The cohomology of $\mathcal{M}_{0,n}$ as an FI-module

Rita Jiménez Rolland

Abstract In this paper we revisit the cohomology groups of the moduli space of n-pointed curves of genus zero using the FI-module perspective introduced by Church-Elenberg-Farb. We recover known results about the corresponding representations of the symmetric group.

1 Introduction

Our space of interest is $\mathcal{M}_{0,n}$, the moduli space of n-pointed curves of genus zero. It is defined as the quotient

$$\mathcal{M}_{0,n} := \mathcal{F}(\mathbb{P}^1(\mathbb{C}), n)/\text{Aut}(\mathbb{P}^1(\mathbb{C})),$$

where $\mathcal{F}(\mathbb{P}^1(\mathbb{C}), n)$ is the configuration space of n-ordered points in the projective line $\mathbb{P}^1(\mathbb{C})$ and the automorphism group of the projective line $\text{Aut}(\mathbb{P}^1(\mathbb{C})) = \text{PGL}_2(\mathbb{C})$ acts componentwise on $\mathcal{F}(\mathbb{P}^1(\mathbb{C}), n)$. For $n \geq 3$, $\mathcal{M}_{0,n}$ is a fine moduli space for the problem of classifying smooth n-pointed rational curves up to isomorphism ([16 Proposition 1.1.2]).

The space $\mathcal{M}_{0,n}$ carries a natural action of the symmetric group S_n. The cohomology ring of $\mathcal{M}_{0,n}$ is known and the S_n-representations $H^i(\mathcal{M}_{0,n}; \mathbb{C})$ are well-understood (see for example [9], [15], [11]).

In this survey, we will consider the sequence of S_n-representations $H^i(\mathcal{M}_{0,n}; \mathbb{C})$ as a single object, an FI-module over \mathbb{C}. Via this example, we introduce the basics of the FI-module theory developed by Church, Ellenberg and Farb in [3]. We then use a well-known description of the cohomology ring of $\mathcal{M}_{0,n}$ to show in Theorem 4.5 that...
a finite generation property is satisfied which allows us to recover information about the S_n-representations in Theorem 5.1. Specifically, we obtain a stability result concerning the decomposition of $H^i \left(M_{0,n}; \mathbb{C} \right)$ into irreducible S_n-representations, we exhibit a bound on the lengths of the representations and show that their characters have a highly constrained “polynomial” form.

2 The co-FI-spaces $\mathcal{M}_{0, \bullet}$ and $\mathcal{M}_{0, \bullet+1}$

Let FI be the category whose objects are natural numbers n and whose morphisms $m \to n$ are injections from $[m] := \{1, \ldots, m\}$ to $[n] := \{1, \ldots, n\}$.

We are interested in the co-FI-space $\mathcal{M}_{0, \bullet}$: the functor from FI^{op} to the category Top of topological spaces given by given by $n \mapsto \mathcal{M}_{0,n}$ that assigns to $f : [m] \to [n]$ in $\text{Hom}_{\text{FI}}(m, n)$ the morphism $f^* : \mathcal{M}_{0,n} \to \mathcal{M}_{0,m}$ defined by $f^* \left(\left([p_1, p_2, \ldots, p_m] \right) \right) = \left([f(p_1), f(p_2), \ldots, f(p_m)] \right)$. This is a particular case of the co-FI-space $\mathcal{M}_{g, \bullet}$ considered in [12] which is the functor given by $n \mapsto \mathcal{M}_{g,n}$, the moduli space of Riemann surfaces of genus g with n marked points.

An FI-module over \mathbb{C} is a functor V from FI to the category of \mathbb{C}-vector spaces $\text{Vec}_\mathbb{C}$. Below, we denote $V(n)$ by V_n. Church, Ellenberg and Farb used FI-modules in [3] to encode sequences of S_n-representations in single algebraic objects and with this added structure significantly strengthened the representation stability theory introduced in [5]. FI-modules translate the representation stability property into a finite generation condition.

By composing the co-FI-space $\mathcal{M}_{0, \bullet}$ with the cohomology functor $H^\bullet(-; \mathbb{C})$, we obtain the FI-module $H^\bullet(\mathcal{M}_{0, \bullet}) := H^\bullet(\mathcal{M}_{0, \bullet}; \mathbb{C})$. We can also consider the graded version $H^\bullet(\mathcal{M}_{0, \bullet}) := H^\bullet(\mathcal{M}_{0, \bullet}; \mathbb{C})$, we call this a graded FI-module over \mathbb{C}.

The co-FI-space $\mathcal{F}(\mathbb{C}, \bullet)$ given by $n \mapsto \mathcal{F}(\mathbb{C}, n)$, the configuration space of n ordered points in \mathbb{C}, and the corresponding FI-modules $H^i(\mathcal{F}(\mathbb{C}, \bullet))$ are key in our discussion below. In the expository paper [7], representation stability and FI-modules are motivated mainly through this example. A formal discussion of FI-modules and their properties is given in [3]. In [4] the theory of FI-modules is extended to modules over arbitrary Noetherian rings.

The “shifted” co-FI-space $\mathcal{M}_{0, \bullet+1}$. Consider the functor Ξ_1 from FI to FI given by $[n] \mapsto [n] \cup \{0\}$. Notice that this functor induces the inclusion of groups

$$J_n : S_n = \text{End}_{\text{FI}}[n] \hookrightarrow \text{End}_{\text{FI}}[n+1] = S_{n+1}$$

that sends the generator $(i \ i + 1)$ of S_n to the transposition $(i + 1 \ i + 2)$ of S_{n+1}. In our discussion below we are interested in the “shifted” co-FI-space $\mathcal{M}_{0, \bullet+1}$ obtained by $\mathcal{M}_{0, \bullet} \circ \Xi_1$. Notice that this co-FI-space is given by $n \mapsto \mathcal{M}_{0,n+1}$. In the notation from [4] Section 2], this means that the FI-module

$$H^i(\mathcal{M}_{0, \bullet+1}) = S_{i+1} \left(H^i(\mathcal{M}_{0, \bullet}) \right),$$
where \(S_{+1} : \text{FI-Mod} \to \text{FI-Mod} \) is the shift functor given by \(S_{+1} := - \circ \mathbb{Z} \). The functor \(S_{+1} \) performs the restriction, from an \(S_{n+1} \)-representation to an \(S_n \)-representation, consistently for all \(n \) so that the resulting sequence of representations still has the structure of an FI-module. Comparing the \(S_n \)-representation \(H^i(M_{0,n+1}) \) with the \(S_{n+1} \)-representation \(H^i(M_{0,n+1}) \) we have an isomorphism of \(S_n \)-representations

\[
H^i(M_{0,n+1}) \cong \text{Res}^{S_{n+1}}_{S_n} H^i(M_{0,n+1}).
\]

3 Relation with the configuration space

We will understand the cohomology ring of \(M_{0,n} \) through its relation with the configuration space \(\mathcal{F}(\mathbb{C},n) \) of \(n \) ordered points in \(\mathbb{C} \).

In our descriptions below, we consider \(\mathbb{C}^1(\mathbb{C}) \) with coordinates \([t:z] \) and the embedding \(\mathbb{C} \hookrightarrow \mathbb{C}^1(\mathbb{C}) \), given by \(z \mapsto [1:z] \) and let \([0:1] = \infty \). We use the brackets to indicate “equivalence class of”. Since there is a unique element in \(\text{PGL}_2(\mathbb{C}) \) that takes any three distinct points in \(\mathbb{C}^1(\mathbb{C}) \) to \(([0:1],[1:0],[1:1]) = (\infty,0,1) \), every element in \(M_{0,n+1} \) can be written canonically as \([(0:1],[1:0],[1:1],[t_1 : z_1],\cdots,[t_{n-2} : z_{n-2}]]) \). Hence, \(M_{0,4} \cong \mathbb{C}^1(\mathbb{C}) \setminus \{\infty,0,1\} \) and \(M_{0,n+1} \cong \mathcal{F}(M_{0,4},n-2) \).

Define the map \(\psi : \mathcal{F}(\mathbb{C},n) \to M_{0,n+1} \) by

\[
\psi(z_1,z_2,\ldots,z_n) = \left((\infty,0,1,\frac{z_3-z_1}{z_2-z_1},\frac{z_4-z_1}{z_2-z_1},\ldots,\frac{z_n-z_1}{z_2-z_1}) \right).
\]

The symmetric group \(S_n \) acts on \(\mathcal{F}(\mathbb{C},n) \) by permuting the coordinates. Let \((1,2),(2,3),\ldots,(n-1,n)\) be transpositions generating \(S_n \) and notice that

\[
\psi((1,2) \cdot (z_1,z_2,\ldots,z_n)) = \left((\infty,0,1,\frac{z_3-z_2}{z_1-z_2},\frac{z_4-z_2}{z_1-z_2},\ldots,\frac{z_n-z_2}{z_1-z_2}) \right)
\]

\[
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \left((0:1],[1:0],[1:1],[\frac{z_3-z_1}{z_1-z_2},\frac{z_4-z_1}{z_1-z_2},\ldots,\frac{z_n-z_1}{z_1-z_2}) \right)
\]

\[
= \begin{bmatrix} 0 \cdot 1 & 1 \\ 1 \cdot 1 & 0 \end{bmatrix} \cdot \left((0:1],[1:0],[1:1],[\frac{z_3-z_1}{z_1-z_2},\frac{z_4-z_1}{z_1-z_2},\ldots,\frac{z_n-z_1}{z_1-z_2}) \right)
\]

\[
= (2,3) \cdot \psi(z_1,z_2,\ldots,z_n)
\]

and in general

\[
\psi((i,i+1) \cdot (z_1,z_2,\ldots,z_n)) = (i+1,i+2) \cdot \psi(z_1,z_2,\ldots,z_n) \quad \text{for} \quad i \geq 2.
\]

Therefore the map \(\psi : \mathcal{F}(\mathbb{C},n) \to M_{0,n+1} \) is equivariant with respect to the inclusion \(J_n : S_n \hookrightarrow S_{n+1} \). In other words, \(\psi : \mathcal{F}(\mathbb{C},\bullet) \to M_{0,\bullet+1} \) is a map of co-FI-spaces.
Relation with the Coxeter arrangement of type A_{n-1}. The complement of the complexified Coxeter arrangement of hyperplanes type A_{n-1} is $M(A_{n-1})$, the image of $\mathcal{F}(\mathbb{C}, n)$ under the quotient map $\mathbb{C}^n \to \mathbb{C}^n/N$, where $N = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : z_i = z_j \text{ for } 1 \leq i, j \leq n\}$.

As explained in [9], it turns out that the moduli space $M_{0,n+1}$ is also in bijective correspondence with the projective arrangement

\[
M(dA_{n-1}) := \pi(M(A_{n-1})) \cong M(A_{n-1})/\mathbb{C}^*,
\]

where $\pi : \mathbb{C}^{n-1}\setminus\{0\} \to \mathbb{P}^{n-2}(\mathbb{C})$ is the Hopf bundle projection, which takes $z \in \mathbb{C}^{n-1}\setminus\{0\}$ to λz for $\lambda \in \mathbb{C}^*$. Moreover, the map ψ factors through $M(A_{n-1})$ and $M(dA_{n-1})$.

\[
\begin{array}{ccc}
\mathcal{F}(\mathbb{C}, n) & \xrightarrow{\psi} & M(dA_{n-1}) \\
\downarrow{\pi} & & \downarrow{\cong} \\
M_{0,n+1} & & \end{array}
\]

In [9], Gaiffi extends the natural S_n-action on $H^*(M(A_{n-1}); \mathbb{C})$ to an S_{n+1}-action using the vertical map in the diagram above and the natural S_{n+1}-action on $H^*(M_{0,n+1}; \mathbb{C})$.

The cohomology rings. As proved in [9] Prop. 2.2 & Theorem 3.2, the map ψ allows us to relate the cohomology rings of $M_{0,n+1}$ and $\mathcal{F}(\mathbb{C}, n)$. See also [11, Cor. 3.1].

Proposition 3.1. The maps ψ induces an isomorphism of cohomology rings

\[
H^*(\mathcal{F}(\mathbb{C}, n); \mathbb{C}) \cong H^*(M_{0,n+1}; \mathbb{C}) \otimes H^*(\mathbb{C}^*; \mathbb{C})
\]

as S_n-modules. The symmetric group S_n acts trivially on $H^*(\mathbb{C}^*; \mathbb{C})$ and acts on $H^*(M_{0,n+1}; \mathbb{C})$ through the inclusion $J_n : S_n \hookrightarrow S_{n+1}$ that sends the generator $(i+1)$ of S_n to the transposition $(i+1)(i+2)$ of S_{n+1}.

This means that the map of co-FI-spaces $\psi : \mathcal{F}(\mathbb{C}, \bullet) \to M_{0,\bullet+1}$ induces an isomorphism of graded FI-modules

\[
H^*(\mathcal{F}(\mathbb{C}, \bullet)) \cong H^*(M_{0,\bullet+1}) \otimes H^*(\mathbb{C}^*),
\]

where $H^*(\mathbb{C}^*)$ is the trivial graded FI-module given by $n \mapsto H^*(\mathbb{C}^*; \mathbb{C})$.

Furthermore, Arnol’d obtained a presentation of the cohomology ring of $\mathcal{F}(\mathbb{C}, n)$ in (11).

Theorem 3.2. The cohomology ring $H^*(\mathcal{F}(\mathbb{C}, n); \mathbb{C})$ is isomorphic to the \mathbb{C}-algebra \mathcal{R}_n generated by 1 and forms $\omega_{i,j} := \frac{d \log(z_j - z_i)}{2\pi i}$, $1 \leq i \neq j \leq n$, with relations...
The cohomology of \(M_{0,n} \) as an FI-module

\[
\omega_{i,j} = \omega_{j,i}, \quad \omega_{i,j} \omega_{k,j} = -\omega_{k,j} \omega_{i,j} \quad \text{and} \quad \omega_{i,j} \omega_{j,k} + \omega_{j,k} \omega_{k,i} + \omega_{k,i} \omega_{i,j} = 0. \]

The action of \(S_n \) is given by \(\sigma \cdot \omega_{i,j} = \omega_{\sigma(i)\sigma(j)} \) for \(\sigma \in S_n \).

As a consequence of the isomorphism in Proposition 3.1, we also have a concrete description of the cohomology ring \(H^*(M_{0,n+1}; \mathbb{C}) \). We refer the reader to [11, Cor. 3.1], [9, Theorem 3.4] and references therein.

Theorem 3.3. The cohomology ring \(H^*(M_{0,n+1}; \mathbb{C}) \) is isomorphic to the subalgebra of \(\mathcal{R}_n \) generated by 1 and elements \(\theta_{i,j} := \omega_{i,j} - \omega_{12} \) for \(\{i, j\} \neq \{1, 2\} \). The \(S_n \)-action given by \(\sigma \cdot \theta_{i,j} = \theta_{\sigma(i)\sigma(j)} - \theta_{\sigma(1)\sigma(2)} \), for \(\sigma \in S_n \).

4 Finite generation

We can use the explicit presentations in Theorems 3.2 and 3.3 to understand the FI-modules \(H^*(\mathcal{F}(\bullet; \mathbb{C})) \) and \(H^*(M_{0,*+1}) \).

An FI-module \(V \) over \(\mathbb{C} \) is said to be **finitely generated in degree** \(\leq m \) if there exist \(v_1, \ldots, v_s \), with each \(v_i \in V_{n_i} \) and \(n_i \leq m \), such that \(V \) is the minimal sub-FI-module of \(V \) containing \(v_1, \ldots, v_s \). Finitely generated FI-modules have strong closure properties: extensions and quotients of finitely generated FI-modules are still finitely generated and finite generation is preserved when taking sub-FI-modules.

Notice that from Theorem 3.2, it follows that \(H^1(\mathcal{F}(n; \mathbb{C}); \mathbb{C}) \) is generated as a \(S_n \)-module by the class \(\omega_{1,2} \). Therefore, the FI-module \(H^1(\mathcal{F}(\bullet; \mathbb{C})) \) is finitely generated in degree 2 by the class \(\omega_{1,2} \) in \(H^1(\mathcal{F}(2; \mathbb{C})) \).

Similarly, from Theorem 3.3, we know that \(H^1(M_{0,n+1}) \) is generated by the \(\theta_{i,j} \) classes and notice that \(\theta_{i,j} = (j 3) \cdot \theta_{1,3} \) for \(j \neq \{1, 2\} \); \(\theta_{2,j} = (j 3) \cdot \theta_{2,3} \) for \(j \neq \{1, 2\} \) and \(\theta_{i,j} = (i 3)(j 4) \cdot \theta_{3,4} \) for \(\{i, j\} \neq \{1, 2\} \). Therefore, \(H^1(M_{0,n+1}) \) is generated by \(\theta_{1,3}, \theta_{2,3} \) and \(\theta_{3,4} \) as an \(S_n \)-module. This means that the FI-module \(H^1(M_{0,*+1}) \) is finitely generated by the classes \(\theta_{1,3}, \theta_{2,3} \) and \(\theta_{3,4} \) in \(H^1(M_{0,*+1}) \), hence in degree 4.

An FI-module \(V \) encodes the information of the sequence \(V_n \) of \(S_n \)-representations. Finite generation of \(V \) puts strong constraints on the decomposition of each \(V_n \) into irreducible representations and its character.

Notation for representations of \(S_n \). The irreducible representations of \(S_n \) over \(\mathbb{C} \) are classified by partitions of \(n \). A partition \(\lambda \) of \(n \) is a set of positive integers \(\lambda_1 \geq \cdots \geq \lambda_l \geq 0 \) where \(l \in \mathbb{Z} \) and \(\lambda_1 + \cdots + \lambda_l = n \). We write \(|\lambda| = n \). The corresponding irreducible \(S_n \)-representation will be denoted by \(V_{\lambda} \). Every \(V_{\lambda} \) is defined over \(\mathbb{C} \) and any \(S_n \)-representation decomposes over \(\mathbb{C} \) into a direct sum of irreducibles.

If \(\lambda \) is any partition of \(m \), i.e. \(|\lambda| = m \), then for any \(n \geq |\lambda| + \lambda_1 \) the **padded partition** \(\lambda[n] \) of \(n \) is given by \(n - |\lambda| \geq \lambda_1 \geq \cdots \geq \lambda_l > 0 \). Keeping the notation from [5], we set \(V(\lambda)[n] = V_{\lambda[n]} \) for any \(n \geq |\lambda| + \lambda_1 \). Every irreducible \(S_n \)-representation is of the form \(V(\lambda)[n] \) for a unique partition \(\lambda \). We define the **length** of an irreducible representation of \(S_n \) to be the number of parts in the corresponding partition of \(n \).
The trivial representation has length 1, and the alternating representation has length n. We define the length $\ell(V)$ of a finite dimensional representation V of S_n to be the maximum of the lengths of the irreducible constituents.

We say that an FI-module V over \mathbb{C} has weight $\leq d$ if for every $n \geq 0$ and every irreducible constituent $V(\lambda)_n$ we have $|\lambda| \leq d$. The degree of generation of an FI-module V gives an upper bound for the weight (\cite[Prop. 3.2.5]{3}). The weight of an FI-module is closed under subquotients and extensions. Moreover, if a finitely generated FI-module V has weight $\leq d$, by definition, $\ell(V_n) \leq d + 1$ for all n and the alternating representation cannot appear in the decomposition into irreducibles of V_n once $n > d + 1$.

Notice that the FI-module $H^1(\mathcal{F}(\bullet; \mathbb{C}))$ has weight at most 2 and so does $H^1(M_{0,*+1})$, since it is a sub-FI-module of $H^1(\mathcal{F}(\bullet; \mathbb{C}))$.

An FI-module V has stability degree $\leq N$, if for every $a \geq 0$ and $n \geq N + a$ the map of coinvariants

$$(I_n)_*: (V_n)_{S_n - a} \rightarrow (V_{n+1})_{S_{n+1} - a}$$

(1)

induced by the standard inclusion $I_n : \{1,\ldots,n\} \rightarrow \{1,\ldots,n,n+1\}$, is an isomorphism of S_n-modules (see \cite[Definition 3.1.3]{3} for a more general definition). Here, S_{n-a} is the subgroup of S_n that permutes $\{a+1,\ldots,n\}$ and acts trivially on $\{1,2,\ldots,a\}$. The coinvariant quotient $(V_n)_{S_n-a}$ is the S_n-module $V_n \otimes_{\mathbb{C}[S_n]} \mathbb{C}$, the largest quotient of V_n on which S_{n-a} acts trivially.

The finite generation properties of the FI-modules $H^i(\mathcal{F}(\bullet; \mathbb{C}))$ have already been discussed in \cite[Example 5.1.A]{3}.

Proposition 4.1. The FI-module $H^i(\mathcal{F}(\bullet; \mathbb{C}))$ is finitely generated with weight $\leq 2i$ and has stability degree $\leq 2i$

Proof. From Theorem 3.2 the graded FI-module $H^i(\mathcal{F}(\bullet; \mathbb{C}))$ is generated by the FI-module $H^i(\mathcal{F}(\bullet; \mathbb{C}))$ that has weight ≤ 2. It follows by \cite[Theorem 4.2.3]{3} that $H^i(\mathcal{F}(\bullet; \mathbb{C}))$ is finitely generated with weight $\leq 2i$. Moreover, in \cite{3} it is shown that $H^i(\mathcal{F}(\bullet; \mathbb{C}))$ has the additional structure of what \cite{3} calls an FI#-module, which implies that it has stability degree bounded above by the weight (see proof of \cite[Cor. 4.1.8]{3}).

Finite generation for the FI-modules $H^i(M_{0,*+1})$ follows from Theorem 3.3 and Proposition 4.1.

Theorem 4.2. The FI-module $H^i(M_{0,*+1})$ is finitely generated in degree $\leq 4i$, with weight $\leq 2i$ and has stability degree $\leq 2i$.

Proof. By Theorem 3.3 the graded FI-module $H^i(M_{0,*+1})$ is generated by the FI-module $H^i(M_{0,*+1})$, which is finitely generated in degree ≤ 4 and has weight ≤ 2. It follows from \cite[Proposition 2.3.6]{3} that the FI-module $H^i(M_{0,*+1})$ is finitely generated in degree $\leq 4i$. By \cite[Corollary 4.2.A]{3} it has weight $\leq 2i$.

Moreover, from \cite[Lemma 3.1.6]{3} we have that the stability degree of $H^i(M_{0,*+1})$ is bounded above by the stability degree of $H^i(\mathcal{F}(\bullet; \mathbb{C}))$.

From $H^i(M_{0,n+1})$ to the FI-module $H^i(M_{0,*})$. The relation between the degree of generation of an FI-module V and its “shift” S_+V was established in [4 Cor. 2.13]. We can also relate the weights and stability degrees using the classical branching rule (see e.g. [3]).

Proposition 4.3. Let λ be a partition of $n+1$ and V_λ the corresponding irreducible S_{n+1}-representation, then as S_n-representations we have the decomposition

$$\text{Res}_{S_n}^{S_{n+1}}V_\lambda \cong \bigoplus_v V_v$$

over those partitions v of n obtained from λ by removing one box from one of the columns of the corresponding Young diagram.

Theorem 4.4 (Finite generation and “shifted” FI-modules). Let V be a finitely generated FI-module generated in degree $\leq d$, then S_+V is finitely generated in degree $\leq d$. Conversely, if the FI-module S_+V is finitely generated in degree $\leq d$, then V is finitely generated in degree $\leq d+1$.

Furthermore, if S_+V has weight $\leq M$ and stability degree $\leq N$, then V has weight $\leq M+1$ and stability degree $\leq N+1$. Conversely, if V has weight $\leq M$ and stability degree $\leq N$, then S_+V has weight $\leq M$ and stability degree $\leq N$.

Proof. If V has weight $\leq M$, then for all $n \geq 0$, the irreducible components $V(\mu)_{n+1}$ of V_{n+1} have $|\mu| \leq M$. From Proposition 4.3 it follows that $\text{Res}_{S_n}^{S_{n+1}}V(\mu)_{n+1}$ will be a direct sum of irreducibles $V(\lambda)_{n}$, with $|\lambda| \leq |\mu| \leq M$. Conversely, if S_+V has weight $\leq M$, then each irreducible component $V(\lambda)_{n}$ of S_+V has $|\lambda| \leq M$. By Proposition 4.3, it comes from the restriction of some $V(\mu)_{n+1}$ with $|\mu| \leq |\lambda| + 1 \leq M+1$.

On the other hand, the functor Ξ_1 sends $\{1, \ldots, a\}$ into $\{2, \ldots, a+1\}$ and $\{a+1, \ldots, n\}$ into $\{a+2, \ldots, n+1\}$. Therefore, the inclusion $J_n : S_n \hookrightarrow S_{n+1}$ maps the subgroup S_n of S_{n+1} onto the subgroup $S_{n+1}(\bullet_{n+1})$ of S_{n+1} and we have that

$$(V_{n+1})_{S_n \hookrightarrow S_{n+1}(\bullet_{n+1})} = V_{n+1} \otimes C[S_{n+1}(\bullet_{n+1})] C = S_{n+1}(V)_{n} \otimes C[S_{a-n}] C = (S_{n+1}(V)_{n})_{S_{n-a}},$$

which implies the statement about stability degrees.

In [12] we proved finite generation for the FI-modules $H^i(M_{g,*})$ when $g \geq 2$. The case when $g = 0$ follows from Theorem 4.4 and Theorem 4.2.

Theorem 4.5. The FI-module $H^i(M_{0,*})$ is finitely generated with weight $\leq 2i$ and has stability degree $\leq 4i$.

The first cohomology group. Recall that $H^1(M_{0,*})$ is generated by the classes $\theta_{i,j} = \omega_{i,j} - \omega_{i,2}$ and it is a subrepresentation of $H^1(\mathcal{F}(n, \mathbb{C}))$ which has a basis given by the classes ω_n. In particular, notice that $\dim H^1(M_{0,*}) = \dim H^1(\mathcal{F}(n, \mathbb{C})) - 1$. Moreover for $n \geq 4$, we have the decomposition

$$H^1(\mathcal{F}(n, \mathbb{C})) = V(0)_{n} \oplus V(1)_{n} \oplus V(2)_{n}. $$
Then, for \(n \geq 4 \) the \(S_n \)-representation

\[
H^1(M_{0,\bullet+1})_n = V(1)_n \oplus V(2)_n \cong \text{Re}^{S_{n+1}}_n H^1(M_{0,n+1}).
\]

Proposition 4.3 implies that for \(n \geq 4 \), we have that \(H^1(M_{0,n+1}) = V(2)_{n+1} \) as a representation of \(S_{n+1} \). Moreover, notice that \(H^1(M_{0,n+1}) \) is finitely generated by the classes \(\theta_{1,3}, \theta_{2,3} \) and \(\theta_{3,4} \) in \(H^1(M_{0,5}) \) not only as an \(S_n \)-module, but also as an \(S_{n+1} \)-module. Therefore, the FI-module \(H^1(M_{0,\bullet}) \) is finitely generated in degree \(\leq 5 \) and has weight \(\leq 2 \).

5 The \(S_n \)-representations \(H^i(M_{0,n}; \mathbb{C}) \)

At this point we can apply the theory of FI-modules to the finitely generated FI-modules \(H^i(M_{0,\bullet}) \) and \(H^i(M_{0,\bullet+1}) \) to obtain information about the corresponding sequences of \(S_n \)-representations and their characters. The following result is a direct consequence from [3, Prop. 3.3.3 and Theorem 3.3.4] and Theorems 4.2 and 4.5.

Theorem 5.1. Let \(i \geq 0 \). For \(n \geq 4i+2 \), the sequence \(\{H^i(M_{0,n})\} \) of representations of \(S_n \) and the sequence \(\{H^i(M_{0,\bullet+1})_{n-1}\} \) of \(S_{n-1} \)-representations satisfy the following:

(a) The decomposition into irreducibles of \(H^i(M_{0,n}; \mathbb{C}) \) and of \(H^i(M_{0,\bullet+1}; \mathbb{C})_{n-1} \) stabilize in the sense of uniform representation stability ([5]) with stable range \(n \geq 4i+2 \).

(b) The length of \(H^i(M_{0,\bullet+1}; \mathbb{C})_{n-1} \) is bounded above by \(2i \) and the length of \(H^i(M_{0,n}; \mathbb{C}) \) is bounded above by \(2i+1 \).

(c) The sequence of characters of the representations \(H^i(M_{0,\bullet+1}; \mathbb{C})_{n-1} \) and \(H^i(M_{0,n}; \mathbb{C}) \) are eventually polynomial, in the sense that there exist character polynomials \(P_i(X_1, X_2, \ldots, X_r) \) and \(Q_i(X_1, X_2, \ldots, X_s) \) in the cycle-counting functions \(X_k(\sigma) := (\text{number of } k\text{-cycles in } \sigma) \) such that for all \(n \geq 4i+2 \):

\[
\chi_{H^i(M_{0,\bullet+1}; \mathbb{C})_{n-1}}(\sigma) = P_i(X_1, X_2, \ldots, X_r)(\sigma) \quad \text{for all } \sigma \in S_{n-1}, \quad \text{and}
\]

\[
\chi_{H^i(M_{0,n}; \mathbb{C})}(\sigma) = Q_i(X_1, X_2, \ldots, X_s)(\sigma) \quad \text{for all } \sigma \in S_n.
\]

Moreover, the degree of \(P_i \) is \(\leq 2i \) and the degree of \(Q_i \) is \(\leq 2i+1 \), where we take \(\text{deg } X_k = k \). In particular, \(r \leq 2i \) and \(s \leq 2i+1 \).

If \(e \in S_{n-1} \) is the identity element, from Theorem 5.1(c), we obtain that the dimensions

\[
\dim_{\mathbb{C}}(H^i(M_{0,n}; \mathbb{C})) = \chi_{H^i(M_{0,\bullet+1}; \mathbb{C})_{n-1}}(e) = P_i(X_1(e), \ldots, X_r(e)) = P_i(n-1, \ldots, 0)
\]
are polynomials in \(n \) of degree \(\leq 2i \). This agrees with the known Poincaré polynomial of \(\mathcal{M}_{0,n} \) (see [15] Cor. 2.10 and also [11] 5.5(8)).

From Theorem 4.1 and the definition of weight, we recover the fact that the alternating representation does not appear in the cohomology of \(\mathcal{M}_{0,n} \) ([15] Prop. 2.16)].

Theorem 5.1(a) implies that the dimensions of the vector spaces \(H^i(\mathcal{M}_{0,n}/S_n; \mathbb{C}) \) and \(H^0(\mathcal{M}_{0,n+1}/S_n; \mathbb{C}) \) are constant. For the sequence \(\{\mathcal{M}_{0,n}/S_n\} \), this is actually a trivial consequence from the fact that \(\mathcal{M}_{0,n}/S_n \) has the cohomology of a point as shown in [15] Theorem 2.3].

Recursive relation for characters. In [9] Theorem 4.1], Gaiffi obtained a recursive formula that connects the characters of the \(\mathcal{S}_n \)-representations \(H^i(\mathcal{M}_{0,n+1}; \mathbb{C}) \) and \(H^i(\mathcal{M}_{0,n}; \mathbb{C}) \) as follows

\[
\chi_{H^i(\mathcal{M}_{0,n+1}; \mathbb{C})} = \chi_{H^i(\mathcal{M}_{0,n}; \mathbb{C})} + (X_1 - 1) \cdot \chi_{H^{i-1}(\mathcal{M}_{0,n}; \mathbb{C})} \quad \text{for } n \geq 3. \tag{2}
\]

In particular, we know that \(\chi_{H^1(\mathcal{M}_{0,n+1}; \mathbb{C})} = \chi_{H^1(\mathcal{S}(n, \mathbb{C}))} - 1 = \left(\frac{X_1}{2} \right) + X_2 - 1 \) when \(n \geq 4 \). Therefore, for \(i = 1 \), the recursive formula (2) gives us the character polynomial of degree 2

\[
\chi_{H^1(\mathcal{M}_{0,n}; \mathbb{C})} = \chi_{H^1(\mathcal{M}_{0,n+1}; \mathbb{C})} - (X_1 - 1) \cdot \chi_{H^0(\mathcal{M}_{0,n}; \mathbb{C})} = \left(\frac{X_1}{2} \right) + X_2 - X_1 = \chi_{V(2)}
\]

as expected since \(H^1(\mathcal{M}_{0,n}; \mathbb{C}) = V(2) \).

Furthermore, if \(P_i \) and \(Q_i \) are the character polynomials of \(H^i(\mathcal{M}_{0,n+1}; \mathbb{C}) \) and \(H^i(\mathcal{M}_{0,n}; \mathbb{C}) \) from Theorem 5.1(c) for \(n \geq 4i + 2 \), then formula (2) can be written as \(Q_i = P_i - (X_1 - 1) \cdot Q_{i-1} \) and \(\deg Q_i \leq \max(\deg P_i, 1 + \deg Q_{i-1}) \leq 2i \). As a consequence of this and Theorem 5.1(c) we have that, for \(n \geq 4i + 2 \), the values of \(\chi_{H^i(\mathcal{M}_{0,n+1}; \mathbb{C})}(\sigma) \) and \(\chi_{H^i(\mathcal{M}_{0,n}; \mathbb{C})}(\sigma) \) depend only on “short cycles”, i.e. cycles on \(\sigma \) of length \(\leq 2i \).

More is known about the \(\mathcal{S}_n \)-representations. In this paper we were mainly interested in highlighting the methods, since more precise information about the characters of the \(\mathcal{S}_n \)-representations is known. The moduli space \(\mathcal{M}_{0,n} \) can be represented by a finite type \(\mathbb{Z} \)-scheme and the manifold \(\mathcal{M}_{0,n}(\mathbb{C}) \) of \(\mathbb{C} \)-points of this scheme corresponds to the definition in Section 1. In [15] Kisin and Lehrer used an equivariant comparison theorem in \(\ell \)-adic cohomology and the Grothendieck-Lefschetz’s fixed point formula to obtain explicit descriptions of the graded character of the \(\mathcal{S}_n \)-action on the cohomology of \(\mathcal{M}_{0,n}(\mathbb{C}) \) via counts of number of points of varieties over finite fields. With their techniques they obtain the Poincaré polynomial of a permutation in \(\mathcal{S}_n \) of a specific cycle type acting on \(H^*(\mathcal{M}_{0,n}; \mathbb{C}) \) ([15] Theorem 2.9]) and a description of the top cohomology \(H^{n-3}(\mathcal{M}_{0,n}; \mathbb{C}) \) [15] Proposition 2.18]. Furthermore, Getzler uses the language of operads in [11] to obtain formulas for the characters of the \(\mathcal{S}_n \)-modules \(H^*(\mathcal{M}_{0,n}; \mathbb{C}) \).
The cohomology of $\overline{M}_{0,n}$. A related space of interest is $\overline{M}_{0,n}$, the Deligne-Mumford compactification of $M_{0,n}$. It is a fine moduli space for stable n-pointed rational curves for $n \geq 3$ (see [16, Chapter 1] and reference therein). It can also be constructed from $M(dA_{n-1})$ using the theory of wonderful models of hyperplanes arrangements developed by De Concini and Procesi (see for example [10, Chapter 2]). The space $\overline{M}_{0,n}$ also carries a natural action of the symmetric group S_n. Hence, a natural question to ask is whether the FI-module theory could tell us something about its cohomology groups as S_n-representations.

Explicit presentations of the cohomology ring of the manifold of complex points $\overline{M}_{0,n}(\mathbb{C})$ have been obtained by Keel [14] and Yuzvinsky [19]. Moreover, several recursive and generating formulas for the Poincaré polynomials have been computed (for instance see [19], [11], [17], [2]). The sequence $H^*(\overline{M}_{0,n}(\mathbb{C}); \mathbb{C})$ has the structure of an FI-module, however, the Betti numbers of $\overline{M}_{0,n}(\mathbb{C})$ grow exponentially in n, which precludes finite generation. Therefore an analogue of Theorem 5.1 cannot be obtained for this space.

On the other hand, as observed in [6], the manifold $\overline{M}_{0,n}(\mathbb{R})$ of real points of $\overline{M}_{0,n}$ is topologically similar to $\mathcal{F}(\mathbb{C}, n-1)$, the configuration space of $n-1$ ordered points in \mathbb{C}, in the sense that both are $K(\pi,1)$-spaces, have Poincaré polynomials with a simple factorization and Betti numbers that grow polynomially in n. The cohomology ring of the real locus $\overline{M}_{0,n}(\mathbb{R})$ was completely determined in [6] and an explicit formula for the graded character of the S_n-action was obtained in [13]. The presentation of the cohomology ring given in [6] can be used to prove finite generation for the FI-modules $H^*(\overline{M}_{0,n}(\mathbb{R}); \mathbb{C})$ and to obtain an analogue of Theorem 5.1 for this space (see [13]).

Acknowledgements I would like to thank to Alex Suciu for pointing out a relevant reference and Jennifer Wilson for useful comments. I am grateful to the Department of Mathematics at Northeastern University for providing such appropriate working conditions that allowed the completion of this paper.

References

The cohomology of $\mathcal{M}_{0,n}$ as an FI-module

