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Abstract
A result of Lehrer describes a beautiful relationship between topological and combinatorial

data on certain families of varieties with actions of finite reflection groups. His formula relates
the cohomology of complex varieties to point counts on associated varieties over finite fields.
Church, Ellenberg, and Farb use their representation stability results on the cohomology of flag
manifolds, together with classical results on the cohomology rings, to prove asymptotic stability
for “polynomial” statistics on associated varieties over finite fields. In this paper we investigate
the underlying algebraic structure of these families’ cohomology rings that makes the formulas
convergent. We prove that asymptotic stability holds in general for subquotients of FIW–algebras
finitely generated in degree at most one, a result that is in a sense sharp. As a consequence, we
obtain convergence results for polynomial statistics on the set of maximal tori in Sp

2n
(Fq) and

SO2n+1(Fq) that are invariant under the Frobenius morphism. Our results also give a new proof
of the stability theorem for invariant maximal tori in GLn(Fq) due to Church–Ellenberg–Farb.
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1 Introduction

In this paper we study the complete complex flag varieties associated to the linear groups SO2n+1(C)
and Sp2n(C) of type B and C, respectively. These spaces and their cohomology algebras are de-
scribed in Section 4.1; their cohomology admits actions of the signed permutation group Bn. A
remarkable formula due to Lehrer [Leh92] relates the representation theory of these cohomology
groups with point-counts on varieties over Fq that parametrize maximal tori in SO2n+1(Fq) and
Sp2n(Fq). One result of this paper is to exhibit a form of convergence for these formulas as the
parameter n tends to infinity.

Church, Ellenberg, and Farb prove that the cohomology groups of the flag varieties associated
to GLn(C) are representation stable with respect to the Sn–action [CEF15, Theorem 1.11]. Using this
result and a description of the cohomology due to Chevalley, they establish asymptotic stability for
“polynomial” statistics on the set of Frobenius-stable maximal tori in GLn(Fq) [CEF14, Theorem
5.6]. In Theorem 4.3 we prove the corresponding result in type B and C, using a representation
stability result of the second author [Wil14].

To establish our results, we give general combinatorial criteria on the cohomology algebras of
the complex varieties that ensure convergence. This is one of few results in the FI–module liter-
ature that makes full use of the multiplicative structure on the FIW–algebras. Church–Ellenberg–
Farb prove convergence for statistics on maximal tori in type A using sophisticated results specific
to these cohomology algebras. This paper shows that convergence in fact follows from much sim-
pler features of the algebras.

Table 1: Some statistics for Frobenius-stable maximal tori of Sp2n(Fq) and SO2n+1(Fq)

Frq-stable maximal tori statistic Hyperoctahedral Formula in Limit
for Sp2n(Fq) and SO2n+1(Fq) character terms of n as n→∞

Total number of 1 q2n
2

(Steinberg)
Frq-stable maximal tori

Expected number of X1 + Y1 1 +
1

q2
+

1

q4
+ · · ·

1

q2n−2

q2

(q2 − 1)
1-dimensional Frq-stable subtori

Expected number of split X1
1

2

(
1 +

1

q
+

1

q2
+ · · ·

1

q2n−1

)
q

2(q − 1)
1-dimensional Frq-stable subtori

Expected value of reducible
(X1 + Y1

2

)
− (X2 + Y2)

(
q4 − 1

q2n

)(
1− 1

q2(n−1)

)
(q2 − 1) (q4 − 1)

q4

(q2 − 1)(q4 − 1)
minus irreducible Frq-stable

2-dimensional subtori

Expected value of split minus X2 − Y2

q2
(
1− 1

q2n

)(
1− 1

q2(n−1)

)
2 (q4 − 1)

q2

2 (q4 − 1)
non-split Frq-stable 2-dimensional

irreducible subtori
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Examples of limiting statistics computed in Section 4.3 are presented in Table 1; the notation in
this table is defined below. The first of these result is due to Steinberg [Ste68, Corollary 14.16], and
the other results appear to be new.

A general convergence result: algebras generated in low degree

A primary goal of this paper is to describe the underlying algebraic structure on the cohomology
algebras that drives these stability results. Throughout, we will use the notation Wn to denote
either the family of symmetric groups Sn (the Weyl groups in type A) or the family of hyperoc-
tahedral groups Bn (the Weyl groups in type B/C). We prove in Section 3.2 that convergence of
the statistics on maximal tori in type A and B/C holds because the graded pieces of the associ-
ated coinvariant algebras are, as a sequence of gradedWn–representations, subquotients of what
we call an FIW–algebra finitely generated in degree at most 1. Terminology and basic theory of FIW–
modules is summarized in Section 2.2. Speaking informally, these FIW–algebras are sequences of
graded algebras withWn–actions that are generated by representations ofW0 andW1. Concretely,
they include the sequence of algebras Γ∗Wn

which we now define.
Let k be a subfield of C. Let M(1)n denote the k–vector space with basis x1, x2, . . . , xn. The

symmetric group Sn acts on the variables xi by permuting the subscripts. Let M(0)n denote the
k–vector space generated by the single element y with trivial Sn–action. Then for any integers
b, c ≥ 0 let Γ∗Sn be the graded algebra generated by

M(0)⊕bn ⊕M(1)⊕cn

with each copy of M(0)n and M(1)n assigned a positive grading. The algebra Γ∗Sn may be taken
to be commutative, anticommutative, or graded-commutative. It inherits a diagonal action of Sn
on its monomials.

Analogously, let MBC(1)n be the k–vector space with basis x1, x1, x2, x2, . . . , xn, xn. The hype-
roctahedral group Bn acts on the variables xi by permuting and negating the subscripts. Again let
MBC(0)n be the k–vector space generated by a variable y with trivial Bn action. Let Γ∗Bn be the
symmetric, exterior, or graded-commutative algebra generated by

MBC(0)⊕bn ⊕MBC(1)⊕cn

with each family of variables graded in positive degree.
Theorem 3.5 shows the algebras Γ∗Wn

and their subquotients satisfy a convergence property
with respect to certain family of ‘polynomial’ class functions, first defined on the symmetric groups
by MacDonald [Mac79, I.7 Example 14] as follows. For any permutation σ and positive integer r,
letXr be the function that outputs the numberXr(σ) of r–cycles in the cycle type of σ. Polynomials
in the functions Xr, called character polynomials, play a major role in the theory of representation
stability developed by Church–Ellenberg–Farb [CEF15]. In Section 2.1.2 we recall an analogous
definition for the Weyl group Bn in type B and C. These hyperoctahedral character polynomials are
polynomials

P ∈ k[X1, Y1, X2, Y2, . . .]

in the ‘signed cycle counting functions’ Xr and Yr on Bn. See Section 2.1 for the prerequisite
background on the representation theory of the groups Bn and a precise definition of these class
functions.
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Theorem 3.5 is a stability result for the asymptotics of the inner products 〈Pn, Adn〉Wn
of a char-

acter polynomial P with a subquotient Adn of ΓdWn
. This is precisely the stability result needed to

prove convergence of the point-counts that appear in Lehrer’s formulas.

Theorem 3.5 (Criteria for convergence). LetWn denote one of the families Sn or Bn. Let Γ∗Wn
be one

of the commutative, exterior, or graded commutative algebras defined above, and let {Adn} be any sequence
of graded Wn–representations such that Adn is a subrepresentation of ΓdWn

. Then for any Wn character
polynomial P and integer q > 1 the following series converges absolutely

∞∑
d=0

limn→∞〈Pn, Adn〉Wn

qd
.

The proof (given in Section 3.2) uses an analysis of the combinatorics of coloured partitions. A
closely related result in Type A is proved in [FW] using very different methods; see Remark 3.9.

A failure of convergence

In forthcoming work [JRW] the authors show that, in contrast to Theorem 3.5, convergence may fail
for FIW–algebras generated in degree 2 or greater. To give a concrete example, let A∗n be the poly-
nomial algebra k[x1,2, x1,3, x2,3, x1,4, . . . , xn−1,n] generated by commuting variables xi,j = xj,i,
i 6= j, in graded degree 1, with an action ofWn by permuting the indices. Then the series

∞∑
d=0

limn→∞〈Pn, Adn〉Wn

qd

does not converge for any positive integer q even for the constant character polynomial P = 1. This
counterexample shows a fundamental difference in the asymptotic behaviour of FIW–algebras
generated by representations ofW0 orW1 and those generated by representations ofWn in degree
n ≥ 2.

An application: polynomial statistics for coinvariant algebras and Frq-stable maximal tori

We apply Theorem 3.5 to the family {Rdn}, where Rdn denotes the dth-graded piece of the complex
coinvariant algebraR∗n in type A or in type B/C. A description of these algebras appears in Section
4.1.3. We obtain a convergent formula in Proposition 4.4 for coinvariant algebras of type B/C and
give a new proof of the result in type A (see [CEF14, Theorem 5.6] and Remark 4.5). Theorem 3.5
shows that the convergence of this formula follows because the complex coinvariant algebras are
quotients of the polynomial rings C[x1, x2, . . . , xn]; convergence does not depend on any deeper
structural features of these algebras.

For a general connected reductive group G defined over Fq , let T Frq denote the set of max-
imal tori of G(Fq) that are stable under the action of Frq , the Frobenius morphism. Frq-stable
maximal tori of reductive groups G defined over Fq are fundamental to the study of the repre-
sentation theory of the finite group GFrq [DL76]. More background is given in Section 4.1. Lehrer
[Leh92] obtained remarkable formulas that relate functions that are defined on the set T Frq with

4



Introduction
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the character theory of the Weyl group of G. We recall one of Lehrer’s formulas in Theorem 4.2 for
the cases when G is the symplectic group Sp2n or the special orthogonal group SO2n+1; the for-
mula connects functions on T Frq and the cohomology of the generalized flag varieties associated
to G(C).

In Section 4.1.2 we describe how the hyperoctahedral character polynomials of Section 2.1.2 de-
fine functions on T Frq . Specifically, for T ∈ T Frq , Xr(T ) is the number of r-dimensional Frq-stable
subtori of T irreducible over Fq that split over Fqr , and Yr(T ) is the number of r-dimensional Frq-
stable subtori of T irreducible over Fq that do not split over Fqr . In Section 4, we combine Lehrer’s
formula with Proposition 4.4 to establish asymptotic results for these polynomial statistics on the
set of Frq-stable maximal tori of Sp2n(Fq) and of SO2n+1(Fq). We obtain Theorem 4.3 below, the
type B and C analogues to [CEF15, Theorem 5.6] for Frq-stable maximal tori for GLn(Fq).

Theorem 4.3. (Stability of maximal tori statistics). Let q be an integral power of a prime p. For n ≥ 1,
denote by T Frq

n the set of Frq-stable maximal tori for either Sp2n(Fp) or SO2n+1(Fp). Let Rdm denote the
dth-graded piece of the complex coinvariant algebra R∗m in type B/C. If P ∈ C[X1, Y1, X2, Y2, . . .] is any
hyperoctahedral character polynomial, then the normalized statistic

q−2n2 ∑
T∈T Frq

n

P (T )

converges as n→∞. In fact,

lim
n→∞

q−2n2 ∑
T∈T Frq

n

P (T ) =

∞∑
d=0

limm→∞〈Pm, Rdm〉Bm
qd

,

and the series in the right hand converges.

At the end of Section 4, we use Theorem 4.3 and Stembridge’s formula for decomposing the
Bn–representation Rdn (see Theorem 4.7) to compute the specific asymptotic counts in Table 1.

Related work

Fulman [Ful16, Section 3] uses generating functions to recover the specific counts obtained by
Church–Ellenberg–Farb [CEF14] for Frq-stable maximal tori in GLn(Fq). Chen uses generating
function techniques to obtain a linear recurrence on the stable twisted Betti numbers of the associ-
ated flag varieties[Che, Corollary 2 (II)]. These methods should also apply to study maximal tori
of other classical groups, including the ones considered in this paper. They offer an alternate ap-
proach to performing the computations in Section 4.3, and may shed further light on the structure
of the asymptotic formulas.

Farb and Wolfson [FW] extend the methods of Church–Ellenberg–Farb [CEF14] to establish
new algebro-geometric results. In [FW, Theorem B] they prove that configuration spaces of n
points in smooth varieties have convergent cohomology [FW, Definition 3.1] and obtain arithmetic
statistics for configuration spaces over finite fields [FW, Theorem C].

The results of this paper and the work of Church–Ellenberg–Farb [CEF14] complement the
existing literature on enumerative properties of matrix groups over finite fields; see, eg, [NP95,
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NP98, Ful99, Wal99, NP00, Bri02, FNP05, LNP09, NP10, NPP10, NPS13, BGPW13, NPP14]. These
authors seek, for example, to determine the proportion of elements in certain finite matrix groups
that are cyclic, separable, semisimple, or regular. Their methods are different from those in this pa-
per, and include the calculus of generating functions, complex analysis, classical Lie theory, finite
group theory, analytic number theory, and statistics. This probabilistic approach to the study of
finite groups has applications to algorithm design in group theory, random matrix theory, and
combinatorics.

Acknowledgments

We would like to thank Benson Farb for proposing this project. We thank Weiyan Chen, Tom
Church, and Jason Fulman for useful conversations. We are grateful to Ohad Feldheim for sug-
gesting the proof of Proposition 3.6. We thank Jason Fulman for finding an error in a formula in
Table 1 in an early version of this paper. The first author would also like to thank the Centro de
Ciencias Matemáticas, UNAM-Morelia, for all its support during the writing of this paper.

2 Preliminaries

In this section we summarize some necessary background material and terminology. Section 2.1
describes the representation theory of the hyperoctahedral groups in characteristic zero. In Section
2.2 we review the foundations of FIW–modules developed by Church–Ellenberg–Farb [CEF15] in
type A and by the second author [Wil14, Wil15] in type B/C. Section 2.3 defines the asymptotic
notation that will be used in this paper.

Notation 2.1. (The inner product 〈− , −〉G). Throughout the paper, given a finite group G we
write 〈− , −〉G to denote the standard inner product on the space of class functions of G. By abuse
of notation we may write a G–representation V in one or both arguments to indicate the character
of V .

2.1 Representation theory of the hyperoctahedral group Bn

Let Bn denote the Weyl group in type Bn/Cn, the wreath product

Bn ∼= Z/2Z o Sn = (Z/2Z)n o Sn,

which we call the hyperoctahedral group or signed permutation group. By convention B0 is the trivial
group. We may viewBn as the subgroup of permutations SΩ

∼= S2n on the set Ω = {1, 1, 2, 2, . . . , n, n}
defined by

Bn = {σ ∈ SΩ | σ(a) = σ(a) for all 1 ≤ a ≤ n }.

Here a denotes negative a; in general the bar represents the operation of negation and satisfies
a = a for a ∈ Ω.

2.1.1 Conjugacy classes of the hyperoctahedral groups

The conjugacy classes of Bn are classified by signed cycle type, defined as follows. A positive r–cycle
is a signed permutation of the form (s1s2 · · · sr)(s1 s2 · · · sr) ∈ SΩ, si ∈ Ω. This element reverses
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the sign of an even number of letters. A negative r–cycle is a signed permutation of the form
(s1s2 · · · srs1 · · · sr) ∈ SΩ, which reverses an odd number of signs. The rth power of a positive r–
cycle is the identity, whereas the rth power of a negative r–cycle is the product of r transpositions
(sisi). Positive and negative r–cycles project to r–cycles under the natural surjectionBn → Sn. For
example, (1 3 2)(1 3 2) is a positive 3-cycle and (1 3 2 1 3 2) is a negative 3-cycle which both project
to the 3–cycle (1 3 2) ∈ Sn.

In 1930 Young [You30] proved that signed permutations factor uniquely as a product of positive
and negative cycles, and two signed permutations are conjugate if and only if they have the same
signed cycle type. We represent the signed cycle type of a signed permutation by a double partition
(λ, µ), where λ is a partition with a part of length r for each positive r–cycle, and µ a partition
encoding the negative r–cycles.

2.1.2 Character polynomials for Bn

Given a signed permutation σ, let Xr(σ) denote the number of positive r–cycles in its signed cycle
type, and let Yr(σ) be the number of negative r–cycles. Then Xr and Yr define class functions on
the disjoint union

∐
n≥0Bn. A character polynomial with coefficients in a ring k is a polynomial P ∈

k[X1, Y1, X2, Y2, . . .], in analogy to the character polynomials for the symmetric groups defined by
MacDonald [Mac79, I.7 Example 14]. A character polynomial P restricts to a class function on Bn
for every n ≥ 0; we denote its restriction by Pn. We define the degree of a character polynomial by
setting deg(Xr) = deg(Yr) = r for all r ≥ 1.

Let µ and λ be partitions, and let nr be the function on the set of partitions that takes a partition
and outputs the number of parts of size r. The space of character polynomials is spanned by
polynomials of the form

Pµ,λ =

(
X

µ

)(
Y

λ

)
:=
∏
r≥1

(
Xr

nr(µ)

)(
Yr

nr(λ)

)
.

When n = |λ| + |µ| the restriction of Pµ,λ to Bn is the indicator function for signed permutations
of signed cycle type (λ, µ).

2.1.3 Classification of irreducible Bn–representations

The irreducible complex representations of Bn are in natural bijection with double partitions of n,
that is, ordered pairs of partitions (λ, µ) such that |λ| + |µ| = n. These irreducible representations
are constructed from representations of the symmetric group Sn; this construction is described (for
example) in Geck–Pfeiffer [GP00].

From the canonical surjectionBn → Sn we can pull back representations of Sn toBn. Let V(λ,∅)

denote the irreducible Bn–representation pulled back from the Sn–representation associated to
the partition λ of n. Let V(∅,(n)) denote the 1-dimensional representation of Bn where a signed
permutation acts by 1 or −1 depending on whether it reverses an even or odd number of signs.
Then for any partition µ of n we denote V(∅,µ) := V(µ,∅) ⊗C V(∅,(n)). In general, for partitions λ of
k and µ of m, we define the Bk+m–representation

V(λ,µ) := IndBk+mBk×BmV(λ,∅) � V(∅,µ).
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For each double partition (λ, µ) the representation V(λ,µ) is distinct and irreducible, and this con-
struction gives a complete list of irreducible complex Bn–representations. As with the symmetric
group, each complex irreducible representation is defined over the rational numbers, and each
representation is self-dual [GP00, Corollary 3.2.14].

2.2 The theory of FIW–modules

Church–Ellenberg–Farb [CEF15] introduced the theory of FI–modules to study sequences of repre-
sentations of the symmetric groups Sn. FI denotes the category of finite sets and injective maps;
an FI–module over a ring R is a functor from FI to the category of R–modules. Their results were
generalized by the second author to sequences of representations of the classical Weyl groups in
type B/C and D [Wil14, Wil15].

Definition 2.2. (The categories FI and FIBC). Following Church–Ellenberg–Farb [CEF15], we let
FI denote the category of finite sets and injective maps. We write n or [n] to denote the object
{1, 2, . . . , n} and 0 := ∅. Following work of the second author [Wil14, Wil15], we let FIBC denote
the type B/C analogue of FI; we may define FIBC to be the category where the objects are finite sets
n := {1, 1, . . . , n, n}, and the morphisms are all injective maps f : m → n satisfying f(a) = f(a)
for all a in m. Notably the endomorphisms End(n) of FI are the symmetric groups Sn, and the
endomorphisms End(n) of FIBC are the hyperoctahedral groups Bn. We denote the families of
Weyl groups Sn and Bn generically byWn, and we denote the categories FI and FIBC generically
by FIW .

The following definitions appear in Church–Ellenberg–Farb [CEF15] and Wilson [Wil14].

Definition 2.3. ((Graded) FIW–modules and FIW–algebras). Fix Wn to denote either Sn or Bn.
Let k be a ring, assumed commutative and with unit. An FIW–module V over k is a functor from
FIW to the category of k–modules; its image is sequence ofWn–representations Vn := V (n) with
actions of the FIW morphisms. A graded FIBC–module V ∗ over a ring k is a functor from FIBC to
the category of graded k–modules; a graded FIW–algebra A∗ over k is a functor from FIW to the
category of graded k–algebras. Each graded piece V d or Ad inherits an FIW–module structure. We
will refer to d as the graded–degree and n as the FIW–degree of the k–module V dn .

Definition 2.4. (Finite generation; degree of generation; finite type). Let Wn denoted either
the family of symmetric groups or the family of signed permutation groups. An FIW–module V
is generated (as an FIW–module) by elements {vi} ⊆

∐
n Vn if V is the smallest FIW–submodule

containing those elements. A graded FIW–algebra A∗ is generated (as an FIW–algebra) by the set
{vi} ⊆

∐
nA
∗
n if A is the smallest FIW–subalgebra containing {vi}. An FIW–module or FIW–

algebra V is finitely generated if it has a finite generating set, and V is generated in FIW–degree ≤ m
if it has a generating set vi ∈ Vmi such that mi ≤ m for all i. A graded FIW–module or algebra V ∗

has finite type if each graded piece V d is a finitely generated FIW–module.

Definition 2.5. (Weight; slope). Church–Ellenberg–Farb defined an FI–module V over a subfield k
of C to have weight≤ m if for every n, every irreducible Sn–representation Vλ, λ = (λ1, λ2, . . . , λr),
occuring in Vn satisfies (n − λ1) ≤ m. Analogously an FIBC–module V over a subfield of C has
weight ≤ m if for all n every irreudcible Bn–representation V(λ,µ), λ = (λ1, λ2, . . . , λr), satisfies
(n−λ1) ≤ m. A graded FIW–module or algebra V ∗ has finite slope M if V d has weight at most dM .
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FI– and FIBC–modules over k generated in degree at most m necessarily have weight at most
m [CEF15, Proposition 2.3.5], [Wil14, Theorem 4.4].

Some of the early results on FI– and FIBC–modules concern the implications of finite generation
for the structure of an FIW–module and its characters: over characteristic zero, a finitely generated
FIW–module is uniformly representation stable in the sense of Church–Farb [CF13, Definition 2.3],
and its characters are eventually polynomial. The following result was proved by Church–Ellenberg–
Farb [CEF15] in type A and the second author [Wil14, Wil15] in types B/C and D.

Theorem 2.6. (Constraints on finitely generated FIW–modules). Let V be an FIW–module over a
subfield k of C which is finitely generated in degree ≤ m.

• (Uniform representation stability)([CEF15, Theorem 1.13], [Wil14, Theorem 4.27]). The se-
quence Vn is uniformly representation stable with respect to the maps induced by the FIW–morphisms
the natural inclusions In : n → (n + 1), stabilizing once n ≥ m + stabdeg(V ). In particular, in
the decomposition of Vn into irreducibleWn–representations, the multiplicities of the irreducible rep-
resentations are eventually independent of n in the sense of representation stability [CF13, Definition
2.3].

• (Character polynomials)([CEF15, Proposition 3.3.3 and Theorem 3.3.4], [Wil15, Theorem
4.6]). Let χn denote the character of theWn–representation Vn. Then there exists a unique character
polynomial FV of degree at most m such that FV (σ) = χn(σ) for all σ ∈ Wn, for all n sufficiently
large.

A major tool in the analysis of finitely generated FI– and FIBC–modules is their relationship to
represented functors and their subfunctors.

Definition 2.7. (The FIW–modules M(m)). We denote the represented FI or FIBC–module over k
by

M(m) := k
[
HomFI(m,−)

]
MBC(m) := k

[
HomFIBC (m,−)

]
The FI–module M(m)n ∼= k

[
HomFI(m,n)

]
has k–basis

Sn/Sn−m ∼= {ei1,i2,...,im | (i1, i2, . . . , im) is an ordered m–tuple of distinct positive elements of n}

where the m–tuple (i1, i2, . . . , im) encodes the image of the m elements (1, 2, . . .m) under an FI–
morphism m→ n. Similarly, the FIBC–module MBC(m)n ∼= k

[
HomFIBC (m,n)

]
has k–basis

Bn/Bn−m ∼=
{
ei1,i2,...,im

∣∣∣∣ (i1, i2, . . . , im) is an ordered m–tuple of elements of n;
at most one of a or a appears at most once

}
where them–tuple (i1, i2, . . . , im) encodes the image of them elements (1, 2, . . .m) under an FIBC–
morphism m→ n. By an orbit–stabilizer argument we have isomorphisms ofWn–representations

M(m)n ∼= k
[
Sn/Sn−m

]
MBC(m)n ∼= k

[
Bn/Bn−m

]
.

We denote the functors M(m) and MBC(m) generically by MW(m). An FIW–module V over k
is finitely generated in degree ≤ p if and only if it is a quotient of a finite direct sum of represented
functors MW(m) with m ≤ p; see Church–Ellenberg–Farb [CEF15, Proposition 2.3.5] and Wilson
[Wil14, Proposition 3.15].
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2.3 Asymptotics and asymptotic notation

The following terminology features in the results of Section 3 on asymptotic stability.

Definition 2.8. (Asymptotic equivalence; asymptotic bounds; Big and little O notation). For
functions f(d) and g(d), d ∈ Z≥0, we say that f is asymptotically equivalent to g and write f ∼ g if

lim
d→∞

f(d)

g(d)
= 1.

We say f is order o(g) if

lim
d→∞

f(d)

g(d)
= 0.

We say that f is order O(g) or that f is asymptotically bounded by g if

|f(d)| ≤ C|g(d)| for some constant C and all d sufficiently large.

Note that the set of functions in O(g) are closed under linear combinations (though not products).

Definition 2.9. (Subexponential growth). We say that a function f(d) is subexponential if f is
order 2o(d). Notably, if f is subexponential in d and 0 ≤ r < 1 then the series

∑
d f(d)rd converges

absolutely.

A classical example:

Proposition 2.10 (Hardy–Ramanujan [HR18], Uspensky [Usp20]). (Growth of partitions). The
number P(n) of partitons of n satisfies

P(n) ∼ 1

4n
√

3
eπ
√

2n
3 .

In particular P(n) is subexponential in n.

3 Asymptotic stability

The main goal of this section is to prove Theorem 3.5, a general convergence result for FIW -algebras
finitely generated in FIW -degrees 0 and 1. Using the terminology and notation from the previous
section, Theorem B can be restated as Theorem 3.5 below. We collect first some preliminary combi-
natorial results in Section 3.1 to study the asymptotic behavior of FIW–modules and their character
polynomials. We then use these results in Section 3.2 to obtain Theorem 3.5.

3.1 Asymptotics of character polynomials

Each of the results Propositions 3.1, Lemma 3.2, and Lemma 3.4 mirrors a result proven by Church–
Ellenberg–Farb [CEF14] in Type A, and their methods can generally be modified to give arguments
in Type B/C. For the sake of completeness we briefly describe these proofs in the case of the
hyperoctahedral groups.
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Proposition 3.1. (Stability for inner products of character polynomials). Fix a family Wn to be
Sn or Bn. Let k be a subfield of C. Let P,Q be two Wn character polynomials. Then the inner product
〈Qn, Pn〉Wn

is independent of n for n ≥ deg(P ) + deg(Q).

Proof. This result was proved for Sn by Church–Ellenberg–Farb [CEF14, Proposition 3.9] and
their proof adapts readily to type B/C; we briefly summarize this proof. Since 〈Qn, Pn〉Bn =
〈1, QnPn〉Bn it suffices to check in the case when Q = 1 and P is the element

Pµ,λ =

(
X

µ

)(
Y

λ

)
:=
∏
r≥1

(
Xr

nr(µ)

)(
Yr

nr(λ)

)
associated to two partitions µ and λ. Let d = |µ|+ |λ|, and notice that deg(P ) = d. Let δλ,µ denote
the indicator function for the conjugacy class (µ, λ) inBd. LetNµ,λ denote the size of the conjugacy
class (µ, λ) in Bd. Then for n ≥ d,〈(

X

µ

)(
Y

λ

)
, 1

〉
Bn

=
1

|Bn|
∑
σ∈Bn

∑
S⊆[n],|S|=d

δλ,µ(σ|S∪S)

where δλ,µ(σ|S∪S) := 0 if S ∪ S is not stabilized by σ. So〈(
X

µ

)(
Y

λ

)
, 1

〉
Bn

=
1

|Bn|

(
n

d

)
Nµ,λ|Bn−d|

=
Nµ,λ
2d d!

Hence for n ≥ d = deg(P ) + deg(Q) this inner product is independent of n, as claimed.

Lemma 3.2. (A convergence result for FIW–algebras of finite type and slope). LetWn denote one
of the families Sn or Bn. Let k be a subfield of C. Suppose that A∗ is a FIW–algebra over k of finite type
and slope M . Then for each d and anyWn character polynomial P , the following limit exists:

lim
n→∞

〈Pn, Adn〉Wn
.

Proof. This result is proved in Type A by Church–Ellenberg–Farb; see the paragraph before [CEF14,
Corollary 3.11]. Their argument carries over to Type B/C as follows. By assumption, for each fixed
d the FIBC–moduleAdn is finitely generated and has weight at most dM . The second author proved
that therefore for some Dd ∈ Z, the characters of the sequence {Adn}n are given by a character
polynomial of degree at most dM for all n ≥ Dd [Wil15, Theorem 4.16]; see Theorem 2.6. By
Proposition 3.1, then, the value 〈Pn, Adn〉Bn is independent of n once n = max{Dd, dM + deg(P )}.
This stable value gives the limit

lim
n→∞

〈Pn, Adn〉Bn = 〈PN , AdN 〉BN , N = max{Dd, dM + deg(P )}.

Lemma 3.3. (A convergence result for finitely generated FIW–algebras). Let k be a subfield of C,
and letWn represent one of the families Sn or Bn. Suppose that A∗ is an associative FIW–algebra over k
that is generated as an FIW–algebra by finitely many elements of positive graded-degree. Then for each d
and anyWn character polynomial P , the following limit exists:

lim
n→∞

〈Pn, Adn〉Wn
.
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Proof. We first prove the result in type B/C. Let V be the graded FIBC–module additively gener-
ated by the generating set for the graded FIBC–algebra A∗. By assumption on the generators V
will be supported in finitely many positive degrees. By construction V has finite type, and by Wil-
son [Wil14, Theorem 4.4], V has finite slope. It follows that A∗ is a quotient of the free associative
FIBC–algebra on V ,

k〈V 〉 :=

∞⊕
j=0

V ⊗j ;

see [Wil14, Definition 5.9]. By [Wil14, Proposition 5.2], tensor products respect finite generation,
and degree of generation is additive. Hence if we let M be the largest FIBC–degree of the genera-
tors of A∗, the FIBC–module Ad is finitely generated in degree ≤ dM . Thus A∗ has finite type and
finite slope M ; see [Wil14, Proposition 5.10]. By Lemma 3.2, the limit limn→∞〈P,Akn〉Bn exists.

The proof for FI follows the same argument. The graded FI–algebra A∗ has finite type and
slope by Church–Ellenberg–Farb [CEF15, Proposition 3.2.5 and Theorem 4.2.3].

The following result will be used in the proof of Theorem 3.5.

Lemma 3.4. (On bounding growth of the graded pieces of FIW–algebras). LetAd be the dth graded
piece of a graded FIW–module over a subfield k of C. Let g(d) be a function. The following are equivalent:

I. For each a ≥ 0 there is a function Fa(d) that independent of n and order O(g) such that

dimk

(
(Adn)Wn−a

)
≤ Fa(d) for all d and n.

II. For each Wn character polynomial P there is a function FP (d) that is independent of n and order
O(g) such that

|〈Pn, Adn〉Bn | ≤ FP (d) for all d and n.

Proof. A special case of this result is the equivalence of the two conditions in [CEF14, Definition
3.12] for Sn; although Church–Ellenberg–Farb only state the equivalence in Type A for the case
that g is subexponential, their proof implies the result in Type A for general functions g. Their
arguments may be adapted to the hyperoctahedral groups, and we summarize the proof in type
B/C below.

Let k denote the trivial Bn–representation. Assume (II) holds. By Frobenius reciprocity,

dimk((Adn)Bn−a) = 〈k,ResBnBn−aA
d
n〉Bn−a

= 〈IndBnBn−ak, A
d
n〉Bn

= 〈k[Bn/Bn−a], Adn〉Bn

= 〈2aa!

(
X1

a

)
, Adn〉Bn

≤ F2aa!(X1
a )(d) for all d and n.

So (II) implies (I). Now assume (I) holds and consider any double partition λ of a and the associated
Ba–representation Vλ with character χλ. The character of the induced representation

IndBnBa×Bn−aVλ � k

12
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is equal (for any n) to the character polynomial

Pλ =
∑
(α,β)

|α|+|β|=a

χλ(α, β)
∏
r

(
Xr

nr(α)

)∏
r

(
Yr

nr(β)

)
:=

∑
(α,β)

|α|+|β|=a

χλ(α, β)

(
X

α

)(
Y

β

)
.

Here χλ(α, β) denotes the value of the character χλ on a signed permutation of signed cycle type
(α, β). The character polynomials Pλ are an additive basis for the space of hyperoctahedral char-
acter polynomials, and so it suffices to bound |〈Pλn , Adn〉Bn |. Observe that

dimk((Adn)Bn−a) ≥ 〈Vλ, (Adn)Bn−a〉Ba
= 〈Vλ � k , ResBnBa×Bn−aA

d
n〉Ba×Bn−a

= 〈IndBnBa×Bn−aVλ � k , Adn〉Bn
= 〈Pλn , Adn〉Bn

which gives the desired bound.

3.2 Convergence for subquotients of FIW-algebras generated in low degree

The main result of this section is Theorem 3.5, which states that graded submodules of FIW–
algebras finitely generated in FIW–degree at most 1 satisfy our desired convergence result.

Theorem 3.5. (Criteria for convergent FIW–algebras). Let Wn denote one of the families Sn or Bn.
For nonnegative integers b, c, define a graded FIW–module V ∼= MW(0)⊕b⊕MW(1)⊕c over a subfield k of
C with positive gradings. Let Γ∗ denote the free symmetric, exterior, or graded–commutative FIW–algebra
generated by V . Let A∗ be any FIW–algebra subquotient of Γ∗. Then for any character polynomial P and
q > 1 the following sum converges absolutely

∞∑
d=0

limn→∞〈Pn, Adn〉Wn

qd
.

More generally, this sum will converge absolutely for any collection ofWn–representations {Adn | d, n ≥ 0}
such that Adn is aWn–equivariant subquotient of Γdn.

We assume that the gradings on the algebra generators MW(0)⊕b ⊕MW(1)⊕c areWn–invariant.
We will use Theorem 3.5 to show convergence for coinvariant algebras in Proposition 4.4, and

to obtain Theorem 4.3 on stability for statistics on maximal tori.
The proof of Theorem 3.5 will use the following result on the asymptotics of enumerating

coloured partitions. Proposition 3.6 generalizes the result that partitions of n grow subexponenti-
tally in n (see Proposition 2.10).

Proposition 3.6. For integers N and C, let T (N,C) denote the number of ways that N balls may be first
each coloured by one of C colours, and then partitioned into any number of multisets. Balls of the same
colour are indistinguishable. For every fixed C the sequence T (N,C) grows subexponentially in N .

For example, T (3, 2) = 14, corresponding to the 14 coloured partitions

{•, •, •}, {•, •, ◦}, {•, ◦, ◦}, {◦, ◦, ◦}, {•, •} ∪ {•}, {•, •} ∪ {◦}, {•, ◦} ∪ {•}, {•, ◦} ∪ {◦},
{◦, ◦} ∪ {•}, {◦, ◦} ∪ {◦}, {•} ∪ {•} ∪ {•}, {•} ∪ {•} ∪ {◦}, {•} ∪ {◦} ∪ {◦}, {◦} ∪ {◦} ∪ {◦}.
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Proof. Suppose throughout that C is fixed. We will create a code with a codeword recording each
partition of N balls coloured with C colours. To verify that T (N,C) is subexponential in N , it
suffices to check that the maximal length of these codewords is sublinear in N .

Consider a partition P = {P1, P2, . . . , P`} of N coloured balls. We will create a distinct coding
scheme for (i) the “small” parts Pi containing at most s := (logN)2 balls, and (ii) the “large” parts
with more than s balls.

(i) (Small parts). There are
(
s+C
C

)
possible sets of at most s balls coloured by C colours (this is

the equal to the number of monomials of C variables of degree at most s). Each of these sets
appears as a part Pi in our coloured partition P at most N times. We can then encode these
sets by an ordered

(
s+C
C

)
–tuple of integers from 0 to N , each recording the number of times

the corresponding set appears in P . The number of characters needed to encode this tuple is
asymptotically bounded in N by the function(

s+ C

C

)
(logN)

< (s+ C)C(logN)

= ((logN)2 + C)C(logN).

(ii) (Large parts). There are fewer than N
s parts Pi in P with cardinality strictly greater than s.

For each of these parts, we record an ordered C–tuple of integers from 0 to N encoding the
number of balls of each given colour in that part. The total number of characters needed to
do this is asymptotically bounded by

C

(
N

s

)
(logN) =

CN

(logN)

Combining (i) and (ii) we find that the maximal length of a codeword is asymptotically bounded
by (

(logN)2 + C
)C

(logN) +
CN

logN
.

We conclude that log(T (N,C)) grows sublinearly in N , and so T (N,C) is subexponential in N as
claimed.

Having established a bound on the growth of T (N,C), we now need one final result in order
to prove Theorem 3.5.

Lemma 3.7. Let Wn denote one of the families Sn or Bn. For nonnegative integers b, c, define a graded
FIW–module V ∼= MW(0)⊕b ⊕MW(1)⊕c over a subfield k of C with positive gradings. Let Γ∗ denote the
free symmetric, exterior, or graded–commutative FIW–algebra generated by V . Let A∗ be any FIW–algebra
subquotient of Γ∗. Then for each a ≥ 0 there is a function Fa(d) that is independent of n and subexponential
in d so that

dimk

(
(Adn)Bn−a

)
≤ Fa(d) for all n and d.
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It follows that, for any Wn character polynomial P , there exists a function FP (d) independent of n and
subexponential in d such that

|〈Pn, Adn〉Wn
| ≤ FP (d).

More generally, if {Adn | d, n ≥ 0} is any collection of Wn–representations such that Adn is an Wn–
equivariant subquotient of Γdn, then there exists a function FP (d) as above.

Proof. The proof in Types A and B/C are extremely similar; we describe the proof in detail for the
hyperoctahedral groups and then briefly outline how to adapt the proof to the symmetric groups.
By Lemma 3.4 it suffices to show the first statement: for each a ≥ 0 there is a function Fa(d) that is
independent of n and subexponential in d so that

dimk

(
(Adn)Bn−a

)
≤ Fa(d) for all n and d.

Fix a ≥ 0. By assumption Adn is aWn–subquotient of theWn–representation Γdn. Since taking
Bn−a–invariants is exact in characteristic zero, the graded algebra (A∗n)Bn−a is a subquotient of
(Γ∗n)Bn−a . It suffices then to find a function Fa(d) that is independent of n and subexponential in d
so that

dimk

(
(Γdn)Bn−a

)
≤ Fa(d) for all n and d.

The monomials of Γdn are (graded– or anti–) commutative words in the (b+ 2nc) variables

y(1), y(2), . . . , y(b) ∈MBC(0)⊕bn and

x
(1)
1 , x

(1)

1
, x

(1)
2 , x

(1)

2
, . . . , x(1)

n , x
(1)
n , . . . . . . , x

(c)
1 , x

(c)

1
, . . . , x(c)

n x
(c)
n ∈MBC(1)⊕cn .

By assumption each variable has positive graded-degree, so the degree-d monomials must have
length at most d. The subgroup Bn−a acts on these monomials diagonally by signed permutations
on the subscript indices

{a+ 1, a+ 1, . . . , n, n}.

Superscripts are fixed. To bound the number of Bn−a orbits of monomials, we will in fact bound
the (larger) number of Sn−a orbits; Sn−a acts by permuting the set {a + 1, . . . , n} and simultane-
ously permuting the set {a+ 1, . . . , n}. We can classify Sn−a–orbits of these monomials as follows:
Each monomial contains a (possibly empty) subword in the (b+ 2ac) variables

y(1), y(2), . . . , y(b) ∈MBC(0)⊕bn and

x
(1)
1 , x

(1)

1
, x

(1)
2 , x

(1)

2
, . . . , x(1)

a , x
(1)
a , . . . . . . , x

(c)
1 , x

(c)

1
, . . . , x(c)

a x
(c)
a ∈MBC(1)⊕cn

There are
(

(b+2ac)+d
(b+2ac)

)
monomials of length at most d in the first (b+ 2ac) variables. For fixed a, b, c

this formula grows polynomially in d.
Now, consider each of the remaining variables x(j)

i to be ’coloured’ by one of the (2c) symbols
x

(j)
+ or x(j)

− , where the sign represents whether i is positive or negative, for j = 1, . . . , c. Next we
partition these coloured variables into multisets with one set for each subscript i. The action of
Sn−a preserves this decomposition.

Concretely, for example, if a = 2 then the Sn−a–orbit of the monomial(
y(2)

)3

y(4)y(5)
(
x

(1)

1

)2

x
(3)
2 x

(4)

2
x

(2)
3

(
x

(4)
3

)2

x
(3)

3
x

(4)

3

(
x

(1)
4

)3

x
(5)
5

(
x

(3)

5

)2

x
(2)

6
x

(1)
8 x

(3)
8
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would be represented by the monomial
(
y(2)

)3
y(4)y(5)

(
x

(1)

1

)2

x
(3)
2 x

(4)

2
and the coloured partition

{x(2)
+ , x

(4)
+ , x

(4)
+ , x

(3)
− , x

(4)
− } ∪ {x

(1)
+ , x

(1)
+ , x

(1)
+ } ∪ {x

(5)
+ , x

(3)
− , x

(3)
− } ∪ {x

(2)
− } ∪ {x

(1)
+ , x

(3)
+ }.

Given monomials of N variables, the number of coloured partitions we may obtain in this
fashion is, in the notation of Proposition 3.6, T (N, 2c), which we proved in Proposition 3.6 grows
subexponentially in N for each fixed c.

To get an upper bound for the number of Bn−a–orbits for the monomials in Γ∗ of degree d,
we will bound the number of Bn−a–orbit of monomials in at most d variables. Some of these
monomials will have degree less than d. If some variables anticommute, then some monomials
will be zero in Γd and some monomials will vanish on passing to coinvariants, so we obtain a
strict overcount.

# of Bn−a–orbits of monomials in at most d variables

=
∑
j,k

j+k≤d

(
# degree j monomials

in y(1), . . . , x
(c)
a

)(
# Bn−a-orbits of degree k

monomials in remaining variables

)

≤

 ∑
j,k

j+k≤d

(
# degree j monomials

in y(1), . . . , x
(c)
a

)( # Bn−a-orbits of degree d
monomials in remaining variables

)

≤
(

(b+ 2ac) + d

(b+ 2ac)

)
T (d, 2c)

We thus obtain a bound that (for constant a, b, c) is independent of n and subexponential in d.
The proof in the case of the symmetric group is similar and slightly simpler: our Sn−a orbits

may be represented by a submonomial in the (b+ ac) variables

y(1), y(2), . . . , y(b) ∈M(0)⊕bn and

x
(1)
1 , x

(1)
2 , . . . , x(1)

a , . . . . . . , x
(c)
1 , x

(c)
2 . . . , x(c)

a ∈M(1)⊕cn

and a partition that is coloured by the c colours j = 1, 2, . . . c. We obtain an asymptotic bound(
(b+ ac) + d

(b+ ac)

)
T (d, c)

that is independent of n and subexponential in d.

Proof of Theorem 3.5. By Lemma 3.3, the limit in the numerator limn→∞〈Pn, Adn〉Wn exists for every
d and moreover equals 〈PN , AdN 〉WN

for N sufficiently large. By Lemma 3.7, there exist a function
FP (d) subexponential in d such that

| lim
n→∞

〈Pn, Adn〉Wn
| ≤ FP (d).

It follows that the sum ∑
d=0

limn→∞〈Pn, Adn〉Wn

qd

converges absolutely.
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Remark 3.8. (Convergence for graded FIop
W–algebras generated in low degree). Recall the FIW–

module V ∼= MW(0)⊕b ⊕ MW(1)⊕c of Theorem 3.5. The module V has a natural FIop
W–module

structure defined (in the notation of Definition 2.7) by the maps

MW(1)n+1 −→MW(1)n

ei 7−→
{
ei, |i| = 1, . . . , n
0, |i| = n+ 1.

and the isomorphisms MW(0)n+1
∼= MW(0)n. (See Church–Ellenberg–Farb [CEF15, Section 4.1]

and Wilson [Wil15, Section 3] for details on the structure of simultaneous FIW and FIop
W–modules.)

These maps endow Γ∗ with the structure of an FIop
W–algebra. Since Wn–representations are self-

dual, the representations Γ∗n are isomorphic whether viewed as representations of EndFIW (n) ∼=
Wn or EndFIop

W
(n) ∼=Wn. IfA is any FIop

W–algebra subquotient of Γ∗, then in particular the bigraded
pieceAdn is a subquotient of Γdn, and Theorem 3.5 applies: for any character polynomial P and q > 1
the following sum converges absolutely

∞∑
d=0

limn→∞〈Pn, Adn〉Wn

qd
.

Remark 3.9. After circulating a preprint of this paper we discovered that in [FW, Theorem 3.2 and
Corollary 3.3], Farb and Wolfson prove a result which is closely related to our Theorem 3.5.

Theorem 3.10 ([FW, Theorem 3.2 and Corollary 3.3]). LetX be a connected space such that dimH∗(X;Q) <
∞. Then there exist constants K,L > 0 so that for each i ≥ 0, and for all n ≥ 1, the Betti numbers of the
n-fold symmetric product of X are bounded subexponentially:

dimHi(Symn(X);Q) < KeL
√
i.

For each 0 ≤ a ≤ n exist constants K,L > 0 so that for each i ≥ 0, and for all n ≥ 1, the coinvariants of
the cohomology of Xn are bounded subexponentially:

dim
(
Hi(Xn;Q)Sn−a

)
< KeL

√
i.

Farb–Wolfson use methods that are quite different from those of Theorem 3.5: their proof uses
a result of Macdonald on the Poincaré polynomial of symmetric products [Mac62], and an analysis
of this generating functions drawing on complex analysis.

It should be possible to deduce the subexponential growth of the Betti numbers and their coin-
variants in Theorem 3.10 from Theorem 3.5 and its proof; it would take additional work to con-
clude their precise asymptotic formulas. Conversely, by applying Theorem 3.10 with appropri-
ately chosen spaces X and using the Künneth Formula, it should be possible to deduce Theorem
3.5 in the case of graded-commutative algebras in type A. With some additional work it should be
possible to leverage these results to give an alternate route to proving Theorem 3.5 in all cases.

4 Point counts for maximal tori in type B and C

In this section we obtain the type B and C analogues of [CEF15, Theorem 5.6], a convergence
result for certain statistics on tori in GLn(Fq). We combine a theorem of Lehrer with representation
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stability results of the second author and our discussion in Section 3 to compute asymptotic counts
for Frq-stable maximal tori for the symplectic and special orthogonal groups.

4.1 Maximal tori in types B and C

Let k be an algebraically closed field. We denote by G one of the following two semisimple con-
nected linear algebraic groups defined over k: the symplectic group Sp2n (type C) or the special
orthogonal group SO2n+1 (type B). In the discussion below we identify the algebraic group G with
its set of k-rational points G(k). Recall that the symplectic group is the algebraic group defined
over k by

Sp2n(k) = {A ∈ GL2n(k) : ATJA = J},

where J =

[
0 In
−In 0

]
is the matrix associated to the standard symplectic form

ω(~u,~v) = u1vn+1 + . . .+ unv2n − un+1v1 − . . .− u2nvn, for ~u,~v ∈ k2n.

The special orthogonal group is defined as

SO2n+1(k) = {A ∈ SL2n+1(k) : ATQA = Q},

where Q =

 1 0 0
0 0 In
0 In 0

 is the matrix associated to the quadratic form of Witt index n

q(u0, u1, . . . , u2n) = u2
0 + u1un+1 + . . .+ unu2n, for (u0, u1, . . . , u2n) ∈ k2n+1.

A subgroup of G is called a torus if it is k-isomorphic to a product of multiplicative groups
Gm := GL1. For instance, we define standard maximal tori T0 to be the diagonal subgroups

T0 :=
{

diag(λ1, . . . , λn, λ
−1
1 , . . . , λ−1

n ) : λi ∈ k×
}
⊆ Sp2n(k)

and
T0 :=

{
diag(1, λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n ) : λi ∈ k×
}
⊆ SO2n+1(k).

In both cases, the maximal torus T0 has dimension n.
Let T denote the set of maximal tori of G. Since all maximal tori in G are conjugate ([Sri79,

Proposition 1.1]), the action of G on T by conjugation is transitive and T ∼= G/N(T0), where
N(T0) is the normalizer of the torus T0. In type B and C, the Weyl group W (T0) := N(T0)/T0 is
isomorphic to the hyperoctahedral group Bn. The group Bn acts on matrices in T0 by conjugation
by permuting the n eigenvalues λ1, . . . , λn and transposing the inverse pairs λi and λ−1

i .

4.1.1 The action of Frobenius

Let q be an integral power of a prime p and let k = Fp. The standard Frobenius morphism Frq acts
on a matrix (xij) ∈ G = G(Fq) by Frq : (xij) 7→ (xqij). The set of fixed points GFrq := {g ∈ G :
Frq(g) = g} corresponds to the Fq-points G(Fq) of G: the finite groups Sp2n(Fq) and SO2n+1(Fq).
A maximal torus of GFrq is a subgroup of G(Fq) of the form T Frq = {g ∈ T : Frq(g) = g} for some
Frq-stable maximal torus T of G. In particular, since T0 is Frq-stable,
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T
Frq
0 =

{
diag(λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n ) : λi ∈ F×q
}

is a maximal torus of Sp2n(Fq)
and

T
Frq
0 =

{
diag(1, λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n ) : λi ∈ F×q
}

is a maximal torus of SO2n+1(Fq).

Other examples of Frq-stable maximal tori in Sp2(Fp) are given in Example 4.1 below.
An Frq-stable torus of G is defined over Fq . We say that such a torus T splits over Fq if T is

Fq-isomorphic to a product of multiplicative groups Gm. There is always a finite Galois extension
of Fq over which a given torus becomes diagonalizable, hence a split torus. The maximal torus T0

above splits over Fq (or any field) and the group G is said to be a split algebraic group. We will
investigate statistics on the set T Frq of Frq-stable maximal tori of G. For an introduction to split
reductive groups and maximal tori we refer the reader to [Mil12, Chapter I] and [Car93, Chapters
1 & 3]. See also Niemeyer–Praeger [NP10, Section 3] for a description of the maximal tori in finite
classical groups GFrq of Lie type.

4.1.2 Frq-stable maximal tori and characters of the Weyl group

The G(Fq)-conjugacy classes in T Frq correspond to conjugacy classes in the Weyl groupBn. Lehrer
observed that this implies that, in principle, functions which are defined on Frq-stable maximal tori
(for instance, functions which count rational tori) may be described in terms of the character theory
of Bn. This correspondence between G(Fq)-conjugacy classes in T Frq and conjugacy classes in Bn
is defined as follows. Consider a torus T ∈ T Frq , so T = gT0g

−1 for some g ∈ G . Since

gT0g
−1 = T = Frq(T ) = Frq(g)Frq(T0)Frq(g)−1 = Frq(g)T0Frq(g)−1

it follows that
(
g−1 ·Frq(g)

)
∈ N(T0). We denote by wT the element in the Weyl groupW (T0) ∼= Bn

that is given by the projection of w̃T = g−1 · Frq(g) onto the quotient W (T0) = N(T0)/T0. Since
G is split, it turns out that each Frq-stable maximal torus determines a conjugacy class in the Weyl
group Bn ([Car93, Proposition 3.3.2]). Hence, given a class function χ on Bn, we can regard χ as a
function on Frq-stable maximal tori of G, by defining

χ(T ) := χ(wT ), for T ∈ T Fq .

This correspondence between conjugacy classes of tori and conjugacy classes in the Weyl group is
illustrated in Example 4.1 for Sp2(Fp).

Example 4.1. (Frq-stable maximal tori of Sp2). For the algebraic group Sp2(Fp) = SL2(Fp), the
Frq-stable maximal torus

T0 =

{[
λ1 0
0 λ−1

1

] ∣∣∣∣ λ1 ∈ Fp
×
}

is a split torus corresponding to the identity coset
[

1 0
0 1

]
T0 in the Weyl group W (T0), that is,

the identity element of the Weyl group B1. On the other hand, given an element ε ∈ F×q which is
not a square in Fq , consider the abelian subgroup of SL2(Fp)

Tε =

{[
x y
εy x

] ∣∣∣∣ x, y ∈ Fp, x2 − εy2 = 1

}
.
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Choose a square root
√
ε ∈ Fp of ε. If we take g = 1

2
√
ε

[
1 −1√
ε
√
ε

]
∈ SL2(Fp), then

g−1 ·
[
x y
εy x

]
· g =

[
x+ y

√
ε 0

0 x− y
√
ε

]
,

therefore g−1Tεg = T0 and Tε is a Frq-stable maximal torus. The matrix

w̃Tε = g−1 · Frq(g) =
1

2
√
ε

[ √
ε 1

−
√
ε 1

] [
1 −1
−
√
ε −

√
ε

]
=

[
0 −1
−1 0

]

projects to the coset
[

0 1
1 0

]
T0 in the Weyl group W (T0). Hence wTε is the negative 1-cycle

(1 1) ∈ B1.

4.1.3 The coinvariant algebra and statistics on maximal tori

There is a beautiful connection between the conjugacy-invariant functions χ(T ) on the maximal
tori of G defined over Fq , and the topological structure of certain complex varieties related to G(C).
We now describe the complex cohomology algebra of these varieties, the generalized complete
complex flag manifolds in type B and C.

Let V ∼= Cn denote the canonical complex representation of the hyperoctahedral group Bn by
signed permutation matrices. Then the symmetric powers Sym(V ) are isomorphic to C[x1, . . . , xn],
and we denote by In the homogeneous ideal generated by the Bn–invariant polynomials with
constant term zero. The complex type B/C coinvariant algebra is defined as

Rn ∼= C[x1, . . . , xn]/In

Let Rdn denote the dth graded piece of Rn.

Borel [Bor53] proves that R∗n is isomorphic as a graded C[Bn]-algebra to the cohomology of the
generalized complete complex flag manifolds in type B and C. The cohomology groups are supported
in even cohomological degree; this isomorphism multiplies the grading by 2. We recall the defini-
tion of these varieties: in type B, let BB

n be a Borel subgroup of SO2n+1(C). Then the associated
generalized flag manifold is

SO2n+1(C)/BB
n = {0 ⊆ V1 ⊆ . . . ⊆ V2n+1 = C2n+1| dimCVm = m, q(Vi, V2n+1−i) = 0},

the variety of complete flags equal to their orthogonal complements. In type C, take a Borel sub-
group BC

n of Sp2n(C). The associated generalized flag manifold is

Sp2n(C)/BC
n = {0 ⊆ V1 ⊆ . . . ⊆ V2n = C2n| dimCVm = m, ω(Vi, V2n−i) = 0},

the variety of complete flags equal to their symplectic complements.
A result of Lehrer [Leh92, Corollary 1.10’] relates the characters of Rdn to the space of maximal

tori. In the case of the split reductive groups Sp2n and SO2n+1 defined over Fp with 2n2 roots,
Lehrer’s result specializes to the following formula.
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Theorem 4.2 (Corollary 1.10’ [Leh92]). Let q be an integral power of a prime p and let G be the linear
algebraic group Sp2n(Fp) or SO2n+1(Fp). If χ is a class function on Bn, then

∑
T∈T Frq

χ(T ) = q2n2 ∑
d≥0

q−d
〈
χ,Rdn

〉
Bn
, (1)

where T Frq is the set of Frq-stable maximal tori of G and Rdn is the dth-graded piece of the complex coin-
variant algebra Rn in type B/C.

We remark that, in this formula, Rdn is generated in graded degree d = 1, and not (as with the
cohomology algebra) supported only in even degrees.

Formula (1) in Theorem 4.2 describes a deep relationship between the maximal tori over finite
fields and the cohomology of the topological spaces related to G(C); with these results we will (in
Sections 4.2 and 4.3) relate representation-theoretic stability results on the coinvariant algebras to
stability results for point-counts on our varieties over finite fields.

4.1.4 Character polynomials and interpreting statistics

When χ is a character polynomial, the left-hand side of Formula (1) is, in a sense, quantifying
the numbers and decompositions of maximal tori over Fq . To make this precise, we first consider
the statistics for Frq-stable maximal tori in Sp2n(Fq) and SO2n+1(Fq) that correspond to the class
functions Xr and Yr.

Let T ∈ T Frq as before with T0 = g−1Tg for g ∈ G. Consider the ordered set of eigenvectors
v1, . . . , vn, v1, . . . , vn of T given by the columns of g. Since T is defined over Fq , the Frobenius
morphism Frq takes eigenvectors to eigenvectors. Then Frq acts on the set of lines in Fq

2n

LT = {L1, . . . , Ln, L1, . . . , Ln} where Li := spanFq (vi) and Li := spanFq (vi).

Moreover, since Frq(g) = gw̃T , the Frobenius morphism acts on LT by the element wT ∈ Bn that
permutes the lines Li and swaps pairs Li/Li.

Let T ∈ T Fq . For each positive or negative r-cycle of wT , we can consider its corresponding
support {Li1 , . . . , Lir , Li1 , . . . , Lir} in LT and the subtorus of T0

T0r :=
{

diag(1, . . . λi1 , . . . , λir , . . . , 1, 1, . . . λ
−1
i1
, . . . , λ−1

ir
, . . . , 1) : λij ∈ Fq

×}
.

Then Tr := gT0rg
−1 is an Frq-stable r-dimensional subtorus of T irreducible over Fq . A torus

defined over a field k is irreducible if it is not isomorphic over k to a product of tori. Furthermore:

• If the orbit {Li1 , . . . , Lir , Li1 , . . . , Lir} corresponds to a positive r-cycle of wT , then (Frq)r =
Frqr fixes each Lij and each Lij . This means that there is a matrix gr with entries in Fqr such
that g−1

r Trgr = T0r and the subtorus Tr splits over Fqr .

• If the orbit {Li1 , . . . , Lir , Li1 , . . . , Lir} corresponds to a negative r-cycle of wT , then (Frq)r =
Frqr swaps the lines Lij and Lij . This implies that no matrix gr with entries in Fqr diagonal-
izes the subtorus Tr and hence Tr does not split over Fqr .
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Therefore, if T ∈ T Fq , for r ≥ 1 the polynomial charactersXr(T ) and Yr(T ) count the following:

Xr(T ) is the number of r-dimensional Frq-stable subtori of T irreducible over Fq that split over Fqr ,

Yr(T ) is the number of r-dimensional Frq-stable subtori of T irreducible over Fq that do not split
over Fqr .

Example 4.1 continued (Statistics for maximal tori in Sp2). Recall the maximual torus Tε ∈
Sp2(Fp) from Example 4.1:

Tε =

{[
x y
εy x

] ∣∣∣∣ x, y ∈ Fp, x2 − εy2 = 1

}
,

The torus Tε is diagonalized by the matrix 1
2
√
ε

[
1 −1√
ε
√
ε

]
in Sp2(Fp), and is invariant under the

action of Frobenius. It corresponds to the nontrivial conjugacy class wTε = (1 1) ∈ B1.
The Frobenius morphism Frq acts by transposing the eigenspaces

L1 = spanFp

([
1√
ε

])
and L1 = spanFp

([
−1√
ε

])
.

Correspondingly, no matrix that diagonalizes Tε can have entries in Fq . The one–dimensional torus
Tε is irreducible and does not split over Fq . This is consistent with its statistics

X1(Tε) = X1((1 1)) = 0 and Y1(Tε) = Y1((1 1)) = 1.

4.2 Asymptotic results

In this section we prove Theorem 4.3, a stability result for asymptotic polynomial statistics on
Frq-stable maximal tori of the symplectic and special orthogonal groups.

Theorem 4.3 (Stability of maximal tori statistics). Let q be an integral power of a prime p. For n ≥ 1,
denote by T Frq

n the set of Frq-stable maximal tori for either Sp2n(Fp) or SO2n+1(Fp). Let Rdm denote
the dth-graded piece of the complex coinvariant algebra R∗m in type B/C. If P ∈ C[X1, Y1, X2, Y2, . . .] is
any hyperoctahedral character polynomial, then the normalized statistic q−2n2 ∑

T∈T Frq
n

P (T ) converges as
n→∞. In fact,

lim
n→∞

q−2n2 ∑
T∈T Frq

n

P (T ) =

∞∑
d=0

limm→∞〈Pm, Rdm〉Bm
qd

,

and the series in the right hand converges.

To prove this theorem we first establish a convergence result for characters of coinvariant alge-
bras of type B/C.

Let C∗n denote the complex polynomial algebra C[x1, . . . , xn] on n variables, with generators xi
in graded degree d = 1. These polynomial rings form a complex FIBC–algebra under the natural
inclusionsC∗n ↪→ C∗n+1, which is generated as an FIBC–algebra in FIBC–degree n = 1 byC1

1 = 〈x1〉.
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Our sequence of algebras is then generated by the FIBC–module of canonical signed permutation
representations,

C1
•
∼= MBC(∅, )• := MBC(1)• ⊗C[B1] V(∅, )

∼= 〈x1, . . . , x•〉.

The coinvariant algebra R∗n ∼= C∗n/In does not admit an FIBC–module structure; the FIBC–module
structure on the polynomial rings C∗n does not respect the ideals In. Instead, the coinvariant alge-
bras are C–algebras over FIop

BC , induced by the maps

C∗n+1 −→ C∗n

xi 7−→
{
xi, i = 1, . . . , n
0, i = n+ 1.

The reader may verify that the duals R̂d• of each graded piece do form finitely generated sub–
FIBC–modules of the dual modules Ĉd• ∼= Cd• ; see work of the second author [Wil14, Definition
5.14, Proposition 5.15, and Section 6] for details. For the following result, however, we do not
need this FIBC–module structure; we only need the observation that for each n and d, the Bn–
representation Rdn is a subquotient of the homogeneous polynomial space Cdn.

Proposition 4.4. LetRdn the dth–graded piece of the complex type B/C coinvariant algebraRn. Then for any
hyperoctahedral character polynomial P ∈ C[X1, Y1, X2, Y2, . . .] the following sum converges absolutely.

∞∑
d=0

limn→∞〈Pn, Rdn〉Bn
qd

.

Proof. We have observed that R∗n is an FIop
BC–algebra quotient of the free graded-commutative

algebra C∗ on
MBC(∅, )• := MBC(1)• ⊗C[B1] V(∅, )

The FIBC–module MBC(∅, )• is, in the notation of Definition 2.7, the submodule of MBC(1) on
the generators xi := ei − ei. By Remark 3.8, the result follows from Theorem 3.5.

Remark 4.5. This result was proved by Church–Ellenberg–Farb in type A [CEF14, Theorem 5.6]
using in part work of Chevalley [Che55] on the structure of the type A coinvariant algebra. Our
Theorem 3.5 allows for a combinatorial proof of [CEF14, Theorem 5.6] using only the fact that the
coinvariant algebras are quotient of the dual of the free commutative FI–algebra C[x1, x2, . . . , xn]
generated by M(1)n = 〈x1, x2, . . . , xn〉. This proof demonstrates that this convergence theorem
does not depend on any deeper structural features of the coinvariant algebra.

Remark 4.6. Work of the second author [Wil14, Theorem 6.1 and Corollary 6.3] observes that, for
each graded–degree d, the Bn–representations R̂dn dual to Rdn assemble to form a finitely gener-
ated FIBC–module R̂d•, a submodule of the sequence of homogenous polynomials Ĉd• . The FIBC–
module Ĉd• , and hence R̂d•, has weight at most d. Hence for each d there is some Dd ∈ Z such
that the characters of R̂d• are given by a character polynomial of degree ≤ d for all n ≥ Dd [Wil15,
Theorem 4.16]. Since Bn–representations are self-dual, there is an isomorphism of representations
R̂dn
∼= Rdn, and this character polynomial gives the characters of Rdn for all n ≥ Dd. It follows from

Proposition 3.1 that

lim
m→∞

〈Pm, Rdm〉Bm = 〈Pn, Rdn〉Bn , for any n ≥ max{Dd, d+ deg(P )}.
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Proof of Theorem 4.3. We adapt the arguments given by Church–Ellenberg–Farb [CEF14, Theorem
3.13]. From Lemma 3.7, there exist a function FP (d) independent of n and subexponential in d
such that |〈Pn, Rdn〉Bn | ≤ FP (d) for all n. Then∣∣∣ lim

m→∞
〈Pm, Rdm〉Bm

∣∣∣ ≤ FP (d).

Let ε > 0. The series
∑
d≥0

FP (d)

qd
converges absolutely, so there exist some I ∈ N such that

∑
d≥I+1

FP (d)

qd
< ε/2.

Using the notation from Remark 4.6, we choose N = max{D1, D2, . . . , DI , I + deg(P )}. Then

lim
m→∞

〈Pm, Rdm〉Bm = 〈Pn, Rdn〉Bn for d ≤ I and n≥ N.

From Proposition 4.4, the series
∞∑
d=0

limm→∞〈Pm, Rdm〉Bm
qd

converges to a limit L <∞. On the other hand, by Theorem 4.2, we have that

q−2n2 ∑
T∈T Frq

n

P (T ) =
∑
d≥0

〈Pn, Rdn〉Bn
qd

.

Therefore, if n ≥ N

∣∣∣∣∣∣L− q−2n2 ∑
T∈T Frq

n

P (T )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
d≥I+1

limm→∞〈Pm, Rdm〉Bm − 〈Pn, Rdn〉Bn
qd

∣∣∣∣∣∣
≤
∑
d≥I+1

FP (d) + FP (d)

qd

< ε

4.3 Some statistics for Frq-stable maximal tori in Sp2n(Fq) and SO2n+1(Fq)

In this section we compute some examples of statistics of the form given in Theorem 4.3. We use a
result on the decomposition of the coinvariant algebra R∗n as a Bn–representation; see Stembridge
[Ste89, Formula (2.2), Theorem 5.3], analogous to the approach taken by Church–Ellenberg–Farb
[CEF14, Theorems 5.8, 5.9, and 5.10]. These computations could also be accomplished with gener-
ating functions, using the approach of Fulman [Ful16] in type A.
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Decomposing the Bn–representation Rdn. The decomposition of the graded pieces Rdn into irre-
ducible Bn–representations is described by Stembridge [Ste89] in terms of their relationships to
data called the fake degrees of Bn. Given a double partition λ = (λ+, λ−) of n, the multiplicity of ir-
reducible representation Vλ in Rdn is computed by the following formula. A double standard tableau
of shape λ is a bijective labelling of the Young diagrams λ+ and λ− with the digits 1 through n,
such that the numbers are strictly increasing in each row and column. Define the flag descent set
D(T ) of a double standard tableau T as follows: draw the tableaux of shape λ+ and λ− in the
plane, with the tableau of shape λ− placed above and to the right of tableau of shape λ+. Then

D(T ) = { j | (j + 1) appears in a row below j } .

and the flag major index of the double standard tableau T is the quantity

f(T ) = 2

 ∑
j∈D(T )

j

+ |λ−|.

Then the multiplicity of the irreducible representation Vλ in the dth-graded piece of the coinvariant
algebra Rdn is given by the number of standard double tableaux of shape λ and flag major index d.

Theorem 4.7 (See Stembridge [Ste89] Formula (2.2), Theorem 5.3).

〈Rdn, Vλ〉Bn = # { T | T standard double tableau of shape λ with f(T ) = d } .

We can use Theorem 4.7 to compute some examples of the normalized statistics for maximal
tori whose convergence is guaranteed by Theorem 4.3. A formula identifying stable sequences of
irreducible Bn–representations Vλ with a character polynomial P is given in Wilson [Wil15, Theo-
rem 4.11]. Some stable multiplicities that we compute below, using Theorem 4.7, are summarized
in Table 3. Dots represent zero.

Our first computation is a classical result due to Steinberg (see [Ste68, Corollary 14.16]).

Theorem 4.8 (Number of Frq-stable maximal tori). The number of Frq-stable maximal tori of Sp2n(Fq)
and of SO2n+1(Fq) is q2n2

.

Proof. We can compute the number of Frq-stable maximal tori using Theorem 4.2 by taking χ to be
the trivial class function on Bn. The sequence of trivial representations are given by the character

polynomial χ = 1, and are encoded by the double partition λ =

( n︷ ︸︸ ︷
· · · , ∅

)
. The single

double standard tableau of shape λ is

T =

 1 2 3 · · · n
, ∅


which has descent set D(T ) = ∅ and flag major index f(T ) = 0. Thus by Theorem 4.7 the trivial
representation appears with multiplicity one in degree 0 and does not occur in positive degree.
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Table 3: Some stable multiplicities of irreducible Bn–representations in the coinvariant alegebra

Irreducible Bn Hyperocthahedral d = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
representation character polynomial

V ((n),∅) 1 1 · · · · · · · · · · · · · · ·

V ((n− 1), (1)) X1 − Y1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1

V ((n− 1, 1),∅) X1 + Y1 − 1 · · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·

V ((n− 2), (2))

(
X1

2

)
+

(
Y1

2

)
−X1Y1 +X2 − Y2 · · 1 · 1 · 2 · 2 · 3 · 3 · 4 ·

V ((n− 2), (1, 1))

(
X1

2

)
+

(
Y1

2

)
−X1Y1 −X2 + Y2 · · · · 1 · 1 · 2 · 2 · 3 · 3 ·

V ((n− 2, 1, 1),∅)

(
X1 + Y1

2

)
−X2 − Y2 −X1 − Y1 + 1 · · · · · · 1 · 1 · 2 · 2 · 3 ·

V ((n− 2, 1), (1)) X2
1 − Y 2

1 − 2X1 + 2Y1 · · · 1 · 2 · 3 · 4 · 5 · 6 · 7

Remark 4.9. Observe that the normalized formula∑
T∈T Frq

n
P (T )

q2n2 =

∑
T∈T Frq

n
P (T )

|T Frq
n |

corresponds to the average of the statistic P (T ) over all maximal tori T . Using Theorem 4.3 we
obtain asymptotics of these expected values.

Proposition 4.10 (Expected number of 1-dimensional Frq-stable subtori). The expected number
of 1-dimensional Frq-stable subtori of a random Frq-stable maximal torus in Sp2n(Fq) or in SO2n+1(Fq)
equals

1 +
1

q2
+

1

q4
+ · · ·+ 1

q2n−2
=

(
q2 − 1

q2(n−1)

)
(q2 − 1)

n→∞−−−−→ q2

q2 − 1
.

Proof. To count the total number of 1-dimensional Frq-stable subtori for all maximal tori in T Frq , we
apply Formula (1) to the character polynomial P = X1+Y1. The goal is to show that

〈
P,Rdn

〉
Bn

= 1

for d = 0, 2, 4, . . . , 2n− 2 and 0 otherwise.
The pullback of the (n− 1)–dimensional standard Sn–representation to Bn has character poly-

nomial χ = X1 + Y1 − 1 and corresponds to the double partition

λ =

 n−1︷ ︸︸ ︷
··· , ∅

 .

There are (n− 1) possible double standard tableaux of shape λ, each determined by the letter i in
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the second row. Let

Ti =

 1 2 · · · i−1 i+1 · · · n

i

, ∅

 for i = 2, . . . , n.

Note that we require i > 1 for Ti to form a valid standard tableau. Then D(Ti) = {i − 1} for
i = 2, . . . , n. The flag major indices are f(Ti) = 2i − 2 for i = 2, . . . , n, and there is one copy of
V(n−1,1),∅ in each even degree 2, 4, . . . , 2n− 2.

The character polynomial (X1 + Y1) is the sum (X1 + Y1) = (X1 + Y1 − 1) + 1, so combining
this result for multiplicities of the representation V((n−1,1),∅) and the result for V((n),∅) of Theorem
4.8 gives the desired formula.

Proposition 4.11 (Expected number of split 1-dimensional Frq-stable subtori). The expected num-
ber of split 1-dimensional Frq-stable subtori of of a random Frq-stable maximal torus in Sp2n(Fq) or in
SO2n+1(Fq) equals

1

2

(
1 +

1

q
+

1

q2
+

1

q3
+ · · ·+ 1

q2n−1

)
=

(
q − 1

q2n−1

)
2(q − 1)

n→∞−−−−→ q

2(q − 1)
.

Proof. We wish to evaluate the character polynomial P = X1 = 1
2 [(X1 + Y1) + (X1 − Y1)] in

formula (1). The canonical n–dimensional representation of Bn by signed permutation matrices
has character polynomial χ = X1 − Y1 and corresponds to the double partition

λ =

 n−1︷ ︸︸ ︷
· · · ,

 .

There are n possible double standard tableaux of shape λ, each determined by the letter i in λ−.
Let

Ti =

 1 2 · · · i−1 i+1 · · · n
,

i

 for i = 1, . . . n.

Then D(Tn) = ∅, and D(Ti) = {i} for i = 1, . . . , n− 1. The flag major indices are

f(Ti) =

{
1, i = n
2i+ 1, i = 1, 2, . . . , (n− 1)

and then there is a single copy of V((n−1),(1)) in each odd degree 1, 3, . . . , 2n− 1.
By combining this result with our computation for X1 + Y1 in Proposition 4.10 above, we con-

clude that
〈
2X1, R

d
n

〉
Bn

= 1 for d = 0, 1, 2, 3, . . . , 2n− 1 and
〈
2X1, R

d
n

〉
Bn

= 0 otherwise.

Corollary 4.12 (Expected number of eigenvectors in F2n
q ). The expected number of simultaneous

eigenvectors in F2n
q of a random Frq-stable maximal torus in Sp2n(Fq) equals

1 +
1

q
+

1

q2
+

1

q3
+ · · ·+ 1

q2n−1
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Proof. The fixed points of wT correspond to eigenvectors vi of T in F2n
q . Since the eigenvectors

come in inverse pairs (vi/vi) for Frq-stable maximal tori in Sp(Fq), we apply Formula (1) to the
character polynomial P = 2X1. The result follows from the above computation.

Proposition 4.13 (Reducible v.s. Irreducible Frq-stable 2-dimensional subtori). Given a Frq-stable
torus T in Sp2n(Fq) or in SO2n+1(Fq), letRn(T ) denote the number of reducible 2-dimensional Frq-stable
subtori of T and In(T ) denote the number of irreducible 2-dimensional Frq-stable subtori of T . Then the
expected value of the functionRn−In over all Frq-stable maximal tori of Sp2n(Fq) or SO2n+1(Fq) is given
by (

q4 − 1
q2n

)(
1− 1

q2(n−1)

)
(q2 − 1) (q4 − 1)

and converges to the sum

1

q2
+

1

q4
+

2

q6
+

2

q8
+

3

q10
+

3

q12
+ . . .+

b 2d−2
4 c

q2d−4
+ . . . =

q4

(q2 − 1)(q4 − 1)

as n tends to infinity.

Proof. To count the difference in the number of reducible and irreducible 2-dimensional Frq-stable
subtori of T ∈ T Frq

n , we compute

P (T ) =

(
X1(T ) + Y1(T )

2

)
−
(
X2(T ) + Y2(T )

)
and employ Formula (1). The irreducible Bn–representation

∧2
V(n−1,1),∅ has character

χ =

(
X1 + Y1

2

)
− (X2 + Y2)− (X1 + Y1) + 1

and associated double partition

λ =


n−2︷ ︸︸ ︷
···

, ∅

 .

Define

Ti,j =


1 2 · · · i−1 i+1 · · · j−1 j+1 · · · n

i

j

,∅


for i < j, i, j ∈ {2, . . . , n}.

We have D(Ti,j) = {i − 1, j − 1} for all 2 ≤ i < j ≤ n, and so f(Ti,j) = 2(i + j) − 4 for all
2 ≤ i < j ≤ n. Stably, it follows that the multiplicity is zero in degree d if d is odd, and for d ≥ 6
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even, f(Ti,j) = d for the bd−2
4 c pairs (i, j) = (2, d2 ), (3, d2 − 1), . . . , (bd+2

4 c,
d
2 − b

d+2
4 c + 2). For a

given n ≥ 2, the expected value q−2n2 ∑
T∈T Frq

n

χ(T ) of χ(T ) is given in terms of the Gaussian binomial

coefficient
(
n

2

)
1
q2

by the formula

∑
d≥0

〈χ,Rdn〉Bn
qd

=
1

q6

(
n

2

)
1
q2

:=
1

q6


(

1− 1
q2n

)(
1− 1

q2(n−1)

)
(

1− 1
q2

)(
1− 1

q4

)
 =

(
1− 1

q2n

)(
1− 1

q2(n−1)

)
(q2 − 1) (q4 − 1)

As n tends to infinity, the expected value converges to

1

q6
+

1

q8
+

2

q10
+

2

q12
+

3

q14
+

3

q16
+ . . .+

b 2d−2
4 c
q2d

+ . . . =
1

(q2 − 1)(q4 − 1)

To obtain the result for the character polynomial(
X1 + Y1

2

)
− (X2 + Y2) =

[(
X1 + Y1

2

)
− (X2 + Y2)− (X1 + Y1) + 1

]
+

[
(X1 + Y1)− 1

]
we combine this result with the result for irreducible representation V(n−1,1),∅ from Proposition
4.10. We find that the desired formula is(

1− 1
q2n

)(
1− 1

q2(n−1)

)
(q2 − 1) (q4 − 1)

+

(
q2 − 1

q2(n−1)

)
(q2 − 1)

− 1

=

(
q4 − 1

q2n

)(
1− 1

q2(n−1)

)
(q2 − 1) (q4 − 1)

n→∞−−−−→ q4

(q2 − 1) (q4 − 1)
=

1

q2
+

1

q4
+

2

q6
+

2

q8
+

3

q10
+

3

q12
+ . . .

Proposition 4.14 (Split v.s. non-split Frq-stable irreducible 2-dimensional subtori). The expected
value of split minus non-split Frq-stable irreducible 2-dimensional subtori over all Frq-stable maximal tori
of Sp2n(Fq) or SO2n+1(Fq) is given by

q2
(

1− 1
q2n

)(
1− 1

q2(n−1)

)
2 (q4 − 1)

n→∞−−−−→ q2

2 (q4 − 1)
.

Proof. We need to consider the character polynomial X2 − Y2 in Formula (1).

The irreducible Bn–representation Λ2V(n−1),(1) has character polynomial χ =

(
X1

2

)
+

(
Y1

2

)
−

X1Y1 −X2 + Y2 and corresponds to the double partition

λ =

 n−2︷ ︸︸ ︷
· · · ,

 .
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There are
(
n

2

)
possible double standard tableaux of shape λ. For i < j, with i, j ∈ {1, . . . , n}, let

Ti,j =

 1 2 · · · i−1 i+1 · · · j−1 j+1 · · · n
,

i

j


Then

D(Ti,n) = {i} f(Ti,n) = 2i+ 2 for i = 1, . . . , n− 1

D(Ti,j) = {i, j} f(Ti,j) = 2i+ 2j + 2 for 1 ≤ i < j ≤ n− 1

Hence for even dwith 4 ≤ d ≤ 2n, f(T d−2
2 ,n) = d, and for even dwith 4 ≤ d ≤ 2n−2, f(Ti,j) = d

for all i < j < n such that i + j = d
2 − 1. Stably there are

⌊
d

4

⌋
copies of V(n−2),(1,1) in each even

degree d ≥ 4 and zero copies in odd degree. For given n ≥ 2, the expected value of the character
polynomial statistic is

∑
d≥0

〈χ,Rdn〉Bn
qd

=
1

q4

(
n

2

)
1
q2

:=

1
q4

(
1− 1

q2n

)(
1− 1

q2(n−1)

)
(

1− 1
q2

)(
1− 1

q4

)
n→∞−−−−→ q2

(q2 − 1) (q4 − 1)

The irreducibleBn–representation with character polynomial χ =

(
X1

2

)
+

(
Y1

2

)
−X1Y1 +X2−Y2

and corresponds to the double partition

λ =

 n−2︷ ︸︸ ︷
· · · ,

 .

There are
(
n

2

)
possible double standard tableaux of shape λ. For i < j, with i, j ∈ {1, . . . , n}, let

Ti,j =

 1 2 · · · i−1 i+1 · · · j−1 j+1 · · · n
,

i j


Then

D(Tn−1,n) = ∅ f(Tn−1,n) = 2

D(Ti,n) = {i} f(Ti,n) = 2i+ 2 for i = 1, . . . , n− 2

D(Ti−1,i) = {i} f(Ti−1,i) = 2i+ 2 for i = 2, . . . , n− 1

D(Ti,j+1) = {i, j + 1} f(Ti,j+1) = 2i+ 2j + 4 for 1 ≤ i < j ≤ n− 2
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Stably, there this irreducible representation has multiplicity zero in odd degrees and multiplicity⌈
d

4

⌉
in each even degree d ≥ 2. For n ≥ 2, the expected value q−2n2 ∑

T∈T Frq
n

χ(T ) is

∑
d≥0

〈χ,Rdn〉Bn
qd

=
1

q2

(
n

2

)
1
q2

:=

1
q2

(
1− 1

q2n

)(
1− 1

q2(n−1)

)
(

1− 1
q2

)(
1− 1

q4

) =
q4
(

1− 1
q2n

)(
1− 1

q2(n−1)

)
(q2 − 1) (q4 − 1)

n→∞−−−−→ q4

(q2 − 1) (q4 − 1)

Then for the character polynomial

P = (X2−Y2) =
1

2

[((
X1

2

)
+

(
Y1

2

)
−X1Y1 +X2 − Y2

)
−
((

X1

2

)
+

(
Y1

2

)
−X1Y1 −X2 + Y2

)]
the corresponding expected value q−2n2 ∑

T∈T Frq
n

P (T ) for n ≥ 2 is given by

1

2

 1
q2

(
1− 1

q2n

)(
1− 1

q2(n−1)

)
(

1− 1
q2

)(
1− 1

q4

)
−

 1
q4

(
1− 1

q2n

)(
1− 1

q2(n−1)

)
(

1− 1
q2

)(
1− 1

q4

)


=
q2
(

1− 1
q2n

)(
1− 1

q2(n−1)

)
2 (q4 − 1)

In the limit as n tends to infinity, this converges to
q2

2 (q4 − 1)
.
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Instituto de Matemáticas, Universidad Nacional Autónoma de México
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