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Abstract

The mapping class group of an orientable closed surface with one marked point
can be identified, by the Nielsen action, with a subgroup of the group of orientation-
preserving homeomorphisms of the circle. This inclusion pulls back the “discrete uni-
versal Euler class” producing a non-zero class in the second integral cohomology of the
mapping class group. In this largely expository note we determine the non-vanishing
behavior of the powers of this class. Our argument relies on restricting the cohomology
classes to torsion subgroups of the mapping class group.

1 Introduction

Let Γkg denote the pure mapping class group of a closed orientable surface Σg of genus g ≥ 1
with k ≥ 0 marked points. Homological properties of the mapping class group of surfaces
of finite type have been studied for the last 40 years. For instance, cohomology classes of
mapping class groups correspond to characteristic classes of surface bundles. Furthermore,
for surfaces of genus g ≥ 2, the rational cohomology of Γkg coincides with the cohomology
of the moduli space Mg,k of Riemann surfaces of genus g with k marked points.

Some of the first homological calculations for mapping class groups are due to Harer. He
computed H2(Γ

k
g ;Z) for genus g ≥ 5 in [9] and proved a remarkable homological stability

theorem in [10], which was a key result in the proof of Mumford’s conjecture for H∗(Mg;Q)
by Madsen and Weiss [19]. Miller [21] and Morita [23] constructed non-trivial cohomology
classes in H∗(Γkg ;Q), while Glover and Mislin [6] used torsion subgroups of the mapping
class groups to detect torsion in their cohomology. In the same spirit, we use torsion
elements in the mapping class group Γ1

g of a surface of genus g ≥ 1 with one marked point
to show the non-vanishing of some classes in H∗(Γ1

g;Z).
For g ≥ 2, Nielsen defined a faithful action of Γ1

g on the circle S1 which identi-
fies Γ1

g with a subgroup of the group Homeo+(S1) of orientation-preserving homeomor-
phims of the circle (see for example [8] and Section 4 below). This monomorphism

∗The second author is grateful for the financial support from PAPIIT DGAPA-UNAM grant IA104010
and from CONACYT grant CB-2017-2018-A1-S-30345-F-3125.
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ρ : Γ1
g ↪→ Homeo+(S1) pulls back the discrete universal Euler class E and its powers

En to Γ1
g producing classes ρ∗(En) =: En ∈ H2n(Γ1

g;Z) for each n ≥ 1. As we review in
Section 2, the nth cup product powers En are known to be non-trivial torsion free cohomol-
ogy classes in H2n(Homeo+(S1);Z), for n ≥ 1. In this note we determine the non-vanishing
behavior of the powers En ∈ H2n(Γ1

g;Z) of the Euler class E for Γ1
g.

Theorem A. For g ≥ 1 and n ≥ 1 the cohomology classes En ∈ H2n(Γ1
g;Z) are nonzero.

Furthermore, when n ≥ g, the subgroup of H2n(Γ1
g;Z) generated by the class En is a finite

cyclic group of order a multiple of 4g(2g + 1).

For genus g = 1, Theorem A holds and more is known: the powers of the Euler class
for Γ1

1
∼= SL(2,Z) behave like the pull back of En to a finite cyclic subgroup of Homeo+(S1)

(see Proposition 3.1). The group SL(2,Z) acts faithfully on rays starting at the origin in
the Euclidean plane. The corresponding monomorphism ρ : SL(2,Z) ↪→ Homeo+(S1) pulls
back the class E to a generator x := ρ∗(E) in H2(SL(2,Z);Z) of the cohomology ring

H∗(SL(2,Z);Z) ∼= Z[x]/〈12x〉.

Therefore, the Euler class for SL(2,Z) and all its powers are non-trivial torsion classes of
order 12. In contrast, for genus g ≥ 3 the Euler class E ∈ H2(Γ1

g;Z) is known to be non-
trivial of infinite order. This also follows from our Theorem A and the universal coefficient
theorem since the group Γ1

g is perfect.
We will observe, in Sections 3 and 4 below, that the non-triviality of the classes En

is obtained by restricting the cohomology classes to a torsion subgroup of Γ1
g where the

corresponding cohomology classes are known to be non-trivial. Our torsion bound in
Theorem A comes from the order of specific torsion elements in Γ1

g. We end this note with
Section 5 where we comment on known related results. In particular, Theorems 5.3 and
5.4 give a partial understanding of the behavior of the powers of the “Euler classes” for
the pure mapping class groups with one or more marked points.

Further work. In work in progress we use the non-vanishing result Theorem A as a
starting point to address the more subtle problem of computing the order of the classes En

for n ≥ g and showing that for n < g the powers En are torsion free cohomology classes.
In [13] the order of En at the threshold dimension n = g was computed by the first author
to be 2g(2g + 1). The difference with the bound obtained in Theorem A is explained in
our current work. It arises due to the fact that the computation in [13] was obtained not
for the Nielsen action, but for an action that we refer to as the “projective action”.

We briefly and informally describe our current research. The approach is similar but
more directly geometric than that of [13], and the aim is to provide an elementary, and
unified description of the behavior of the powers of the Euler class for the pure mapping
class groups with one or more marked points. The group Γ1

g acts naturally on the infinite
simplex with vertices points of the circle. The action of Γ1

g on the circle gives rise to a bi-
simplicial set which realizes BΓ1

g, and an associated double chain complex which computes

2



its homology. That is the setting for our computations. The elements S and T , described
in Section 4 below, allow us to construct in the bi-complex, a 2n-chain, dual to En, for
n ≤ g. We seek to determine how this 2n-chain transitions from its behavior for n < g,
where it extends to a cycle (which we know to be non-trivial by Theorem A), to one at the
threshold n = g where that fails.

Acknowledgements. We would like to thank the referee for constructive comments and
questions, and Lei Chen, Benson Farb, Jesús Hernández Hernández and Justin Lanier for
useful email communications.

2 The universal Euler class and its powers

Consider the group Homeo+(S1) of orientation-preserving homeomorphisms and the group

of lifts ˜Homeo+(S1) with respect to the universal cover π : R → S1. There is an epi-

morphism p : ˜Homeo+(S1) → Homeo+(S1) with kernel isomorphic to Z generated by
T : R→ R the integral translation T (x) = x+ 1. This defines a non-split central extension
of Homeo+(S1)

0→ Z→ ˜Homeo+(S1) p−→ Homeo+(S1)→ 1, (1)

which is universal, in the sense of [22, Section 5], with kernel isomorphic to the Schur
multiplier H2(Homeo+(S1);Z). The central extension (1) corresponds to a non-trivial
generator E in H2(Homeo+(S1);Z) ∼= Z that we refer as the discrete universal Euler class.

To better understand the powers En of the discrete universal Euler class, let us recall
the following classical result due to Mather [20] and Thurston [24]. Given M an orientable
manifold, we distinguish the group of orientation-preserving homeomorphisms of M with
the discrete topology Homeo+(M)δ from the topological group Homeo+(M)τ with the
compact-open topology.

Theorem 2.1 (Thurston–Mather). Let M be any orientable manifold. The identity map
id : Homeo+(M)δ → Homeo+(M)τ induces a continuous function between classifying
spaces

η : BHomeo+(M)δ → BHomeo+(M)τ

which is a homology equivalence.

The subgroup of rotations SO(2,R) is canonically identified with S1 and the inclusion
S1 ↪→ Homeo+(S1)τ is a homotopy equivalence; see for example [5, Prop. 4.2]. Then
BHomeo+(S1)τ ' BS1 ' CP∞ and its cohomology ring is given by

H∗(BHomeo+(S1)τ ;Z) ∼= Z[x],

where x is a generator of H2(BHomeo+(S1)τ ;Z) ∼= Z. Hence, for the circle S1, the
Thurston–Mather theorem and the universal coefficient theorem imply the following re-
sult.
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Corollary 2.2. The cohomology ring of the discrete group Homeo+(S1) is a polynomial
ring generated by the universal Euler class E ∈ H2(Homeo+(S1);Z), i.e.

H∗(Homeo+(S1);Z) = H∗(BHomeo+(S1)δ;Z) ∼= Z[E].

Therefore, all the powers En are non-trivial torsion-free cohomology classes. See also
Section 5 in [13] for a different proof.

3 Torsion and non-triviality of the powers of the Euler class

We observe next that, when restricted to a finite cyclic subgroup Z /kZ, the powers of
the universal discrete Euler class pull back to non-trivial torsion classes. Recall that the
cohomology ring of Z /kZ is known to be

H∗(Z /kZ;Z) ∼= Z[x]/〈kx〉, where x is a generator of H2(Z /kZ;Z) ∼= Z /kZ .

Proposition 3.1. For any monomorphism φ : Z/kZ ↪→ Homeo+ S1, the pull-back of the
discrete universal Euler class φ∗(E) ∈ H2(Z/kZ;Z) is a generator of the cohomology ring
H∗(Z/kZ;Z). In particular, all the powers (φ∗(E))n = φ∗(En) are non-trivial torsion
classes in H2n(Z/kZ;Z) of order k.

Proof. Consider first the finite cyclic group Z/kZ acting faithfully on the circle by a rotation
of angle 2π/k. Then the pull back of the universal central extension (1) of Homeo+(S1) is
the non-split central extension

0→ Z ×k−−→ Z→ Z /kZ→ 1

of Z /kZ by Z which corresponds to φ∗(E) and is a generator of H2(Z/kZ;Z) ∼= Z /kZ;
see for example [18, Ch. IV.7]. The pull back of the powers En correspond to generators
of H2n(Z/kZ;Z) ∼= Z/kZ by functoriality of the cup product.

Up to conjugacy, the rotation group SO(2,R) is the only maximal compact subgroup
of Homeo+(S1); see for instance [5, Prop. 4.1]. As a consequence, any finite subgroup of
Homeo+(S1) is conjugate to a cyclic group of rotations, and the proposition is then true
for any monomorphism φ : Z/kZ ↪→ Homeo+ S1.

Corollary 3.2. Let Γ be a discrete group acting faithfully on S1 by orientation-preserving
homeomorphisms. Suppose that Γ has a torsion element of order k.

a) For all n ≥ 1, the pull back of En is a non-trivial class in H2n(Γ;Z).

b) If the pull back of En is a torsion class, it must have order a multiple of k.
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Proof. By hypothesis we have monomorphisms

Z /kZ ι
↪−→ Γ

ψ
↪−→ Homeo+(S1).

By Proposition 3.1, for any n ≥ 1 the pull back

(ψ ◦ ι)∗(En) = ι∗ (ψ∗(En)) = ι∗ ((ψ∗(E))n)

is a non-trivial class in H2n(Z/kZ;Z) of order k. Therefore, the class (ψ∗(E))n is a non-
trivial class in H2n(Γ;Z). If (ψ∗(E))n is a torsion class, then it must have order a multiple
of k since ι∗ takes it to a torsion class of order k.

4 Powers of the Euler class for mapping class groups

Let Σg denote the closed orientable surface of genus g ≥ 1 and z ∈ Σg. The mapping class
group Γ1

g with one marked point is the group of orientation-preserving homeomorphisms of
Σg modulo isotopy, where the point z is required to stay fixed under isotopies.

Consider the presentation of the fundamental group

π1(Σg, z) = 〈a1, a2, . . . , a2g| a1 · · · a2g · a−11 · · · a
−1
2g = 1〉.

The Dehn-Nielsen-Baer theorem identifies Γ1
g with an index 2 subgroup of the auto-

morphism group Aut (π1(Σg, z)) (see for example [4, Ch. 8]). Under this identification, the
automorphisms of π1(Σg, z)

S :

a1 7→ a2
a1 7→ a3

...

a2g 7→ a−11

T :

a1 7→ a2
a1 7→ a3

...

a2g 7→ a−12g · · · a
−1
2 a−11

represent torsion elements of Γ1
g or order 4g and 2g + 1, respectively. Geometrically they

are related to the 4g-gon and 2(2g + 1)-gon symmetries of the surface Σg.
For g = 1, the Dehn-Nielsen-Baer theorem implies Γ1

1
∼= SL(2,Z) and we have that

S =

(
0 −1
1 0

)
and T =

(
0 −1
1 −1

)
of orders 4 and 3, respectively.

For g ≥ 2, Nielsen defined a faithful action of Γ1
g on S1 by orientation-preserving

homeomorphisms that we briefly describe next; see [8] and [4] for a more detailed discussion.
Fixing a hyperbolic metric on Σg, its universal cover can be identified with the hyperbolic
disk D2, which has a natural compactification to a closed disc. Let z̃ ∈ D2 be a distinguished
lift of the marked point z ∈ Σg. For f ∈ Homeo+(Σg) fixing the marked point z let f̃ denote
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the unique lift of f to D2 that fixes z̃. It can be shown that the action of f̃ on D2 extends
to a homeomorphism of the boundary circle, which depends only on the isotopy class of f .
This procedure gives a well-defined monomorphism

ρ : Γ1
g ↪→ Homeo+(S1),

which is the Nielsen action of Γ1
g on S1.

For genus g ≥ 2, the Gromov boundary of π1(Σg, z) is a topological circle S1, on which
the group of automorphisms Aut(π1(Σg, z)) acts faithfully by homeomorphisms. With the
Dehn-Nielsen-Baer identification, this boundary action is conjugate to the geometric action
that we just described.

The Euler class for Γ1
g is defined as E := ρ∗(E) ∈ H2(Γ1

g;Z), the pull back of the discrete
universal Euler class under the standard action. This cohomology class corresponds to the
central extension

1→ Z→ Γg,1 → Γ1
g → 1,

where Γg,1 denotes the mapping class group of an orientable surface Σg,1 of genus g with one
boundary component (find more details in [4, Ch 5.5] and [7]). The epimorphism above is
induced from the inclusion Σg,1 ' Σg −Nε(z) ↪→ Σ1

g, where Nε(z) = {x ∈ Σ1
g : d(x, z) < ε}

for a small ε > 0. The kernel is generated by a Dehn twist around the boundary component,
which is the simple loop ∂Nε(z) around the marked point z.

Proof of Theorem A. The mapping classes S and T generate torsion cyclic subgroups in
Γ1
g of order k = 4g and k = 2g + 1, respectively. For g = 1, the group Γ1

1
∼= SL(2,Z) acts

faithfully on rays starting at the origin in the Euclidean plane, and for genus g ≥ 2 the
Nielsen action is faithful. It follows from Corollary 3.2 a) that the powers En are non-trivial
for all n ≥ 1. For n ≥ g the powers En are known to vanish over the rationals (Theorem
5.3), hence the classes En are torsion and by Corollary 3.2 b) must have order a common
multiple of k = 4g and k = 2g + 1.

Remark: We can apply Corollary 3.2 a) to any finite cyclic subgroup of Γ1
g. The order

of a finite cyclic subgroup of Γ1
g is known to be at most 4g + 2 and this upper bound is

attained for g ≥ 2 (see for example [4, Cor.7.6]). Since 4g and 2g + 1 are relatively prime,
the subgroups generated by S and T that we consider in the proof of Theorem A give us
the largest lower bound 4g(2g + 1) for torsion that we could find with these elements.

If other torsion elements of Γ1
g are known, one can try to look for a better lower bound.

For instance, if g = p − 1 with p a prime number, then Γ1
g has p-torsion [16, Thm 2.7]

and from Corollary 3.2 b) we obtain that the cohomology classes En have order a common
multiple of 4g, 2g + 1 and g + 1, when n ≥ g.
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5 Related results

For g ≥ 0 and k ≥ 1, consider z1, z2, ..., zk ∈ Σg. The pure mapping class group Γkg of
Σg is the group of orientation-preserving homeomorphisms of Σg, modulo isotopy, where
the points zi are required to stay fixed under isotopies. For g ≥ 2 and k ≥ 0, the moduli
space Mg,k of genus g Riemann surfaces with k marked points is a rational model for the
classifying space BΓkg ; therefore H∗(Mg,k;Q) ∼= H∗(Γkg ;Q). For k = 0, we use the notation
Γg and Mg. Research in the last 40 years has been motivated by the following general
problem:

Problem 5.1. Compute the groups H i(Γkg ;K) for all g, k and i and understand the ring

structure of H∗(Γkg ;K), for coefficients K = Q and Z.

We comment briefly on some of the most remarkable results towards the answer of
Problem 5.1. Harer proved in [10] that the cohomology groups H i(Γkg ;Z) are independent
of the genus g and k in degrees small relative to i. The range where this happens is
called the “stable range” and has been improved over the years. Mumford conjectured,
and Madsen and Weiss proved in [19], that in low cohomological degrees H∗(Mg;Q) is a
polynomial algebra in classes κi of degree 2i, giving a complete picture of the cohomology
ring H∗(Mg;Q) in the stable range. Outside of the stable range, a few of the cohomology
groups are known, even rationally. For instance, there are complete computations for
genus g ≤ 4 and for low cohomology degrees; see for example [1] for computations of the
cohomology ring of Γ2.

The study of the cohomology groups and their ring structure in the “unstable range”
is an active area of research. The κ-classes mentioned before are examples of tautological
classes of Mg,k, cohomology classes “naturally coming from geometry”. An important
direction of research is given by the Faber conjectures [3] which describe the structure of
the ring generated by the tautological classes.

The “Euler classes” for the pure mapping class group. For k ≥ 1, once the marked
points z1, ..., zk are fixed in Σg we will distinguish the Γ1

g’s by writing Γzig for the mapping
class group with the single marked point zi. For 1 ≤ i ≤ k, each Γzig is a distinct quotient

group of Γkg : two elements of Γkg determine the same element of Γzig if they are isotopic by

an isotopy which keeps zi fixed. Let pi : Γkg → Γzig denote the quotient homomorphism. As
already mentioned in Section 4, the Γzig can be identified with a subgroup of Homeo+(S1).
The composite

ρi : Γkg
pi−→ Γzig ↪→ Homeo+(S1) (2)

pulls back the powers En producing the classes Eni ∈ H2n(Γkg ;Z) for all 1 ≤ i ≤ k and
n ≥ 1. In trying to contribute to a partial answer to Problem 5.1, our work focuses on the
following problem:

Problem 5.2. Understand the behavior of the “Euler classes” Ei and their powers Eni ∈
H2n(Γkg ;Z) for k ≥ 1 and n ≥ 1.
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Our Theorem A and Theorems 5.3 and 5.4 below partially answer this problem.
Harer computed in [9] the second integral homology group of Γkg for g ≥ 5. It is known

that H2(Γ
k
g,r;Z) ∼= H2(Γg,r+k;Z)⊕Zk for g ≥ 3 and r, k ≥ 0 [14, Prop. 1.4]. The summand

Zk of H2(Γkg ;Z) is generated by the cohomology classes E1,E2 . . . ,Ek.

For k ≥ 1, the class Ei ∈ H2(Γkg ;Q) corresponds to the restriction of the ψi-class to

Mg,k from its Deligne-Mumford compactification Mg,k. The class ψi is the first Chern
class of the cotangent bundle bundle over Mg,k associated to the marked point zi; see for
example [7]. The ψ-classes are also tautological classes of Mg,k.

From the algebro-geometric perspective, a result by Ionel [11, Thm 0.1] establishes that
any monomial in the tautological classes of degree at least g vanishes when restricted to
H∗(Mg,k;Q) when g ≥ 2 and k ≥ 1. As a particular case, we have the following vanishing
result over the rationals (which also follows from the work of Looijenga [15] for k = 1).

Theorem 5.3 (Vanishing over Q [11]). For any 1 ≤ i ≤ k, the powers Eni ∈ H2n(Γkg ;Q)
vanish for n ≥ g.

Vanishing results in [12] and [13] for n ≥ g apply to the nth power of the Euler class of
Γ1
g considered as an element of Hom(H2n(Γ1

g;Z);Z) under the universal coefficient theorem,
agreeing with the the results in Theorem 5.3 for k = 1.

For genus g ≥ 2 and k ≥ 1, from Morita’s result [23, Thm 7.5] it follows that
En1 ,E

n
2 , . . .E

n
k generate a summand of H2n(Γkg ;Q) isomorphic to Qk for 2n ≤ g/3. This

range has been improved to 2n ≤ g/2 in [2, Cor 1.2]. Hence, there is a non-vanishing result
for g ≥ 2:

Theorem 5.4 (Non-vanishing and independence [23], [2]). For any 1 ≤ i ≤ k, the powers
Eni ∈ H2n(Γkg ;Z) are non-trivial torsion free independent classes for n ≤ g/4.

For k = 1, Theorem A improves on Theorem 5.4 by showing non-vanishing of En for
all n ≥ 1. For g ≥ 1, k ≥ 2 and 1 ≤ i ≤ k the composite ρi described in (2) has torsion free
kernel and any torsion subgroup contained in Γkg injects in Homeo+(S1) through ρi. Hence,
the strategy used in the proof of Theorem A can be used to show non-vanishing of the
classes Eni , as long as the pure mapping class group Γkg has non-trivial torsion subgroups.
The lower bound for the order of Eni , when n ≥ g, depends on the order of these torsion
subgroups.

For genus g = 1, 2, 3 and k ≥ 1, Lu [17, Section 1] investigated the p-torsion in Γkg ,
for p a prime number. From her computations, then non-vanishing of the classes Eni and
specific lower bounds for their order, when n ≥ g and g = 2, 3, can be obtained as long
as k < 2g + 3. On the other hand, from [16, Thm 2.7], the pure mapping class group
Γ2
g contains p-torsion if and only if Γ1

g has p-torsion. Therefore, the cohomology classes
En1 ,E

n
2 ∈ H2n(Γ2

g;Z) have order a multiple of 2g(4g + 1).

In contrast, from [17, Lemma 1.1(i)] it follows that the group Γkg is torsion free for
k ≥ 2g + 3. As a consequence, the torsion in cohomology disappears in high degree and
the integral classes Eni eventually vanish.
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