
The cohomology of M0,n as an FI-module

Rita Jiménez Rolland

Abstract In this paper we revisit the cohomology groups of the moduli space of n-
pointed curves of genus zero using the FI-module perspective introduced by Church-
Ellenberg-Farb. We recover known results about the corresponding representations
of the symmetric group.

1 Introduction

Our space of interest is M0,n, the moduli space of n-pointed curves of genus zero. It
is defined as the quotient

M0,n := F
(
P1(C),n

)
/Aut

(
P1(C)

)
,

where F(P1(C),n) is the configuration space of n-ordered points in the projec-
tive line P1(C) and the automorphism group of the projective line Aut

(
P1(C)

)
=

PGL2(C) acts componentwise on F(P1(C),n). For n ≥ 3, M0,n is a fine moduli
space for the problem of classifying smooth n-pointed rational curves up to isomor-
phism ([16, Proposition 1.1.2]).

The space M0,n carries a natural action of the symmetric group Sn. The coho-
mology ring of M0,n is known and the Sn-representations H i(M0,n;C) are well-
understood (see for example [9], [15], [11]).

In this survey, we will consider the sequence of Sn-representations H i(M0,n;C)
as a single object, an FI-module over C. Via this example, we introduce the basics of
the FI-module theory developed by Church, Ellenberg and Farb in [3]. We then use a
well-known description of the cohomology ring of M0,n to show in Theorem 4.5 that
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a finite generation property is satisfied which allows us to recover information about
the Sn-representations in Theorem 5.1. Specifically, we obtain a stability result con-
cerning the decomposition of H i(M0,n;C) into irreducible Sn-representations, we
exhibit a bound on the lengths of the representations and show that their characters
have a highly constrained “polynomial” form.

2 The co-FI-spaces M0,• and M0,•+1

Let FI be the category whose objects are natural numbers n and whose morphisms
m→ n are injections from [m] := {1, . . . ,m} to [n] := {1, . . . ,n}.

We are interested in the co-FI-space M0,•: the functor from FIop to the category
Top of topological spaces given by given by n 7→M0,n that assigns to f : [m] ↪→ [n]
in HomFI(m,n) the morphism f ∗ :M0,n→M0,m defined by f ∗

(
[(p1, p2, . . . , pn)]

)
=

[(p f (1), p f (2), . . . , p f (m))]. This is a particular case of the co-FI-space Mg,• consid-
ered in [12] which is the functor given by n 7→Mg,n, the moduli space of Riemann
surfaces of genus g with n marked points.

An FI-module over C is a functor V from FI to the category of C-vector spaces
VecC. Below, we denote V (n) by Vn. Church, Ellenberg and Farb used FI-modules
in [3] to encode sequences of Sn-representations in single algebraic objects and with
this added structure significantly strengthened the representation stability theory in-
troduced in [5]. FI-modules translate the representation stability property into a fi-
nite generation condition.

By composing the co-FI-space M0,• with the cohomology functor H i(−;C), we
obtain the FI-module H i(M0,•) := H i(M0,•;C). We can also consider the graded
version H∗(M0,•) := H∗(M0,•;C), we call this a graded FI-module over C.

The co-FI-space F(C,•) given by n 7→ F(C,n), the configuration space of n or-
dered points in C, and the corresponding FI-modules H i

(
F(C,•)

)
are key in our dis-

cussion below. In the expository paper [7], representation stability and FI-modules
are motivated mainly through this example. A formal discussion of FI-modules and
their properties is given in [3]. In [4] the theory of FI-modules is extended to mod-
ules over arbitrary Noetherian rings.

The “shifted” co-FI-space M0,•+1. Consider the functor Ξ1 from FI to FI given by
[n] 7→ [n]t{0}. Notice that this functor induces the inclusion of groups

Jn : Sn = EndFI[n] ↪→ EndFI[n+1] = Sn+1

that sends the generator (i i+ 1) of Sn to the transposition (i+ 1 i+ 2) of Sn+1. In
our discussion below we are interested in the “shifted” co-FI-space M0,•+1 obtained
by M0,• ◦Ξ1. Notice that this co-FI-space is given by n 7→M0,n+1. In the notation
from [4, Section 2], this means that the FI-module

H i(M0,•+1) = S+1
(
H i(M0,•)

)
,
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where S+1 : FI-Mod → FI-Mod is the shift functor given by S+1 := − ◦ Ξ1.
The functor S+1 performs the restriction, from an Sn+1-representation to an Sn-
representation, consistently for all n so that the resulting sequence of represen-
tations still has the structure of an FI-module. Comparing the Sn-representation
H i(M0,•+1)n with the Sn+1-representation H i(M0,•)n+1 = H i(M0,n+1) we have an
isomorphism of Sn-representations

H i(M0,•+1)n ∼= ResSn+1
Sn

H i(M0,n+1).

3 Relation with the configuration space

We will understand the cohomology ring of M0,n through its relation with the con-
figuration space F(C,n) of n ordered points in C.

In our descriptions below, we consider P1(C) with coordinates [t : z] and the
embedding C ↪→ P1(C), given by z 7→ [1 : z] and let [0 : 1] = ∞. We use the brack-
ets to indicate “equivalence class of”. Since there is a unique element in PGL2(C)
that takes any three distinct points in P1(C) to

(
[0 : 1], [1 : 0], [1 : 1]

)
= (∞,0,1),

every element in M0,n+1 can be written canonically as
[(
[0 : 1], [1 : 0], [1 : 1], [t1 :

z1], · · · , [tn−2 : zn−2]
)]

. Hence, M0,4 ∼= P1(C)\{∞,0,1} and M0,n+1 ∼= F
(
M0,4,n−

2
)
.
Define the map ψ : F(C,n)−→M0,n+1 by

ψ(z1,z2, . . . ,zn) =
[(

∞,0,1,
z3− z1

z2− z1
,

z4− z1

z2− z1
, · · · , zn− z1

z2− z1

)]
.

The symmetric group Sn acts on F(C,n) by permuting the coordinates. Let
(1 2),(2 3), . . .(n−1 n) be transpositions generating Sn and notice that

ψ
(
(1 2) · (z1,z2, . . . ,zn)

)
=
[(

∞,0,1, z3−z2
z1−z2

, z4−z2
z1−z2

, · · · , zn−z2
z1−z2

)]
=

[[1 0
1 −1

]
·
(
[0 : 1], [1 : 0], [1 : 1], [1 : z3−z2

z1−z2
], [1 : z4−z2

z1−z2
], · · · , [1 : zn−z2

z1−z2
]
)]

=

[(
[0 : 1], [1 : 1], [1 : 0], [1 : z3−z1

z2−z1
], [1 : z4−z1

z2−z1
], · · · , [1 : zn−z1

z2−z1
]
)]

= (2 3) ·ψ(z1,z2, . . . ,zn)

and in general

ψ
(
(i i+1) · (z1,z2, . . . ,zn)

)
= (i+1 i+2) ·ψ(z1,z2, . . . ,zn) for i≥ 2.

Therefore the map ψ : F(C,n) −→M0,n+1 is equivariant with respect to the in-
clusion Jn : Sn ↪→ Sn+1. In other words, ψ : F(C,•) −→M0,•+1 is a map of co-FI-
spaces.



4 Rita Jiménez Rolland

Relation with the Coxeter arrangement of type An−1. The complement of the
complexified Coxeter arrangement of hyperplanes type An−1 is M(An−1), the image
of F(C,n) under the quotient map Cn→Cn/N, where N = {(z1, . . . ,zn) ∈Cn : zi =
z j for 1≤ i, j ≤ n}.

As explained in [9], it turns out that the moduli space M0,n+1 is also in bijective
correspondence with the projective arrangement

M(dAn−1) := π
(
M(An−1)

)∼= M(An−1)/C∗,

where π : Cn−1\{0} → Pn−2(C) is the Hopf bundle projection, which takes z ∈
Cn−1\{0} to λ z for λ ∈ C∗. Moreover, the map ψ factors through M(An−1) and
M(dAn−1).

F(C,n) //

ψ

��

M(An−1)

π

��
M(dAn−1)

∼=
��

M0,n+1

In [9], Gaiffi extends the natural Sn-action on H∗
(
M(An−1);C

)
to an Sn+1-

action using the vertical map in the diagram above and the natural Sn+1-action on
H∗
(
M0,n+1;C

)
.

The cohomology rings. As proved in [9, Prop. 2.2 & Theorem 3.2] , the map ψ

allows us to relate the cohomology rings of M0,n+1 and F(C;n). See also [11, Cor.
3.1].

Proposition 3.1. The maps ψ induces an isomorphism of cohomology rings

H∗
(
F(C,n);C

)∼= H∗
(
M0,n+1;C

)
⊗H∗(C∗;C)

as Sn-modules. The symmetric group Sn acts trivially on H∗(C∗;C) and acts on
H∗
(
M0,n+1;C

)
through the inclusion Jn : Sn ↪→ Sn+1 that sends the generator (i i+1)

of Sn to the transposition (i+1 i+2) of Sn+1.

This means that the map of co-FI-spaces ψ : F(C,•) −→ M0,•+1 induces an
isomorphism of graded FI-modules

H∗
(
F(C,•)

)∼= H∗
(
M0,•+1

)
⊗H∗(C∗),

where H∗(C∗) is the trivial graded FI-module given by n 7→ H∗(C∗;C).
Furthermore, Arnol’d obtained a presentation of the cohomology ring of F(C,n)

in ([1]).

Theorem 3.2. The cohomology ring H∗
(
F(C,n);C

)
is isomorphic to the C-algebra

Rn generated by 1 and forms ωi, j := d log(z j−zi)
2πi , 1 ≤ i 6= j ≤ n, with relations
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ωi, j = ω j,i, ωi, jωk,l = −ωk,lωi, j and ωi, jω j,k +ω j,kωk,i +ωk,iωi, j = 0. The action
Sn is given by σ ·ωi, j = ωσ(i)σ( j) for σ ∈ Sn.

As a consequence of the isomorphism in Proposition 3.1, we also have a concrete
description of the cohomology ring H∗

(
M0,n+1;C

)
. We refer the reader to [11, Cor.

3.1], [9, Theorem 3.4] and references therein.

Theorem 3.3. The cohomology ring H∗
(
M0,n+1;C

)
is isomorphic to the subalge-

bra of Rn generated by 1 and elements θi, j := ωi, j −ω12 for {i, j} 6= {1,2}. The
Sn-action given by σ ·θi, j = θσ(i),σ( j)−θσ(1),σ(2), for σ ∈ Sn.

4 Finite generation

We can use the explicit presentations in Theorems 3.2 and 3.3 to understand the
FI-modules H i

(
F(•,C)

)
and H i(M0,•+1).

An FI-module V over C is said to be finitely generated in degree≤m if there exist
v1, . . . ,vs, with each vi ∈ Vni and ni ≤ m, such that V is the minimal sub-FI-module
of V containing v1, . . . ,vs. Finitely generated FI-modules have strong closure prop-
erties: extensions and quotients of finitely generated FI-modules are still finitely
generated and finite generation is preserved when taking sub-FI-modules.

Notice that from Theorem 3.2 it follows that H1
(
F(n;C);C

)
is generated as

an Sn-module by the class ω1,2. Therefore, the FI-module H1
(
F(•;C)

)
is finitely

generated in degree 2 by the class ω1,2 in H1
(
F(2;C)

)
.

Similarly, from Theorem 3.3 we know that H1(M0,n+1) is generated by the
θi, j classes and notice that θ1, j = ( j 3) · θ1,3 for j 6= {1,2}; θ2, j = ( j 3) · θ2,3 for
j 6= {1,2} and θi, j = (i 3)( j 4) · θ3,4 for {i, j} 6= {1,2}. Therefore, H1(M0,n+1) is
generated by θ1,3, θ2,3 and θ3,4 as an Sn-module. This means that the FI-module
H1(M0,•+1) is finitely generated by the classes θ1,3, θ2,3 and θ3,4 in H1(M0,•+1)4,
hence in degree 4.

An FI-module V encodes the information of the sequence Vn of Sn-representations.
Finite generation of V puts strong constraints on the decomposition of each Vn into
irreducible representations and its character.

Notation for representations of Sn. The irreducible representations of Sn over C
are classified by partitions of n. A partition λ of n is a set of positive integers λ1 ≥
·· · ≥ λl > 0 where l ∈Z and λ1+ · · ·+λl = n. We write |λ |= n. The corresponding
irreducible Sn-representation will be denoted by Vλ . Every Vλ is defined over C and
any Sn-representation decomposes over C into a direct sum of irreducibles.

If λ is any partition of m, i.e. |λ | = m, then for any n ≥ |λ |+ λ1 the padded
partition λ [n] of n is given by n−|λ | ≥ λ1≥ ·· · ≥ λl > 0. Keeping the notation from
[5], we set V (λ )n = Vλ [n] for any n ≥ |λ |+λ1. Every irreducible Sn-representation
is of the form V (λ )n for a unique partition λ . We define the length of an irreducible
representation of Sn to be the number of parts in the corresponding partition of n.
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The trivial representation has length 1, and the alternating representation has length
n. We define the length `(V ) of a finite dimensional representation V of Sn to be the
maximum of the lengths of the irreducible constituents.

We say that an FI-module V over C has weight ≤ d if for every n≥ 0 and every
irreducible constituent V (λ )n we have |λ | ≤ d. The degree of generation of an FI-
module V gives an upper bound for the weight ([3, Prop. 3.2.5]). The weight of
an FI-module is closed under subquotients and extensions. Moreover, if a finitely
generated FI-module V has weight≤ d, by definition, `(Vn)≤ d+1 for all n and the
alternating representation cannot not appear in the decomposition into irreducibles
of Vn once n > d +1.

Notice that the FI-module H1
(
F(•;C)

)
has weight at most 2 and so does

H1(M0,•+1), since it is a sub-FI-module of H1
(
F(•;C)

)
.

An FI-module V has stability degree ≤ N, if for every a ≥ 0 and n ≥ N + a the
map of coinvariants

(In)∗ : (Vn)Sn−a → (Vn+1)S(n+1)−a (1)

induced by the standard inclusion In : {1, . . .n} ↪→ {1, . . . ,n,n+ 1}, is an isomor-
phism of Sa-modules (see [3, Definition 3.1.3] for a more general definition).
Here, Sn−a is the subgroup of Sn that permutes {a+ 1, . . . ,n} and acts trivially on
{1,2, . . . ,a}. The coinvariant quotient (Vn)Sn−a is the Sa-module Vn⊗C[Sn−a]C, the
largest quotient of Vn on which Sn−a acts trivially.

The finite generation properties of the FI-modules H i
(
F(•;C)

)
have already

been discussed in [3, Example 5.1.A].

Proposition 4.1. The FI-module H i
(
F(•;C)

)
is finitely generated with weight≤ 2i

and has stability degree ≤ 2i

Proof. From Theorem 3.2 the graded FI-module H∗
(
F(•;C)

)
is generated by the

FI-module H1
(
F(•;C)

)
that has weight ≤ 2. It follows by [3, Theorem 4.2.3] that

H i
(
F(•;C)

)
is finitely generated with weight≤ 2i. Moreover, in [3] it is shown that

H i
(
F(•;C)

)
has the additional structure of what [3] calls an FI#-module, which

implies that it has stability degree bounded above by the weight (see proof of [3,
Cor. 4.1.8]).

Finite generation for the FI-modules H i(M0,•+1) follows from Theorem 3.3 and
Proposition 4.1.

Theorem 4.2. The FI-module H i(M0,•+1) is finitely generated in degree≤ 4i, with
weight ≤ 2i and has stability degree ≤ 2i.

Proof. By Theorem 3.3 the graded FI-module H∗(M0,•+1) is generated by the FI-
module H1(M0,•+1), which is finitely generated in degree ≤ 4 and has weight ≤
2. It follows from [3, Proposition 2.3.6] that the FI-module H i(M0,•+1) is finitely
generated in degree ≤ 4i. By [3, Corolary 4.2.A] it has weight ≤ 2i.

Moreover, from [3, Lemma 3.1.6] we have that the stability degree of H i(M0,•+1)
is bounded above by the stability degree of H i

(
F(•;C)

)
.
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From H i(M0,•+1) to the FI-module H i(M0,•). The relation between the degree of
generation of an FI-module V and its “shift” S+1V was established in [4, Cor. 2.13].
We can also relate the weights and stability degrees using the classical branching
rule (see e.g. [8]).

Proposition 4.3. Let λ be a partition of n+1 and Vλ the corresponding irreducible
Sn+1-representation, then as Sn-representations we have the decomposition

ResSn+1
Sn

Vλ
∼=
⊕

ν

Vν

over those partitions ν of n obtained from λ by removing one box from one of the
columns of the corresponding Young diagram.

Theorem 4.4 (Finite generation and “shifted” FI-modules). Let V be a finitely
generated FI-module generated in degree ≤ d, then S+1V is finitely generated in
degree ≤ d. Conversely, if the FI-module S+1V is finitely generated in degree ≤ d,
then V is finitely generated in degree ≤ d +1.

Furthermore, if S+1V has weight≤M and stability degree≤N, then V has weight
≤M+1 and stability degree≤N+1. Conversely, if V has weight≤M and stability
degree ≤ N, then S+1V has weight ≤M and stability degree ≤ N.

Proof. If V has weight≤M, then for all n≥ 0, the irreducible components V (µ)n+1

of Vn+1 have |µ| ≤M. From Proposition 4.3 it follows that ResSn+1
Sn

V (µ)n+1 will be
a direct sum of irreducibles V (λ )n, with |λ | ≤ |µ| ≤ M. Conversely, if S+1V has
weight ≤ M, then each irreducible component V (λ )n of S+1Vn has |λ | ≤ M. By
Proposition 4.3, it comes from the restriction of some V (µ)n+1 with |µ| ≤ |λ |+1≤
M+1.

On the other hand, the functor Ξ1 sends {1, . . . ,a} into {2, . . . ,a+ 1} and {a+
1, . . . ,n} into {a+ 2, . . . ,n+ 1}. Therefore, the inclusion Jn : Sn ↪→ Sn+1 maps the
subgroup Sn−a of Sn onto the subgroup S(n+1)−(a+1) of Sn+1 and we have that

(Vn+1)S(n+1)−(a+1) =Vn+1⊗C[S(n+1)−(a+1)]
C= S+1(V )n⊗C[Sn−a]C=

(
S+1(V )n

)
Sn−a

,

which implies the statement about stability degrees.

In [12] we proved finite generation for the FI-modules H i(Mg,•) when g ≥ 2.
The case when g = 0 follows from Theorem 4.4 and Theorem 4.2.

Theorem 4.5. The FI-module H i(M0,•) is finitely generated with weight ≤ 2i+ 1
and has stability degree ≤ 4i.

The first cohomology group. Recall that H1(M0,•+1)n is generated by the classes
θi, j =ωi, j−ω1,2 and it is a subrepresentation of H1(F(n,C)) which has a basis given
by the classes ωi, j. In particular, notice that dimH1(M0,•+1)n = dimH1(F(n,C))−
1. Moreover for n≥ 4, we have the decomposition

H1(F(n,C)) =V (0)n⊕V (1)n⊕V (2)n.
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Then, for n≥ 4 the Sn-representation

H1(M0,•+1)n =V (1)n⊕V (2)n ∼= ResSn+1
Sn

H1(M0,n+1).

Proposition 4.3 implies that for n ≥ 4, we have that H1(M0,n+1) = V (2)n+1 as a
representation of Sn+1. Moreover, notice that H1(M0,n+1) is finitely generated by
the classes θ1,3, θ2,3 and θ3,4 in H1(M0,5) not only an an Sn-module, but also as an
Sn+1-module. Therefore, the FI-module H1(M0,•) is finitely generated in degree≤ 5
and has weight ≤ 2.

5 The Sn-representations H i(M0,n;C)

At this point we can apply the theory of FI-modules to the finitely generated FI-
modules H i(M0,•) and H i(M0,•+1) to obtain information about the corresponding
sequences of Sn-representations and their characters. The following result is a direct
consequence from [3, Prop. 3.3.3 and Theorem 3.3.4] and Theorems 4.2 and 4.5.

Theorem 5.1. Let i ≥ 0. For n ≥ 4i+ 2, the sequence
{

H i(M0,n)
}

of representa-
tions of Sn and the sequence

{
H i(M0,•+1)n−1

}
of Sn−1-representations satisfy the

following:
(a) The decomposition into irreducibles of H i(M0,n;C) and of H i(M0,•+1;C)n−1

stabilize in the sense of uniform representation stability ([5]) with stable range n≥
4i+2.

(b) The length of H i(M0,•+1;C)n−1 is bounded above by 2i and the length of
H i(M0,n;C) is bounded above by 2i+1.

(c) The sequence of characters of the representations H i(M0,•+1;C)n−1 and
H i(M0,n;C) are eventually polynomial, in the sense that there exist character poly-
nomials Pi(X1,X2, . . . ,Xr) and Qi(X1,X2, . . . ,Xs) in the cycle-counting functions
Xk(σ) :=(number of k-cycles in σ ) such that for all n≥ 4i+2:

χH i(M0,•+1;C)n−1
(σ) = Pi(X1,X2, . . . ,Xr)(σ) for all σ ∈ Sn−1, and

χH i(M0,n;C)(σ) = Qi(X1,X2, . . . ,Xs)(σ) for all σ ∈ Sn.

Moreover, the degree of Pi is ≤ 2i and the degree of Qi is ≤ 2i+ 1, where we take
degXk = k. In particular, r ≤ 2i and s≤ 2i+1.

If e ∈ Sn−1 is the identity element, from Theorem 5.1(c), we obtain that the di-
mensions

dimC
(
H i(M0,n;C)

)
= χH i(M0,•+1;C)n−1

(e) = Pi(X1(e), . . . ,Xr(e)) = Pi(n−1, . . . ,0)
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are polynomials in n of degree ≤ 2i. This agrees with the known Poincaré polyno-
mial of M0,n (see[15, Cor. 2.10] and also [11, 5.5(8)]).

From Theorem 4.5 and the definition of weight, we recover the fact that the
alternating representation does not appear in the cohomology of M0,n ([15, Prop.
2.16]).

Theorem 5.1(a) implies that the dimensions of the vector spaces H i(M0,n/Sn;C)
and H i(M0,n+1/Sn;C) are constant. For the sequence {M0,n/Sn}, this is actually a
trivial consequence from the fact that M0,n/Sn has the cohomology of a point as
shown in [15, Theorem 2.3].

Recursive relation for characters. In [9, Theorem 4.1], Gaiffi obtained a recur-
sive formula that connects the characters of the Sn-representations H∗(M0,•+1)n and
H∗(M0,n) as follows

χH i(M0,•+1)n
= χH i(M0,n)

+
(
X1−1

)
·χH i−1(M0,n)

for n≥ 3. (2)

In particular, we know that χH1(M0,•+1)n
= χH1(F(n,C))−1 =

(X1
2

)
+X2−1 when

n≥ 4. Therefore, for i = 1, the recursive formula (2) gives us the character polyno-
mial of degree 2

χH1(M0,n)
= χH1(M0,•+1)n

−
(
X1−1

)
·χH0(M0,n)

=

(
X1

2

)
+X2−X1 = χV (2)

as expected since H1(M0,n) =V (2)n.
Furthermore, if Pi and Qi are the character polynomials of H i(M0,•+1)n and

H i(M0,n) from Theorem 5.1 (c) for n ≥ 4i + 2, then formula (2) can be written
as Qi = Pi− (X1−1) ·Qi−1 and degQi ≤ max

(
degPi,1+degQi−1

)
≤ 2i. As a con-

sequence of this and Theorem 5.1 (c) we have that, for n ≥ 4i+ 2, the values of
χH i(M0,•+1;C)n

(σ) and χH i(M0,n;C)(σ) depend only on “short cycles”, i.e. cycles on
σ of length ≤ 2i.

More is known about the Sn-representations. In this paper we were mainly inter-
ested in highlighting the methods, since more precise information about the charac-
ters of the Sn-representations is known. The moduli space M0,n can be represented
by a finite type Z-scheme and the manifold M0,n(C) of C-points of this scheme
corresponds to the definition in Section 1. In [15] Kisin and Lehrer used an equiv-
ariant comparison theorem in `-adic cohomology and the Grothendieck-Lefschetz’s
fixed point formula to obtain explicit descriptions of the graded character of the
Sn-action on the cohomology of M0,n(C) via counts of number of points of vari-
eties over finite fields. With their techniques they obtain the Poincaré polynomial
of a permutation in Sn of a specific cycle type acting on H∗(M0,n;C) ([15, Theo-
rem 2.9]) and a description of the top cohomology Hn−3(M0,n;C) [15, Proposition
2.18]. Furthermore, Getzler uses the language of operads in [11] to obtain formulas
for the characters of the Sn-modules H i(M0,n;C).
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The cohomology of M0,n. A related space of interest is M0,n, the Deligne-Mumford
compactification of M0,n. It is a fine moduli space for stable n-pointed rational
curves for n ≥ 3 (see [16, Chapter 1] and reference therein). It can also be con-
structed from M(dAn−1) using the theory of wonderful models of hyperplanes ar-
rangements developed by De Concini and Procesi (see for example [10, Chapter
2]). The space M0,n also carries a natural action of the symmetric group Sn. Hence,
a natural question to ask is whether the FI-module theory could tell us something
about its cohomology groups as Sn-representations.

Explicit presentations of the cohomology ring of the manifold of complex points
M0,n(C) have been obtained by Keel [14] and Yuzvinsky [19]. Moreover, several re-
cursive and generating formulas for the Poincaré polynomials have been computed
(for instance see [19],[11], [17], [2]). The sequence H i(M0,n(C);C) has the struc-
ture of an FI-module, however, the Betti numbers of M0,n(C) grow exponentially in
n, which precludes finite generation. Therefore an analogue of Theorem 5.1 cannot
be obtained for this space.

On the other hand, as observed in [6], the manifold M0,n(R) of real points of
M0,n is topologically similar to F(C,n− 1), the configuration space of n− 1 or-
dered points in C, in the sense that both are K(π,1)-spaces, have Poincaré poly-
nomials with a simple factorization and Betti numbers that grow polynomially in
n. The cohomology ring of the real locus M0,n(R) was completely determined in
[6] and an explicit formula for the graded character of the Sn-action was obtained
in [18]. The presentation of the cohomology ring given in [6] can be used to prove
finite generation for the FI-modules H i(M0,n(R);C) and to obtain an analogue of
Theorem 5.1 for this space (see [13]).
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[17] Y. I. Manin. Generating functions in algebraic geometry and sums over trees.
In The moduli space of curves (Texel Island, 1994), volume 129 of Progr.
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