use the action of G on ordered simplices as well as on oriented simplices.
The former is “right for isotropy” and the latter is “right for orbits”. The homomorphism
from ordered chains on a simplicial complex to oriented chains is defined by associating to
an ordered simplex its orientation class. It induces a map from the double chain complex ∆
of the action of G on ordered simplices to the double chain complex C of the action of G on
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oriented simplices which is a homology equivalence on each horizontal complex. Therefore
there is chain homomorphism T∆ Ð→ TC which is well defined on orbits and functorially
determines a chain homomorphism Hv

0 ∆ Ð→ Hv
0C. A chain inverse TC Ð→ T∆ is defined

by totally ordering the vertices and choosing for each oriented simplex the ordered simplex
given by the total ordering. It too is well defined on orbit complexes so induces a chain
inverse Hv

0C Ð→Hv
0 ∆. Consider the commutative diagram of chain complexes

T∆Ð→ TC
q∆ ↓ ↓ q

Hv
0 ∆Ð→Hv

0C.
The chain homomorphisms T∆ Ð→ TC and Hv

0 ∆ Ð→ Hv
0C induce homology equivalences.

We show that q∆ is a homology equivalence, which implies that q is also, and proves b).
The double complex ∆p,q is the E0-term of the spectral sequence

E2
p,q(T∆) =Hh

pH
v
q (∆) ⇒Hp+q(T∆).

We observe that computing homology vertically then horizontally in the the spectral se-
quence gives

E2
p,q =

⎧⎪⎪⎨⎪⎪⎩

Hp(Hv
0 ∆) if q = 0

0 if q > 0.

The homology of each vertical groupoid is isomorphic to the direct sum of the homology
of its isotropy subgroups. The isotropy group of each p-simplex is acyclic, for the isotropy
group of any point b is isomorphic to the group of orientation preserving homeomorphisms
of S1 − {b}, which in turn is isomorphic to Homeo+R. The isotropy group of a (p + 1)-
element subset of S1 is isomorphic to a (p + 1)-fold cartesian product of Homeo+R, so it
too is acyclic. This implies that all the homology groups in E1

p,q for q > 0 are 0.
It remains to show that the isomorphism between Hp(T∆) and Hp(Hv

0 ∆) is induced
by q∆. Let c0 ∈ ∆p,0 represent a cycle in Hp(Hv

0 ∆). Because all the vertical groupoids are
acyclic it follows that the successive differentials of the spectral sequence are trivial, and c0

lifts to a p-cycle c in T∆ (see the introduction to Section 5 for more on the lifting process).
Then q∆(c) = [c0]v as required.

Remark 4.2. The Universal Coefficient Theorem fails for the chain complex Hv
0C as

it is not free. The group Hom(H2p(Hv
0C),Z) is isomorphic to Z and generated by the

homomorphism o∗p dual to the universal orbit cycle

op = [0,2p,1, ...,2p − 1] − [0,1,2, ...,2p] = 2[0,2p,1, ...,2p − 1].

On the other hand, the cohomology group H2p(Hv
0C;Z) is isomorphic to Z and it is gen-

erated by the cocycle (op/2)∗ ∈Hom(Hv
0 (C2p,∗),Z) dual to the chain

(op/2) ∶= [0,2p,1, ...,2p − 1].
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For p ≥ 1, let us consider the chains

(ep/2) ∶= [0,2p,1, ...,2p − 1] ∈ C2p,0 and ep ∶= [0,2p,1, ...,2p − 1]−[0,1,2, ...,2p] = 2(ep/2).

These are chains in the total complex TC that “lift” (op/2) and the orbit cycle op, respec-
tively, in the sense that q(ep/2) = [ep/2]v = (op/2) and q(ep) = [ep]v = op.

Definition 4.3. We refer to (op/2)∗ as the p-th universal orbit cocycle and to the pull-back
cocyle (ep/2)∗ ∶= q∗(op/2)∗ as the p-th universal Euler cocycle.

Proposition 4.4. The p-th universal Euler cocycle (ep/2)∗ satisfies

⟨(ep/2)∗, (ep/2)⟩ = 1 and ⟨(ep/2)∗,ep⟩ = 2,

and it represents 2Ep in the total complex TC.

Proof. Since the class Ep generates the cohomology group H2p(G;Z) ≅ Z, the cocycle
(ep/2)∗ represents an integral multiple of Ep. The total complex TC satisfies the Universal
Coefficient Theorem (1) and we know from Theorem 4.1 that q induces an isomorphism in
homology. Under the composition of isomorphisms

H2p(TC;Z) βÐ→Hom(H2p(TC),Z) (q∗)−1ÐÐÐ→Hom(H2p(Hv
0C),Z)

the cohomology class Ep corresponds to o∗p the homomorphism dual to the orbit cycle op,
which generates Hom(H2p(Hv

0C),Z) ≅ Z. On the other hand,

⟨(ep/2)∗,ep⟩ = ⟨q∗(op/2)∗,ep⟩ = ⟨(op/2)∗,q(ep)⟩ = ⟨(op/2)∗,op⟩ = 2.

Similarly, we obtain ⟨(ep/2)∗, (ep/2)⟩ = 1. Therefore the composition (q∗)−1 ○ β takes the
cohomology class represented by the cocycle (ep/2)∗ to 2o∗p . It follows that the cocycle
(ep/2)∗ corresponds to 2Ep.

4.2 The Euler class of Γ1
g

We now consider the Nielsen and inversive actions of Γ1
g to study the behavior of the g-the

power of the Euler class of Γ1
g.

Definition 4.5. The Nielsen action ρ ∶ Γ1
g ↪ Homeo+ S1 pulls-back the powers Ep produc-

ing classes Ep ∈H2p(Γ1
g;Z) for all p ≥ 1. We refer to E as the Euler class of Γ1

g.

Consider the following diagram of chain complexes:

TCI ← TCN → TC
↓ ↓

Hv
0CN → Hv

0C
(6)
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The vertical arrows are the corresponding orbit chain maps qN and q; the horizontal arrows
on the right are induced by the Nielsen action ρ; the horizontal arrow on the left is induced
by the map ν of Proposition 3.1. We use this diagram and the universal cocycles to define
cocycles in the total complexes associated to the Nielsen and inversive actions.

With the Nielsen action ρ and the universal cocycle we can define the cocycles

(og/2)∗N ∶= ρ∗((og/2)∗) and (eg/2)∗N ∶= ρ
∗((eg/2)∗).

From the commutativity of diagram 6, these cocyles are related as follows

(eg/2)∗N = ρ∗((eg/2)∗) = ρ∗(q∗(og/2)∗) = q∗N(ρ∗(og/2)∗) = q∗N((og/2)∗N).

Furthermore, from the definition of the Euler class, the cocycle (eg/2)∗N represents the
cohomology class 2 Eg ∈H2g(Γ1

g;Z) in the total complex of the Nielsen action.
Consider the orbit chains in the complex Hv

0CN

(og/2)N ∶= [a−1
0 ,a−1

2g ,a1,a
−1
2 , ...,a2g−1] and

(og)N ∶= [a−1
0 ,a−1

2g ,a1,a
−1
2 , ...,a2g−1] − [a−1

0 ,a1,a
−1
2 , ...,a2g−1,a

−1
2g ] = 2(og/2)N,

and the corresponding “lifts” to the total complex TCN

(eg/2)N ∶= [a−1
0 ,a−1

2g ,a1,a
−1
2 , ...,a2g−1] and

(eg)N ∶= [a−1
0 ,a−1

2g ,a1,a
−1
2 , ...,a2g−1] − [a−1

0 ,a1,a
−1
2 , ...,a2g−1,a

−1
2g ] = 2(eg/2)N,

which are chains in (CN)2g,0. Since the elements {a±1
i } are cyclically ordered as indicated

in (4), these chains satisfy ρ∗((og)N) = og and ρ∗((eg)N) = eg.

Proposition 4.6. The cocycle (eg/2)∗N has the following evaluations:

⟨(eg/2)∗N, (eg/2)N⟩ = 1,

⟨(eg/2)∗N, (eg)N⟩ = 2, and

⟨(eg/2)∗N, ci⟩ = 0, for ci ∈ (CN)2g−i,i with i ≥ 1.

Proof. The proof of the second evaluation is similar to the first. For the first evaluation

⟨(eg/2)∗N, (eg)N⟩ = ⟨ρ∗((eg/2)∗), (eg)N⟩ = ⟨(eg/2)∗, ρ∗((eg)N)⟩ = ⟨(eg/2)∗,eg⟩ = 2,

where the last equality follows from Proposition 4.4.
For the third evaluation, let ci ∈ (CN)2g−i,i with i ≥ 1. Since qN(ci) = 0, it follows that

⟨(eg/2)∗N, ci⟩ = ⟨q∗N((og/2)∗N), ci⟩ = ⟨(og/2)∗N,qN(ci)⟩ = 0.
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We turn our attention to the inversive action. Recall that from Proposition 3.1 we have
a chain map ν ∶ TCN → TCI which induces an isomorphism in homology and cohomology.
So there exists a class in H∗(TCI;Z) which is mapped by ν∗ to the class of the Euler
cocycle for the Nielsen action (eg/2)∗N in H∗(TCN;Z). We construct a particular cocycle
representing this class.

A chain map j∗ which induces an inverse to ν∗ in homology, can be found as follows.
For each inversive we choose a representative. This determines a map from the vertices
of the infinite simplex on which Γ1

g acts inversively to the vertices of the infinite simplex

on which Γ1
g acts by the Nielsen action. So the map extends to one between the infinite

simplices. Furthermore, since Γ1
g is the group acting in both cases it extends to a map

between the bi-complexes of the action, hence between the corresponding double chain
complexes. We have ν∗j∗ induces the identity in homology and since ν∗ is an isomorphism
in homology so is j∗. We can choose j∗ on vertices arbitrarily, so we send Ai to a−1

i when
i is even and Ai to ai when i is odd. This chain map is j∗.

Definition 4.7. The g-th Euler cocycle for the inversive action is (eg/2)∗I ∶= j∗((eg/2)∗N).

By construction, ν∗((eg/2)∗I ) = (eg/2)∗N. We define chains in the total complex TCI,
specifically in (CI)2g,0, as follows:

(eg/2)I ∶= [A0,A2g,A1, . . . ,A2g−1] and

(eg)I ∶= [A0,A2g,A1, . . . ,A2g−1] − [A0,A1,A2, . . . ,A2g−1,A2g] = 2(eg/2)I.
The arrows in diagram (6) relate the cocycles and chains that we have constructed in

the total complexes and the orbit chain complexes as follows:

(eg/2)∗I ↦ (eg/2)∗N ← [ (eg/2)∗
↥ ↥

(og/2)∗N ← [ (og/2)∗

(eg)I ← [ (eg)N ↦ eg
↧ ↧

(og)N ↦ og

Proposition 4.8. The g-th Euler cocycle for the inversive action (eg/2)∗I represents, in
the total complex TCI, the cohomology class 2 Eg ∈H2g(Γ1

g;Z), and it satisfies

⟨(eg/2)∗I , (eg/2)I⟩ = 1 and ⟨(eg/2)∗I , (eg)I⟩ = 2.

Furthermore, a chain ci ∈ (CI)2g−i,i with i ≥ 1, satisfies ⟨(eg/2)∗I , ci⟩ = 0.

Proof. We verify the first formula on the left. The proof of the one on its right is similar.
1 = ⟨(eg/2)∗N, (eg/2)N⟩ = ⟨(eg/2)∗N, [a−1

0 ,a−1
2g ,a1,a

−1
2 , ...,a2g−1]⟩

= ⟨(eg/2)∗N, j∗[A0,A2g,A1, ...,A2g−1]⟩
= ⟨j∗((eg/2)∗N), [A0,A2g,A1, ...,A2g−1]⟩
= ⟨(eg/2)∗I , (eg/2)I⟩.

13



Now let ci ∈ (CI)2g−i,i with i ≥ 1. To show that ⟨(eg/2)∗I , ci⟩ = 0, write ci = ν∗c̃i where
c̃i ∈ (CN)2g−i,i. Then, by Proposition 4.6 we have

⟨(eg/2)∗I , ci⟩ = ⟨(eg/2)∗I , ν∗c̃i⟩ = ⟨ν∗(eg/2)∗I , c̃i⟩ = ⟨(eg/2)∗N, c̃i⟩ = 0.

5 The transition cycle

We describe a process in which we attempt to lift a chain in Cn,0 to a cycle in TC. Generally,
consider an n-chain c0 ∈ Cn,0. The horizontal boundary b0 ∈ Cn−1,0 of c0 is a horizontal cycle.
Suppose it bounds vertically; let c1 ∈ Cn−1,1 be the vertical boundary of b0. Continuing in
this manner, construct bk ∈ Cn−k,k−1 and, if possible, ck ∈ Cn−k,k. If the lifting process leads
to the construction of cn ∈ C0,n, then c = c0 + c1 + ⋯ + cn is an n-cycle in the total chain
complex TC. If the lifting terminates at an earlier stage k, that is bk fails to lift further,
then the construction produces an n-boundary b0 + b1 +⋯+ bk, and c0 + c1 +⋯+ ck ∈ TCn is
not a cycle.

For example, consider the chain eg = [0,2g,1, ...,2g − 1] − [0,1,2, ...,2g] in C2g,0 in the
universal setting . It lifts to a 2g-cycle c in TC, since by Theorem 4.1 the orbit chain map q
induces a homology isomorphism, and a generator of H2g(Hv

0C) is represented by the orbit
cycle og = q(eg). In contrast, the chain (eg/2) = [0,2g,1, ..., g − 1] ∈ C2g,0, cannot be lifted
to even c1, for its chain boundary is a sum of an odd number of distinct faces so orbits
cannot cancel.

In this section we consider the inversive action of the mapping class group Γ1
g and

attempt to lift the 2g-chain (eg)I = [A0,A2g,A1, . . . ,A2g−1]− [A0,A1,A2, . . . ,A2g−1,A2g] in
(C2g,0)I to a 2g-cycle in TCI. We will show that the lifting will terminate with an element
b1 ∈ (CI)2g−2,1 which we call the transition cycle t. In Section 5.1 we construct the cycle
t and analyze it combinatorially. This will lead us to a proof in Section 6.1 that t is an
obstruction to the lifting and then in Section 6.2 to a calculation of the torsion of Eg .

After this point we suppress the subscript I when the inversive context is clear.

5.1 Construction of the transition cycle

We apply the lifting process to c0 = eg = [A0,A2g,A1, . . . ,A2g−1]−[A0,A1,A2, . . . ,A2g−1,A2g].

Proposition 5.1. There is a chain c1 ∈ C2g−1,1 so that ∂v(c1) = ∂h(eg).

Proof. We group the horizontal face maps of eg into pairs that lie in the same orbit, but
have opposite signs. Let Q = [A0,A2g,A1, ...,A2g−1] and R = [A0,A1,A2, ...,A2g], then, by
definition, eg = Q−R. Notice that ∂0Q−∂1Q = [Â0,A2g,A1, ...,A2g−1]−[A0, Â2g, ...,A2g−1].

The two simplices on the right hand side are in the same orbit since the mapping class
d0 maps [A0,A1, ...,A2g−1] to [A2g,A1, ...,A2g−1]. Then ∂0Q−∂1Q = 0 in oriented homology.
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For 3 ≤ k ≤ 2g − 1, and k odd consider

∂k−1Q − ∂kQ = [A0,A2g,A1, ..., Âk−1, ...,A2g−1] − [A0,A2g,A1,A2, ..., Âk−2, ...,A2g−1].

The two simplices are in the same orbit of dk and ∂k−1Q − ∂kQ = 0. There is one face
of Q remaining which is ∂2gQ = [A0,A2g,1, ..., Â2g−1]. Now consider R, and notice that
the difference ∂k−1R − ∂kR = [A0,A1, ..., Âk, ...,A2g−1,A2g] − [A0,A1,A2, ..., Âk−1, ...,A2g]
consists of simplices in the same orbit of dk−1 for 1 ≤ k ≤ 2g − 1, and k odd. Then
∂k−1R − ∂kR = 0. The remaining face is ∂2gR = [A0,A1, ...,A2g−1, Â2g]. The two remaining
faces of eg, [A0,A2g,A1, ..., Â2g−1] − [A0,A1, ...,A2g−1, Â2g], are in the orbit of d2g, which
can be seen by cycling A2g to the last slot. So ∂h(eg) bounds vertically.

Explicitly: c1 = ∑2g
i=0(−1)i[A0, ..., Âi,Ai+1, ...,A2g]di+1, where i ≡ nmod(2g + 1).

Definition 5.2. The transition cycle is the chain t = ∂h(c1) ∈ C2g−2,1. It is a cycle, vertically
and horizontally, and a boundary horizontally. It breaks into two parts as follows:

t = ∑
i>j

(−1)i+j[A0, ..., Âj , ..., Âi, ...,A2g]di+1 +∑
i<j

(−1)i+j−1[A0, ..., Âi, ..., Âj , ...,A2g]di+1. (7)

In summary, we have constructed a chain c0 + c1 that lifts eg for the inversive action,
and the transition cycle t is its boundary. Next we analyze the combinatorics of t and use
it to show, in Corollary 6.3 below, that the lifting process terminates.

5.2 Holonomy of the transition cycle

The transition cycle t is a 1-chain in a groupoid. In order to determine torsion arising
from t considered as an obstruction it seems necessary, or at least desirable, to view it
as a 1-chain in a group. The natural choice is the isotropy or stabilizer group of a point,
for the classifying space of a connected, discrete groupoid is homotopy equivalent to the
classifying space of the isotropy group of any base point, as we show below. Connected
means there is a morphism from any object to a single base point.

Proposition 5.3. Consider a connected discrete groupoid Λ and the isotropy group Λb of
a base point b. The inclusion Λb → Λ induces a homotopy equivalence BΛb → BΛ.

Proof. For each object y of Λ choose a morphism my from y to b. Define the holonomy
functor F from Λ→ Λb, considering both Λ and Λb as categories, by f ↦mt(f) ○ f ○m−1

s(f).
The assignment y ↦ my is a natural transformation from the functor F to the identity
functor. Natural transformations of functors induce homotopy equivalences on classifying
spaces. Therefore F determines a homotopy inverse to the inclusion Λb → Λ.

Remark 5.4. The holonomy functor induces an isomorphism on homology which is inde-
pendent of the choice of morphisms my.
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If f is a morphism in the isotropy group of an object y and it is conjugate in the
groupoid Λ to a morphism in the isotropy group of b, then the 1-cycles they determine
represent the same homology class in H1(BΛ).

In what follows we consider the vertical groupoids Λp ∶= ΛpΓ
1
g of the bi-simplicial set

constructed from the inversive action of Γ1
g on oriented simplices of inversives. The groupoid

Λ of interest is the component of Λ2g−2 containing the object [A] ∶= [A0,A1, ...,A2g−2], and
we denote by Λ[A] the isotropy group of that object. In Proposition 5.8 of the next section
we compute the image, under the holonomy functor, of the transition cycle t, considered as a
1-cycle in the groupoid Λ. We find it to be 2g(2g+1)[A0, . . . ,A2g−2]d2g+[A0, . . . ,A2g−2]S2g.
It will facilitate the calculation of torsion when the obstruction to lifting is represented by
a 1-cycle in a group rather than in a groupoid.

5.3 Combinatorial structure of the transition cycle

Notice that in the dimension of interest, an object of Λ2g−2 is an orientation class of a
(2g − 1)-tuple of inversives and a morphism is a mapping class in Γ1

g acting “inversively”
on objects. The vertical homology of the double complex C in dimension 2g −2 is precisely
the homology of Λ2g−2.

We decompose the transition cycle t into an alternating sum of g + 1 distinct vertical
1-cycles, L0, ..., Lg in the groupoid Λ2g−2.

t = L0 −L1 +L2 +⋯ + (−1)gLg (8)

The chains L0 and Lg will each be a sum of 2g + 1 terms of (7). The remaining chains
will each be a sum of 2(2g+1) terms. Together they have 2g(2g+1) terms. In the formulas
below integers are taken mod 2g + 1.

L0 =
2g

∑
i=0

[A0, ..., Âi, Âi+1, ...,A2g]di+1 Lg =
2g

∑
i=0

[A0, ..., Âi, ..., Âi+g, ...,A2g]di+g+1

Lk =
2g

∑
i=0

[A0, ..., Âi, ..., Âi+k, ...,A2g]di+k+1 + [0, ..., Âi, ..., Âi+k+1, ...,A2g]di+1, 1 ≤ k ≤ g − 1.

Proposition 5.5. For each 0 ≤ k ≤ g the chain Lk, is a vertical 1-cycle.

Proof. First consider any of the 2g + 1 terms of L0. Each is, on its own, a vertical cycle,
because, generally, the support of dn+1 acting on {Ai} is {An,An+1}.

Now consider Lk for 1 ≤ k ≤ g − 1, and the simplex [Â0, . . . , Âk, . . . ,A2g] which is
the coefficient of the first term in the sum. To prove the Proposition we construct, for
each k, a sequence of composable elementary morphisms, starting and finishing at the
object [Â0, ..., Âk, ...,A2g]. By construction these are 1-cycles in the groupoid Λ2g−2, hence
vertical cycles. Then we show that each sequence represents the 1-chain Lk. In the following
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formula, for simplicity, we suppress the coefficients of each elementary morphism, for they
are determined by the initial object. The composite

(d0dk)(d2gdk−1)⋯(d2g−k+2d1)(d2g−k+1d0)(d2g−kd2g)⋯(d2dk+2)(d1dk+1) (9)

maps the simplex [Â0, . . . , Âk, ...,A2g] component-wise to [A2g−1,A2g, Â0, ..., Âk, ...,A2g−2],
as we now observe. Note the two simplices are in the same orientation class. The pair of
elementary homeomorphisms within each set of parentheses corresponds, in the definition
of Lk, to the composite of two elementary morphisms with a fixed index i, the first one of
which comes from the sum on the left and the second from the sum on the right in the
expression for Lk. The first pair of elementary morphisms corresponds to i = 0 and maps
[Â0, ..., Âk, ...,A2g] to [A0, Â1, ..., Âk+1, ...,A2g]. Continuing in this manner, we see that the
2(2g + 1) morphisms in (9) match up with the terms in Lk, as claimed.

When k = g the composite d0(dgd2g)(dg−1d2g−1)⋯(d2dg+2)(d1dg+1) maps A0 to Ag and
Ag back to A0. This requires 2g + 1 transformations, so in this case the (2g − 1)-tuple
[Â0, ..., Âg+1, ...,A2g] is restored in 2g + 1 steps, and shows that Lg is a vertical cycle.

So each Li ∈ C2g−2,1 is a vertical 1-cycle and therefore can be represented by a directed
loop in Λ2g−2 using the sequence of transformations (9). Below we use the notation a ∼v b
to denote that two vertical 1-cycles a and b are homologous in the groupoid Λ2g−2.

Lemma 5.6. L1 ∼v −L2 ∼v ⋯ ∼v (−1)gLg−1 ∼v 2(−1)g+1Lg.

Proof. Consider neighboring chains Lk and −Lk+1, 1 ≤ k ≤ g − 2 each oriented by the di-
rection of the loops representing them. The loop Lk, starting at [Â0, ..., Âk+1, ...,A2g], is
formed by a sequence of morphisms using the composite (dk+1d0)(dkd2g)⋯(dk+3d2)(dk+2d1).
If we flip the transformations within each set of parentheses, (d0dk+1)⋯(d2dk+3)(d1dk+2),
we obtain the loop Lk+1 starting at [Â0, ..., Âk+1, ...,A2g]. Any square formed by pairs of
consecutive morphisms in the two loops has the form

dmÐ→
dn ↑ ↑ dnÐ→

dm

where horizontal followed by vertical is in Lk and vertical followed by horizontal is in Lk+1.
For each square the “separation” ∣m − n∣, between vertices indexed by m and those by

n, is greater than 1. In that case the elementary mapping classes dm and dn commute
since the commutator d−1

n d
−1
m dndm fixes all the ai’s. Equivalently, each commutator defines

a null-homotopic loop in Λ2g−2. All loops Lk and −Lk+1, for k ≠ 0, k ≠ g − 1, are therefore
freely homotopic. In the exceptional case recall Lg is a sum 2g + 1 morphisms, which is
half the number of morphisms of Lg−1, so that Lg−1 is freely homotopic, with a change in
sign, to twice Lg. Free homotopy of a pair of loops implies the loops are homologous.
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Recall S2g has order 2 in Γ1
g, since it is in the isotropy group [A0, . . . ,A2g−2], it deter-

mines a vertical 1-cycle [A0, . . . ,A2g−2]S2g in Λ2g−1. By a slight abuse of notation, in what
follows we abbreviate [A0, . . . ,A2g−2]S2g by S2g.

Lemma 5.7. L0 +L1 +⋯ +Lg ∼v S2g.

Proof. The set of morphisms in the sum L0 +L1 +⋯+Lg is equal to the set of morphisms
forming the composite morphism [A0, . . . ,A2g−2](d2gd2g−1d0)2g. The composite is S2g in
Γ1
g by (5). Since there is a composite in the groupoid of all the morphisms which is S2g

the sum is homologous to S2g.

Proposition 5.8. t ∼v (2g)(2g + 1)[A0,A1, . . . ,A2g−2]d2g + S2g

Proof. Using Lemma 5.6 we can write each of L1, L2, ..., Lg−1 in terms of Lg. Then Lemma
5.7 determines Lg in terms of L0 and S2g, as shown in the following formula:

Lg ∼v (−1)g L0 + S2g. (10)

Applying Lemma 5.6 to the expression (8) for t gives

t ∼v L0 + (−1)g(2g − 1)Lg. (11)

After eliminating Lg from (10) using (11) we obtain t ∼v (2g) L0 +(2g − 1)S2g. Now L0

is a sum of 2g+1 distinct terms, each of which is a cycle conjugate to [A0,A1, . . . ,A2g−2]d2g

in the groupoid Λ2g−1, for any homotopy equivalence from Λ2g−2 to the isotropy group of
[A0,A1, . . . ,A2g−2] obtained by means of Proposition 5.3 will map each of the cycles Li to
[A0,A1, . . . ,A2g−2]d2g by conjugation. This gives the desired formula for t. Note, S2g has
order 2, so an odd multiple is homologous to it.

Since S2g has order 2 in Γ1
g, Proposition 5.8 implies the following:

Corollary 5.9. 2t ∼v (4g)(2g + 1)[A0,A1, . . . ,A2g−2]d2g.

Example 5.10. We illustrate the constructions of this section with the genus g = 1 case.
The mapping class group Γ1

1 is SL(2,Z). A elementary simplex, together with its associated
elementary mapping classes, is given by the data

a0 = (1,0) a1 = (0,1) a2 = (−1,−1)/
√

2

S = ( 0 −1
1 0

) T = ( 0 −1
1 −1

) d0 = ( 1 0
1 1

) d1 = ( 2 −1
1 0

) d2 = ( 1 −1
0 1

) .

We consider SL(2,Z) acting on inversives. Notice that in this case inversives are in one
to one correspondence with lines in the plane that pass through the origin, and the action
of SL(2,Z) factors through PSL(2,Z).
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d2

d1

d0

d0d2

d1

Figure 2: The transition cycle t for genus g = 1

Note, to obtain 2t we composed the six morphisms shown in Figure 2 twice. We will
see that Eg is represented in Ext by a homomorphism taking the boundary 2t to 2. That
representation will enable us to determine torsion behavior of Eg .

The chain c1 is [A1,A2]d1 − [A0,A2]d2 + [A0,A1]d0.
The transition cycle t is ([A2] − [A1])d1 + ([A0] − [A2])d2 + ([A1] − [A0])d0.
The terms with a positive coefficient correspond to elementary morphisms which fix

an object. The three with a negative coefficient move A1 to A0, A2 to A1, and A0 to A2.
The transition cycle is illustrated in Figure 2, where the loops stand for the elementary
morphisms which fix objects, and arrows for the elementary morphisms that move objects.
We can write the transition cycle t as t = L0 −L1 where L0 = [A2]d1 + [A0]d2 + [A1]d0 and
L1 = [A1]d1 + [A2]d2 + [A0]d0.

The elementary morphisms have explicit formulas in SL(2,Z). We can therefore com-
pute directly the element in the isotropy group of [A0] determined by 2t.

(d−1
0 d1d

−1
2 d0d

−1
1 d2)2 = ( −1 6

0 −1
)

2

= −12d2.

6 Torsion and the order of Eg

In this section we show that Eg is a torsion class, and prove Theorem A.

6.1 Termination of the lifting

As before, let Λ be the component of Λ2g−2 containing the object [A] ∶= [A0,A1, ...,A2g−2]
and denote by Λ[A] the isotropy group of that object. By Proposition 5.3, the holonomy
homomorphism induces an isomorphism H1(Λ) →H1(Λ[A]).
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Notice that Λ[A] is a subgroup of Γ1
g that can also be identified as a subgroupoid of Λ.

The transition cycle t is a 1-cycle in Λ and [A0,A1, . . . ,A2g−2] ⋅d2g is a 1-cycle in Λ[A] ⊂ Λ.
By Proposition 5.8 the cycles t and 2g(2g+1)[A0,A1, . . . ,A2g−2] ⋅d2g +S2g are homologous
in Λ.

Proposition 6.1. The elementary mapping class d2g represents an element of infinite
order in H1(Λ[A]).

Proof. Consider H1(Σg) ≅ Z2g generated by a0, . . . ,a2g−1. The action of the mapping class
group Γ1

g on H1(Σg) gives, with respect to this generating set, a group homomorphism

ψ ∶ Γ1
g → SL(2g,Z) defined by f ↦ f∗. We will find an abelian subquotient K/T of

SL(2g,Z) so that ψ maps Λ[A] to K/T and takes d2g to an element of infinite order. The
map then factors through the abelianization, which implies the class of d2g has infinite
order in H1(Λ[A]).

If f ∈ Λ[A], then f is a mapping class that permutes the inversives A0,A1, . . . ,A2g−2

preserving the orientation class [A0,A1, . . . ,A2g−2]. Moreover, the mapping class f must
preserve the cyclic ordering (3). Then f∗ acts on the generators a0, . . . ,a2g−2 by ±P , where
P is a (2g − 1) × (2g − 1) permutation matrix with detP = 1. The image K = ψ(f) has
the form K = QT below, where I is the identity (2g − 1) × (2g − 1) matrix and ni ∈ Z for
0 ≤ i ≤ 2g − 2. In particular d2g maps to the matrix with ni = 1 for all i, and P = I.

K = ±

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋯ n0

⋯ n1

P ⋮
⋯ n2g−2

0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋯ n0

⋯ n1

I ⋮
⋯ n2g−2

0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋯ 0
⋯ 0
±P ⋮
⋯ 0

0 ⋯ 0 ±1

⎞
⎟⎟⎟⎟⎟⎟
⎠

Matrices of the form K and Q are closed under products and inverses so they determine
subgroups K and Q of SL(2g,Z). The subset T of K which consists of matrices of the form
K with n0 +⋯ + n2g−2 = 0 is a normal subgroup of K.

We claim that the quotient group K/T is abelian. Indeed, consider the composite
Q ↪ K ↠ K/T . The image of this homomorphism is the subgroup of cosets represented
by Q ∈ Q. The product decomposition K = QT shows that every coset in K/T has a
representative in Q. Therefore, the homomorphism Q→ K/T is onto. It follows that K/T
is isomorphic to a quotient of Q which must be abelian since Q is abelian.

Hence, the composite Λ[A]
ψÐ→ K ↠ K/T factors through the abelianization H1(Λ[A]).

Moreover, the mapping class d2g maps under this composite to an element inK/T of infinite
order, namely the coset represented by the matrix Q in Q with ni = 1 for i = 0, . . . ,2g − 2.
So the elementary mapping class d2g has infinite order in H1(Λ[A]).

Corollary 6.2. The transition cycle t is a 1-cycle in the groupoid Λ that represents a class
of infinite order in H1(Λ).
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Proof. By Proposition 6.1 the elementary mapping class d2g represents a class of infinite
order in H1(Λ[A]), so 4g(2g + 1)d2g does as well. By Proposition 5.8 the 1-cycle 4g(2g +
1)[A0,A1, . . . ,A2g−2]d2g and 2t represent the same class in H1(Λ). By Proposition 5.3 the
holonomy functor Λ → Λ[A] induces an isomorphism in homology, then 2t and hence t
represent elements of infinite order in H1(Λ).

We are now prepared to show that the transition cycle t gives an obstruction to the
existence of a cycle in the total complex that lifts any non-zero multiple of (eg/2).

Corollary 6.3. Neither the chain (eg/2), nor any multiple of it, lifts to a cycle in the total
complex of the inversive action. That is, there does not exist a cycle c = c0 +⋯+ c2g, where
ci ∈ C2g−i,i such that c0 = k(eg/2), for any k ∈ Z − {0}.

Proof. We attempt to lift the chain k(eg/2) in C2g,0 to a cycle in the total complex TC, as
explained in the introduction of Section 5. If k is odd, then there is no chain c1 ∈ C2g−1,1

such that ∂v(c1) = ∂h(k(eg/2)), for its chain boundary is a sum of an odd number of
distinct faces.

If k = 2m is even, we can continue the lifting process of by k(eg/2) taking

c1 =m
2g

∑
i=0

(−1)i[A0, ..., Âi,Ai+1, ...,A2g]di+1 ∈ C2g−1,1,

where i ≡ nmod(2g + 1). If a further extension were to exist, there would be a chain c2

satisfying −∂vc2 = ∂hc1 = mt. Since c2 is a 2-chain in the groupoid Λ2g−2, this implies
that a non-trivial multiple of t bounds vertically in Λ2g−2. However, by Corollary 6.2, the
transition cycle t has infinite order in H1(Λ), and hence in H1(Λ2g−2). Therefore, no such
chain c2 can exist, the lifting terminates, and there is no cycle c = c0 + c1 + c2 + ...+ c2g such
that c0 = k(eg/2).

6.2 The cohomology class Eg in Ext

We use our approach to directly prove that Eg is a torsion class. This can be deduced
from results on the rational cohomology of moduli spaces obtained by algebro-geometric
techniques [7, 11], but Theorem B provides a self-contained, intrinsic proof.

Consider the homomorphism β ∶ H2g(TC;Z) → Hom(H2g(TC),Z) of the Universal
Coefficient Theorem (1).

Theorem B. The homomorphism β maps Eg to 0, hence Eg is a torsion class.

Proof. By Proposition 4.8 the class 2 Eg is represented by the cocycle (eg/2)∗ satisfying
⟨(eg/2)∗, (eg/2)⟩ = 1. Since (eg/2)∗ is a homomorphism from TC2g onto Z, it splits the
2g-chains TC2g into a summand C generated by the chain (eg/2) and a summand C ′ on
which (eg/2)∗ is trivial. The homomorphism β(2 Eg) ∈ Hom(H2g(TC),Z) is represented
by the restriction of the cocycle (eg/2)∗ to 2g-cycles K2g in the total complex TC.
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If β(2 Eg) were non-trivial in Hom(H2p(TC),Z) there would exist a 2g-cycle z with
the property that (eg/2)∗(z) ≠ 0. Therefore, when the cycle z is written in terms of a
basis determined by the splitting of TC2g as C ⊕C ′, it must have a non-trivial term in C.
However, by Corollary 6.3, neither the chain (eg/2) nor any non-zero multiple of it, can be
extended, by adding terms in C ′, to a cycle in the total complex. Consequently z must be
an element of the subgroup C ′ in which case we obtain (eg/2)∗ is the zero homomorphism
when restricted to K2g. We conclude that β maps 2 Eg to 0, which implies that β maps Eg

to 0 as well.

Now let us recall the definition of α ∶ Ext(Hn(TC),Z) →Hn+1(TC;Z) in the Universal
Coefficient Theorem (1). Let Kn denote the n-cycles and Bn the n-boundaries of the total
complex TC. The group Ext(Hn(TC),Z) is isomorphic to Hom(Bn,Z)/ι(Hom(Kn,Z)),
where ι is the homomorphism which restricts an element of Hom(Kn,Z) to Bn. Given f ∈
Hom(Bn,Z) representing a class in Ext(Hn(TC),Z), the element α(f) ∈Hom((TC)n+1,Z)
representing a class in Hn+1(TC;Z) is defined by

⟨α(f), c⟩ = ⟨f, ∂c⟩, for any c ∈ (TC)n+1.

Proposition 6.4. There is a well-defined homomorphism χ ∈ Hom(B2g−1,Z) which rep-
resents 2 Eg in Ext(H2g−1(TC),Z) and satisfies ⟨χ, t⟩ = 2. Furthermore, the image of χ is
contained in 2Z.

Proof. Consider the chains c0 = eg, c1 and the transition cycle t = ∂(c0 + c1), as in Section
5.1. By Theorem B the cohomology class 2 Eg, represented by the cocycle (eg/2)∗, is
a torsion class. Hence, the Universal Coefficient Theorem (1) implies that there exists
χ ∈Hom(B2g−1,Z) such that α(χ) = (eg/2)∗. It satisfies

⟨χ, t⟩ = ⟨χ, ∂(c0 + c1)⟩ = ⟨α(χ), c0 + c1⟩ = ⟨(eg/2)∗, c0 + c1⟩.

On the other hand, by the evaluations of Proposition 4.8, we have ⟨(eg/2)∗, c1⟩ = 0 and

⟨(eg/2)∗, c0 + c1⟩ = ⟨(eg/2)∗, c0⟩ = ⟨(eg/2)∗, eg⟩ = 2,

which completes the proof of the first part of the proposition.
For the furthermore part of the proposition, consider the evaluation of χ on a boundary

b ∈ B2g−1. If the evaluation is non-trivial then b = ∂(b0 + b1) with 0 ≠ b0 ∈ C2g,0 and
0 ≠ b1 ∈ C2g−1,1. The chain b0 can be written as a sum of oriented objects in the form

∑±[x0, ..., x2g]. The simplicial boundary of each term ±[x0, ..., x2g] is formally a sum of
2g + 1 objects, some with a coefficient of +1 and some with a coefficient −1. If b0 were the
sum of an odd number of signed objects, then it’s boundary would also be a sum of an
odd number of signed objects, and the number of objects with a positive coefficient would
not match the number of objects with a negative coefficient. On the other hand, for ∂b0
to lift to b1 there must exist for every object in the sum ∂b0 with a positive coefficient an

22



object with a negative coefficient in order for there to be a morphism between the two.
Consequently there must be an even number of terms in b0 when written as a sum of signed
objects. In that case the evaluation of (eg/2)∗ on b0, which is the same as the evaluation
of χ on b, would be even as claimed.

6.3 Detecting the order of torsion at the threshold

We use the following results to show in Section 6.4 the non-triviality of Eg and derive
information about its order.

In this section’s statements we assume there exists d ∈ Λ[A] ⊂ Λ and λ > 1 such that
2t ∼v 2λd. Therefore we have 2λd − 2t = ∂vc2 for some chain c2 ∈ C2g−2,2. It follows that
∂(2c0 + 2c1 + c2) = 2λd +R, where R ∶= ∂hc2 ∈ C2g−3,2.

Proposition 6.5. The homomorphism χ ∈Hom(B2g−1,Z) satisfies ⟨χ,2λd +R⟩ = 4.

Proof. Recall that c0 = eg, c1 ∈ C2g−1,1 and c2 ∈ C2g−2,2. Since α(χ) = (eg/2)∗, it follows by
Proposition 4.8 that

⟨χ,2λd+R⟩ = ⟨χ, ∂(2c0+2c1+c2)⟩ = ⟨α(χ),2c0+2c1+c2⟩ = 2⟨α(χ), c0⟩+⟨α(χ),2c1+c2⟩ = 4.

Proposition 6.6. Let m > 0 be the order of 2 Eg. The homomorphism mχ extends to
Hom((TC)2g−1,Z) and the extension satisfies 2m = ⟨mχ,λd⟩ = λ⟨mχ,d⟩. Furthermore, λ
divides m.

Proof. By Proposition 6.4, the class 2 Eg can be represented by χ ∈ Hom(B2g−1,Z) in
Ext(H2g−1(TC),Z). Since 2 Eg has orderm, the multiplemχ can be extended to an element
of Hom(K2g−1,Z). Cycles are a direct summand of chains, then mχ can be extended to an
element of Hom((TC)2g−1,Z) by defining to be 0 on the complement of K2g−1. Therefore,
the evaluation of mχ on the chain λd +R can be computed as

⟨mχ,2λd⟩ + ⟨mχ,R⟩ = ⟨mχ,2λd +R⟩ =m⟨χ,2λd +R⟩ = 4m,

where the last equality follows from Proposition 6.5. In order to prove that ⟨mχ,λd⟩ = 2m,
or equivalently ⟨mχ,2λd⟩ = 4m, we show below that ⟨mχ,R⟩ = 0.

Consider the differential ∂ = ∂h + ∂v of the total complex TC, restricted to C2g−2,2, and
the following short exact sequences:

0←ÐH
∂h←Ð C2g−2,2 ←Ð ker∂h ←Ð 0, H ⊂ C2g−3,2

0←Ð V
∂v←Ð C2g−2,2 ←Ð ker∂v ←Ð 0, V ⊂ C2g−2,1

0←ÐH ⊕ V ∂h+∂v←Ð C2g−2,2 ←Ð ker(∂h + ∂v) ←Ð 0.
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The groups H and V are free so the homomorphisms ∂h, ∂v and ∂ = ∂h + ∂v split.
Let σ denote the splitting homomorphism for ∂. We claim σ(H ⊕ V ) = σ∣H(H) ⊕ σ∣V (V ).
Indeed, since σ is 1 − 1 the image of σ is a subgroup isomorphic to H ⊕ V. An element α
in the image of σ has the form α = σ(h + v) for unique elements h ∈ H, v ∈ V. Then also
α = σ(h) + σ(v) for unique elements h ∈H, v ∈ V, which verifies the claim.

Denote σ∣H and σ∣V by σh and σv. Note that σh splits ∂h and σv splits ∂v. Note also
that σh(H) = σ(H,0) and σv(V ) = σ(0, V ) have only the 0-element in common.

Now C2g−2,2 = σh(H) ⊕ ker∂h = σv(V ) ⊕ ker∂v, hence σh(H) ⊂ ker∂v. Then ∂vσh = 0,
and in particular ∂vσh(R) = 0. By definition of the splitting ∂hσh(R) = R so the chain
σh(R) bounds R, i.e. ∂(σh(R)) = R. Therefore,

⟨mχ,R⟩ = ⟨mχ,∂(σh(R))⟩ = ⟨α(mχ), σh(R)⟩ = ⟨m(eg/2)∗, σh(R)⟩ = 0.

The last term is 0 since σh(R) ∈ C2g−2,2.
From ⟨mχ,λd⟩ = λ⟨mχ,d⟩ = 2m, it follows that λ divides 2m. We claim that ⟨mχ,d⟩ is

an even integer, so λ actually dividesm. By Proposition 6.5, the image of χ on boundaries is
contained in 2Z. Therefore mχ, which extends to cycles and to chains, has image contained
2mZ. Hence ⟨mχ,d⟩ ∈ 2mZ as claimed

Corollary 6.7. If λ > 1, then Eg is a non-trivial torsion class of order divisible by 2λ.

Proof. Let m be the order of 2 Eg. By Proposition 6.6, we have that λ divides m. Since
λ > 1, this implies that m > 1. Therefore 2 Eg is a non-trivial torsion class, and hence so it
is Eg and it has order 2m.

6.4 Proof of Theorem A

In this section we use the setting developed in the paper to obtain information about
the order of Eg. Our approach allow us to detect torsion of order 2g − 1 in our proof of
Theorem A, which, as opposed to torsion of order 4g and 2g + 1, is not obtained using
periodic elements in the mapping class group.

To find torsion of order 2g − 1 in cohomology, we consider a w ∈ Aut(π1(Σg, z)) defined
on the generators {a0, ...,a2g−2,a2g−1} of π1(Σg, z) as follows:

a0 → a1 → a2 → ⋯→ a2g−2 → a0 a2g−1 → a−1
0 a2g−1a−1

0 .

It can be seen that w is a well-defined element of Aut(π1(Σg, z)) by checking that the
defining relation (2) is preserved.

Proposition 6.8. The automorphism w is a mapping class in Γ1
g such that w2g−1 = d2

2g.
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Proof. The automorphism w2g−1 maps a2g−1 to (a−1
2g−2⋯a−1

0 )a2g−1(a−1
0 ⋯a−1

2g−2) and fixes all

the remaining a’s. On the other hand, recall d−1
2g maps a2g−1 to a−1

2g = a0⋯a2g−1 = a2g−1⋯a0

(see Section 3.3). Composing w2g−1 with d−1
2g on the left and using the defining relation

gives a2g−1 → a2g−1(a−1
0 ⋯a−1

2g−2) and composing again gives d−2
2gw

2g−1 ∶ a2g−1 → a2g−1 so that

d−2
2gw

2g−1 is the identity automorphism. Note w is orientation preserving since w2g−1 = d2
2g

is and 2g − 1 is odd.

Corollary 6.9. 2t ∼v (2g)(2g + 1)(2g − 1)[A0, . . . ,A2g−2]w.

Proof. Since w acts by an even cyclic permutation on the generators {a0, ...,a2g−2}, it fixes
[A] = [A0, . . . ,A2g−2]. Then w ∈ Λ[A] and Proposition 6.8 implies that 2d2g = (2g − 1)w
holds in H1(Λ[A]). Hence, from the isomorphism in homology induced by the holonomy
homomorphim Λ → Λ[A], we have that 2[A0, . . . ,A2g−2]d2g ∼v (2g − 1)[A0, . . . ,A2g−2]w.
The statement follows from Corollary 5.9.

Theorem A. The power Eg is a non-trivial torsion class, and its order is a positive multiple
of 4g(2g + 1)(2g − 1).

Proof. By Theorem B we know that Eg is a torsion class in H2g(Γ1
g;Z). From Corollary 6.9,

we have that 2t ∼v λd, where λ = (2g)(2g + 1)(2g − 1) and d = [A0, . . . ,A2g−2]w ∈ Λ[A] ⊂ Λ.
Then Corollary 6.7 implies that the class Eg is non-trivial and its order is divisible by
2λ = (4g)(2g + 1)(2g − 1) as claimed.
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