
PERIODICITY OF THE PURE MAPPING CLASS GROUP OF

NON-ORIENTABLE SURFACES
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Abstract. We show that the pure mapping class groupN k
g of a non-orientable

closed surface of genus g ⩾ 2 with k ⩾ 1 marked points has p-periodic coho-
mology for each odd prime p for which N k

g has p-torsion. Using the Yagita

invariant and cohomology classes obtained from some representations of sub-

groups of order p, we obtain that the p-period is less or equal than 4 when g ⩾ 3
and k ⩾ 1. Moreover, combining the Nielsen realization theorem and a char-

acterization of the p-period given in terms of normalizers and centralizers of

cyclic subgroups of order p, we show that the p-period of N k
g is bounded below

by 4, whenever N k
g has p-periodic cohomology, g ⩾ 3 and k ⩾ 0. These results

provide partial answers to questions proposed by G. Hope and U. Tillmann.

1. Introduction

Let Γ be a group of finite virtual cohomological dimension (vcd) and let p be a
prime. The group Γ is called p-periodic if there exists a positive integer d such that

the Farrell cohomology groups Ĥi(Γ;M) and Ĥi+d(Γ;M) have naturally isomorphic
p-primary components for all i ⩾ 0 and for all ZΓ-modules M . The least of such
d is called the p-period of Γ and is denoted by p(Γ). Farrell cohomology extends
Tate cohomology of finite groups to groups of finite vcd and in degrees above the
vcd it agrees with the ordinary cohomology of the group. In this paper we study
the p-periodicity of the pure mapping class group of a non-orientable closed surface
with at least one marked point.

Let Σ be a closed surface and {z1, . . . , zk} a set of k ⩾ 0 distinct points in Σ, we
call them marked points. Let Diff(Σ; k) be the group of diffeomorphisms of Σ that
preserve the set of marked points and let PDiff(Σ; k) be the subgroup of diffeo-
morphisms that fix the marked points pointwise. If the surface Σ is orientable, we
consider the corresponding subgroups Diff +(Σ; k) and PDiff +(Σ; k) of orientation-
preserving diffeomorphisms. The pure mapping class group PMod(Σ; k) of Σ with
k marked points is the group of isotopy classes of PDiff(Σ; k) if Σ is non-orientable
and the group of isotopy classes of PDiff +(Σ; k) when Σ is orientable. We use the
notation Γkg := PMod(Sg; k) and N k

g := PMod(Ng; k), where Sg and Ng denote,
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respectively, a closed connected orientable and non-orientable surface of genus g. If
the set of marked points is empty, we omit k from the notation.

It is well known that the groups Γkg and N k
g have finite vcd and their Farrell

cohomology and p-periodicity have been previously studied in the literature. For
instance, it is known that for an orientable closed surface of genus g > 1 the group Γg
is never 2-periodic, and for p an odd prime Y. Xia determined in [21] all genera g for
which Γg is p-periodic. In [8] H.H. Glover, G. Mislin and Y. Xia obtained a formula
for the p-period p(Γg) that holds whenever the group is p-periodic. In contrast, Q.
Lu proved in [14] that for an orientable surface of genus g ⩾ 1 with at least one
marked point, the group Γkg is always p-periodic with p-period equal to 2. Using
these results, Xia [22, 23, 24] and Lu [14] determined the p-primary component of

the Farrell cohomology Ĥ∗(Γkp−1;Z)(p), Ĥ∗(Γk(p−1)/2;Z)(p) and Ĥ
∗(Γp;Z)(p) where

k ⩾ 0 and p is an odd prime. Furthermore, Lu [15] obtained all the p-primary
components of the Farrell cohomology of the pure mapping class group Γkg of a

surface of low genus g = 1, 2, 3, when Γkg has p-torsion, p is an odd prime, and
k ⩾ 1.

On the other hand, G. Hope and U. Tillmann investigated in [12] the p-periodicity
of the Farrell cohomology of the mapping class group Ng of a closed non-orientable
surface of genus g ⩾ 3. They were able to determine the precise conditions re-
quired for this cohomology to exhibit p-periodic behavior. We contribute to the
understanding of the p-periodicity of the pure mapping class group N k

g of a closed
non-orientable surface with at least one marked point by proving the following
results (see [12, Question 5.2]).

Theorem 1. Let g ⩾ 2, k ⩾ 1 and p be an odd prime. The pure mapping class
group N k

g has p-periodic cohomology whenever N k
g contains p-torsion.

As we observe in Remark 2.4 below, the argument from [12, Proof of Lemma 4.1]
actually shows that N 1

g is not 2-periodic for g ⩾ 3. Using the Yagita invariant and

adapting Lu’s methods from [14] to the non-orientable case N k
g , we find an upper

bound for the p-period in Theorem 3.4, proving that p(N k
g ) ⩽ 4 whenever the group

has p-torsion, g ⩾ 3 and k ⩾ 1. In addition, using a different description of the
p-period given in terms of the normalizers and centralizers of subgroups of order
p of N k

g , we prove in Theorem 4.4 that p(N k
g ) ⩾ 4 whenever N k

g has p-periodic
cohomology and k ⩾ 0. Thus, the following result follows.

Theorem 2. Let g ⩾ 3, k ⩾ 1 and p be an odd prime. If the pure mapping class
group N k

g contains p-torsion, then its p-period p(N k
g ) is 4.

It is worth pointing out that the lower bound p(N k
g ) ⩾ 4 that we find in Theorem

4.4 applies also to the case without marked points k = 0. Combining this result with
[12, Theorem 1.1] yields the following result, which partially solves [12, Question
5.1] about finding a lower bound for the p-period of Ng.

Corollary 3. Let p be an odd prime and suppose that the mapping class group Ng

contains p-torsion. Then p(Ng) ⩾ 4 unless that g = lp+ 2 for some l > 0, and for
0 ⩽ t < p with l ≡ −t mod p we have that l + t+ 2p > tp.

Outline. The paper is organized as follows. In Section 2 we use the connection
between the mapping class groups of a non-orientable surface and its orientable
double cover, and the result of Q. Lu [14, Theorem 1.7] to prove Theorem 1. In
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Section 3 we recall the definition of the Yagita invariant and we use cohomology
classes of subgroups of order p to prove that this invariant is lower or equal than
4. This gives us the upper bound for the p-period of N 1

g in Theorem 3.3 and a
Birman exact sequence argument allows us to obtain the upper bound for general
k ⩾ 1 in Theorem 3.4. Finally, in Section 4 we prove that 4 is also a lower bound of
the p-period of N k

g , when k ⩾ 0; see Theorem 4.4. For this we use Theorem 4.1, a
characterization of the p-period given in terms of the index of the normalizers and
centralizers of N k

g of subgroups of order p over their conjugacy classes.
One of the main ingredients to obtain the lower bound is Theorem 4.2, which

states that if f ∈ PDiff(Ng; k) is an element of order p, then f and f−1 are
conjugated in PHomeo(Ng; k), the group of homeomorphisms of Ng that fix the
marked points pointwise. Its proof involves an analysis of the automorphisms of
non-Euclidean crystallographic groups (see, for instance, [5, Section 3]). It is based
on the classic work of J. Nielsen in [18], in which he introduced the notion of fixed
point data of a finite order homeomorphism of an orientable surface and character-
ized its conjugacy classes using this notion.

2. The p-periodicity of the pure mapping class group

Let p be an odd prime. The main purpose of this section is to show that the
pure mapping class group N k

g has p-periodic cohomology, whenever N k
g contains p-

torsion, for g ⩾ 2 and k ⩾ 1. The proof relies on a result of Q. Lu [14, Theorem 1.7],
which states that, in the orientable case, the group Γkg has p-periodic cohomology
whenever the group contains p-torsion, for g, k ⩾ 1. It also uses the relation between
the mapping class group of a non-orientable surface and the mapping class group
of its orientable double cover that we recall next.

For Ng a closed connected non-orientable surface of genus g, the non-orientable
double cover can be constructed (up to isomorphism) as follows. Let Sg−1 be a
closed orientable surface of genus g−1, embedded in R3 such that Sg−1 is invariant
under reflections in the xy−, yz−, and xz− planes. Let σ : Sg−1 → Sg−1 be the
orientation reversing homeomorphism

σ(x, y, z) = (−x,−y,−z).
Then the quotient Sg−1/⟨σ⟩ is homeomorphic to Ng and the natural projection
π : Sg−1 → Ng is a double cover of Ng such that σ is a covering transformation

Sg−1
σ //

π
!!

Sg−1

π
}}

Ng

The following result is well-known (see for example [10, Lemma 2.2]).

Lemma 2.1. Every diffeomorphism f : Ng → Ng admits exactly two liftings
Sg−1 → Sg−1, one of which preserves orientation.

Furthermore, in the case f ∈ Diff(Ng; k), if f̃ : Sg−1 → Sg−1 is the orientation

preserving lifting of π, then f̃ ∈ Diff+(Sg−1; 2k). Namely, if {z1, . . . , zk} ⊂ Ng is
the set of marked points, let z̃1, . . . , z̃k ∈ Sg−1 be such that π−1(zi) = {z̃i , σ(z̃i)}
and take {z̃1, σ(z̃1), . . . , z̃k, σ(z̃k)} as the set of marked points in Sg−1. Note that

if f(zi) = zj , then f̃ restricts to a bijection between the fibers {z̃i , σ(z̃i)} and
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{z̃j , σ(z̃j)}. Thus, there is a natural way to choose a lift of f ∈ Diff(Ng; k) in a

continuous manner by taking f̃ ∈ Diff(Sg−1; 2k) to be orientation preserving. This

choice defines a group homomorphism ϕ̃ : Diff(Ng; k) → Diff+(Sg−1; 2k) which
induces a homomorphism ϕ : Mod(Ng; k) → Mod(Sg−1; 2k) between the corre-
sponding mapping class groups and makes the following diagram commutative

Diff(Ng; k)
ϕ̃ //

��

Diff+(Sg−1; 2k)

��
Mod(Ng; k)

ϕ // Mod(Sg−1; 2k).

For a surface Σ with set of marked points {z1, . . . , zk}, we are using Mod(Σ; k)
to denote the group of isotopy classes of elements of Diff(Σ; k) (or Diff+(Σ; k) if the
surface Σ is orientable). The group Mod(Σ; k) acts on the set of marked points by
permuting them and the kernel of this action is precisely the pure mapping class
group PMod(Σ; k).

The following result was proven in [12, Key Lemma 2.1] and [10, Theorem 1.1].

Proposition 2.2. Let Ng be a non-orientable surface and let Sg−1 be its orientable
double cover. The homomorphism ϕ : Mod(Ng; k) → Mod(Sg−1; 2k) is injective for
g ⩾ 3 if k = 0 and for all g ⩾ 1 if k ⩾ 1.

We now prove that, if g ⩾ 2 and k ⩾ 1, the group N k
g has p-periodic cohomology

whenever N k
g has p-torsion.

Proof of the Theorem 1. Suppose that there exist some g ⩾ 2, k ⩾ 1 and some
odd prime p such that N k

g has p-torsion and is not p-periodic. Then there exists

Z/p × Z/p ⩽ N k
g (see [2, Theorem X.6.7]). From Proposition 2.2, it follows that

Z/p× Z/p ∼= ϕ(Z/p× Z/p) ⩽ Mod(Sg−1; 2k).
By the Nielsen realization theorem for non-orientable surfaces (see [6, Theorem

5.2]), we can find f, f ′ ∈ PDiff(Ng; k) representing the generators of the subgroup
Z/p× Z/p of N k

g , such that

fp = 1; f ′p = 1; ff ′ = f ′f.

Consider the diffeomorphisms ϕ̃(f), ϕ̃(f ′) ∈ Diff+(Sg−1; 2k). Since f and f ′ fix the

marked points zi individually, then ϕ̃(f) and ϕ̃(f
′) restrict to permutations of the

fiber {z̃i , σ(z̃i)} for i = 1, . . . , k. Notice that ϕ̃(f) and ϕ̃(f ′) have odd order p,
therefore they must preserve each of the marked points of Sg−1 individually, i.e.

ϕ̃(f), ϕ̃(f ′) ∈ PDiff+(Sg−1; 2k). From the commutativity of the above diagram, it
follows that Z/p×Z/p ∼= ϕ(Z/p×Z/p) is actually a subgroup of the pure mapping
class group Γ2k

g−1. This contradicts [14, Theorem 1.7] which states that Γ2k
g−1 has

p-periodic cohomology if g − 1 ⩾ 1 and k ⩾ 1. □

Remark 2.3. The strategy above can be used to prove p-periodicity in Ng from
the cases where Γg−1 is known to be p-periodic (see for instance [21, Theorems 1, 2
and 3]). However, there are cases where Ng is p-periodic but Γg−1 is not, as shown
in [12, Theorem 1.1 and Remark 4.4].

Remark 2.4 (N 1
g is not 2-periodic). Take Sg−1 embedded in R3 as before and

let (x0, 0, 0) ∈ Sg−1 be a point where the surface intersects with the x-axis. Since
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the embedding is symmetric with respect to the reflection by the yz−plane, the
point (−x0, 0, 0) is also in Sg−1. Consider the rotations R1, R2 : Sg−1 → Sg−1

given by,

R1(x, y, z) = (−x,−y, z) and R2(x, y, z) = (x,−y,−z),
as defined in [12, Proof of Lemma 4.1]. These homeomorphisms are involutions
and commute with the covering transformation σ : Sg−1 → Sg−1 of the orientable
double cover π : Sg−1 → Ng. Hence, they induce f1, f2 : Ng → Ng and notice that
f1, f2 ∈ Diff(Ng; ∗), where the marked point is ∗ = [(x0, 0, 0)]. For genus g ⩾ 3,
using the arguments of [12, Proof of Lemma 4.1], we can see that f1f2 = f2f1,
f21 = f22 = idNg

, f1 and f2 are not isotopic to each other relative to ∗ in Ng and

their classes [f1], [f2] ∈ N 1
g are non-trivial. Thus, ⟨[f1], [f2]⟩ ∼= Z/2 × Z/2 ⩽ N 1

g

and therefore N 1
g is not 2-periodic.

3. An upper bound for the p-period

Let p be an odd prime. In this section we show that, for g ⩾ 3 and k ⩾ 1, the
p-period of the group N k

g is bounded above by 4, by adapting the methods of [14]
to the non-orientable case. Later on, in Section 4, we will show that the p-period
of N k

g is greater or equal than 4, proving that p(N k
g ) = 4. By contrast, in the

orientable case it was shown in [14, Theorem 1.7] that the p-period of Γkg is equal

to 2 if k ⩾ 1 and Γkg contains p-torsion.

We will use the Yagita invariant Y (N k
g , p), which can be regarded as a general-

ization of the p-period if N k
g has p-torsion. Also, since we have already proven that

N k
g is p-periodic for g ⩾ 2, k ⩾ 1, the Yagita invariant Y (N k

g , p) coincides with the

p-period of N k
g by [20, Proposition 4.1.1]; see also [9] for calculations of the Yagita

invariant Y (Γg, p).
Recall the definition of the Yagita invariant as in [17, Section 7]. Let Γ be a

group of finite virtual cohomological dimension and π ⩽ Γ any subgroup of prime
order p. Because π injects into any finite quotient of the form Γ/∆, where ∆ is a
torsion-free normal subgroup of finite index in Γ, the image of the restriction map
in cohomology Hi(Γ;Z) → Hi(π;Z) is non-zero for some degree i > 0. Reduction
mod-p maps H∗(π;Z) onto Fp[u] ⊂ H∗(π;Fp) with u a generator of H2(π;Fp).
Thus, there exists a maximum value m = m(π,Γ) such that

Im (H∗(Γ;Z) → H∗(π;Fp)) ⊂ Fp[um] ⊂ H∗(π;Fp).
Moreover, m(π,Γ) is bounded above by m(π,Γ/∆), where ∆ denotes as before a
torsion-free normal subgroup of finite index. Since Γ/∆ is finite, it follows from the
comments of [25, Section 1] that m(π,Γ) is bounded by a bound depending only on
Γ. The Yagita invariant of Γ with respect to the prime p is then defined to be the
least common multiple of the values 2m(π,Γ), where π ranges over all subgroups
of order p of Γ. It is denoted by Y (Γ, p).

First, we prove that for every g ⩾ 3 the p-period of N 1
g is bounded above by 4

if N 1
g has p-torsion. For simplicity of notation, we write Diff(Ng; ∗) instead of the

group Diff(Ng; 1), where ∗ will be thought of as the marked point of Ng.
The main idea of the proof is based on [14, Theorem 1.4 and Theorem 1.7] and

is outlined below. Given a subgroup π ⩽ N 1
g of order p, one can use Nielsen’s

realization theorem to obtain a lift π̃ in Diff(Ng; ∗). On the other hand, the action
of Diff(Ng; ∗) on Ng induces a representation ρ : Diff(Ng; ∗) → GL2(R) given by
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sending a diffeomorphism f : Ng → Ng to its differential in ∗, df∗ : T∗Ng → T∗Ng,
and which restricts to a faithful representation ρ̃ : π̃ → GL+

2 (R). The induced
map at the level of classifying spaces Bρ̃ : Bπ̃ → BGL+

2 (R) satisfies that there
exists a class c1 ∈ H2(BGL+

2 (R);Z), essentially the first Chern class, such that
(Bρ̃)∗(c1) ̸= 0. By diagram chasing we then obtain a class in H4(N 1

g ;Z), related
to the first Potryagin class in H4(BGL2(R);Z), which restricts to the non-zero
element in H4(Bπ;Z) corresponding to c21. Therefore, we obtain m(π,N 1

g ) ⩽ 2 and

the result for the p-period of N 1
g follows. Finally, we use the Birman short exact

sequence to obtain the result for any k ⩾ 1 by an induction argument on k.
We start by stating a few technical results. The following was proven in [14, Proof

of Theorem 1.4].

Lemma 3.1. Let ρ : G→ GL+
2 (R) ≃ SO(2) be a faithful representation of a non-

trivial cyclic group G. Then there exists c1 ∈ H2(BGL+
2 (R);Z) ∼= H2(BSO(2);Z)

such that

(Bρ)∗(c1) ̸= 0 in H2(BG;Z).

Lemma 3.2. There exists a non-zero element p4 ∈ H4(BO(2);Z) such that

(Bι)∗(p4) = c21

where ι is the canonical inclusion SO(2) ↪→ O(2).

Proof. Consider the following commutative triangle

SO(2)

ι

��

i

''
O(2)

ρ // SO(3)

where ρ : O(2) → SO(3) is the homomorphism given by

ρ(A) =

(
A 0
0 det(A)

)
.

and i : SO(2) → SO(3) is the natural inclusion. Consider the induced map
Bi : BSO(2) → BSO(3) of classifying spaces, this map is a fibration with fiber
S2. Recall from [1, Theorem 1.5], [7, Theorem 1] that the integral cohomology of
BSO(3) is given as a graded algebra by

H∗ (BSO (3) ;Z) ∼= Z[v3, p′4]
/
⟨2v3⟩,

where the subscripts indicate the degree of each generator. On the other hand, the
cohomology of BSO(2) is given by

H∗(BSO(2);Z) = H∗(BU(1);Z) = Z[c1],

where c1 denotes the first Chern class. By a straightforward analysis of the Serre
spectral sequence, we can see that the induced homomorphism

(Bi)∗ : H4(BSO(3);Z) → H4(BSO(2);Z)

is an isomorphism. Thus, there exists p′′4 ∈ H4(BSO(3);Z) such that (Bi)∗(p′′4) =
c21. Therefore, p4 := (Bρ)∗(p′′4) ∈ H4(BO(2);Z) is the desired cohomology class. □

We now proceed to prove our main result of the section.
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Theorem 3.3 (Upper bound for the p-period of N 1
g ). Let g ⩾ 3, and p be

an odd prime. If N 1
g contains p-torsion, then the p-period of N 1

g is lower or equal

than 4, i.e., p(N 1
g ) ⩽ 4.

Proof. We will show that the Yagita invariant Y (N 1
g , p) ⩽ 4. Let π ⩽ N 1

g be a
subgroup of order p. By the Nielsen realization theorem for non-orientable surfaces
(see [6, Theorem 5.2]), there exists a subgroup π̃ ⩽ Diff(Ng; ∗) such that π̃ ∼= π.
Thus there is a commutative diagram

π̃ �
� ĩ //

∼=

��

Diff(Ng; ∗)

��

π �
� i // N 1

g .

Hence, π̃ acts on the surface Ng as a group of diffeomorphisms that fix ∗. We obtain
the following representation which arises from letting a diffeomorphism of (Ng, ∗)
act on T∗Ng, the unoriented tangent space of Ng at ∗

ρ : Diff(Ng, ∗) −→ GL2(R), f 7−→ df∗.

Consider the representation of π̃ given by the composition

ρ ◦ ĩ : π̃ ĩ−→ Diff(Ng; ∗)
ρ−→ GL2(R).

Since π̃ is a cyclic group of odd order p, we have Im( ρ ◦ ĩ ) ⊂ GL+
2 (R). Denote

by ρ̃ : π̃ → GL+
2 (R) the resulting representation by restricting the image. Being

Ng non-orientable, it can be given a dianalytic structure of a Klein surface on
which π̃ acts as a group of rotations on a neighborhood of ∗ with respect to this
structure. Thus, ρ̃ is a faithful representation. By Lemma 3.1 there exists a class
c1 ∈ H2(BGL+

2 ;Z) such that

(1) v := (Bρ̃)∗(c1) ̸= 0 in H2(π̃;Z).

This information can be summarized in the following commutative diagram.

GL+
2 (R)

ι // GL2(R) df∗ : T∗Ng → T∗Ng

π̃

∼=

��

� � ĩ //

ρ̃
Faithful

rep.

OO

Diff(Ng; ∗)

��

ρ

OO

��

f
_

OO

π �
� i // N 1

g

Notice that the natural inclusions induce a homotopy commutative diagram at
the level of classifying spaces

BSO(2)
Bι //

≃
��

BO(2)

≃
��

BGL+
2 (R)

Bι // BGL2(R)
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where the vertical maps are homotopy equivalences. Thus, by the Lemma 3.2 there
exists a class p4 ∈ H4(BGL2(R);Z) such that

(2) (Bι)∗(p4) = c1
2.

Passing to cohomology of classifying spaces

c1_

��

c1
2

H∗BGL+
2 (R)

��

H∗BGL2(R)
(Bι)∗oo

��

p4

uu

��

v ̸= 0 H∗(Bπ̃) H∗BDiff(Ng; ∗)
(Bĩ )∗oo

H∗(Bπ)
0 ̸= •

∼=

OO

H∗(BN 1
g )

(Bi)∗oo

∼=

OO

•
gg

Since the identity component of the group Diff(Ng; ∗) for g ⩾ 3 is contractible
by [11, Prop. 2 and Thm. 2], it follows that the induced map in classifying spaces
BDiff(Ng; ∗) → BN 1

g is a homotopy equivalence. Thus, the vertical right ar-
row in the bottom square is an isomorphism. This argument exhibits a class in
H4(BN 1

g ;Z) = H4(N 1
g ;Z) (namely the image of p4) that maps to a non-zero class

under the restriction

H∗(N 1
g ;Z) → H∗(π;Z) mod p−−−−→ Fp[u].

Therefore, m(π;N 1
g ) ⩽ 2 and thus p(N 1

g ) ⩽ 4. □

Finally, we use the Birman exact sequence (see [11, Proposition 1 and Lemma
1] and [13, Theorem 2.1]) to generalize the previous result from N 1

g to N k
g for any

k ⩾ 1 and g ⩾ 3.

Theorem 3.4 (Upper bound for the p-period of N k
g ). Let k ⩾ 1, g ⩾ 3 and

p an odd prime. If the group N k
g contains p-torsion, then the p-period of N k

g is

p(N k
g ) ⩽ 4.

Proof. The proof is by induction on the number of marked points. The case k = 1
is precisely Theorem 3.3. Assume that the result holds for the case of k ⩾ 1 and
suppose that N k+1

g has p-torsion. Since g ⩾ 3 we can consider the Birman exact
sequence

1 → π1(N
k
g ) → N k+1

g → N k
g → 1,

where Nk
g denotes the surface obtained from Ng by removing the k marked points.

Since π1(N
k
g ) is a free group, it follows that N k

g must contain p-torsion. Thus,

from Theorem 1 we see that N k
g has p-periodic cohomology and by the induction

hypothesis we have p(N k
g ) ⩽ 4. Since vcd(N k

g ) and cd(π1(N
k
g )) are finite, it follows

from [14, Lemma 1.1] that N k+1
g has p-periodic cohomology and p(N k+1

g )|p(N k
g ).

Consequently, p(N k+1
g ) ⩽ 4. □
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4. A lower bound for the p-period

In this part, we find a lower bound for the p-period of N k
g . Our approach

uses the following result, which can be deduced by [8, Lemma 3.1] and the Brown
decomposition Theorem [2, Corollary X.7.4].

Theorem 4.1. Suppose Γ has finite vcd and p-periodic cohomology. Moreover,
assume that Γ contains only finitely many conjugacy classes of subgroups of order
p. Then the p-period of Γ is given by

p(Γ) = 2 · lcm{[NΓ(Z/p) : CΓ(Z/p)] | Z/p ∈ S} · pd

for some integer d ⩾ 0, where S is a set of representatives of the conjugacy classes of
subgroups of Γ of order p, NΓ(Z/p) and CΓ(Z/p) are the normalizer and centralizer
of Z/p in Γ respectively.

To apply the above result, first observe that if Z/p = ⟨α⟩, then for each β ∈
NΓ(Z/p) there exists 0 < mβ < p such that βαβ−1 = αmβ . This allows us to define
a bijection

NΓ(Z/p)/CΓ(Z/p) → {m ∈ {1, . . . , p− 1} | αm is conjugate to α}
[β] 7→ mβ .

Therefore, if we determine all the powers to which one of the possible generators
of the subgroup Z/p is conjugated, we can obtain information about the p-period
of the group Γ. According to the previous results, in the case of N k

g where k ⩾ 1, it
suffices to find at least one nontrivial power αm such that α and αm are conjugated
in N k

g to conclude that p(N k
g ) = 4. In the case k = 0, this nontrivial power gives

us a lower bound for the p-period p(Ng) ⩾ 4, for the genera g ⩾ 3 when the group
Ng has p-periodic Farrell cohomology. However, this power is difficult to find di-
rectly in the mapping class group N k

g . Fortunately, the Nielsen realization theorem

allows us to work with elements in PDiff(Ng; k) rather than mapping classes in N k
g .

The proof of the following result is postponed to the end of this section, since
new tools need to be introduced.

Theorem 4.2. Let g ⩾ 3 and k ⩾ 0. If f ∈ PDiff(Ng; k) is of order p, then f and
f−1 are conjugated in PHomeo(Ng; k).

Remark 4.3. Notice that when the surface is orientable, a result such as Theorem
4.2 does not hold in general. For instance, if there is at least one marked point,
from Theorem 4.1 and [14, Theorem 1.4] it follows that such a result can never
occur.

Having this result, we can prove one of our main results.

Theorem 4.4 (Lower bound for the p-period of N k
g ). Let k ⩾ 0, g ⩾ 3 and

p be an odd prime. If the group N k
g has p-periodic Farrell cohomology, then the

p-period is bounded below by 4, that is, p(N k
g ) ⩾ 4.

Proof. Let Z/p = ⟨α⟩ be a subgroup of prime order p in N k
g . By the above discus-

sion, we have a bijection

NNk
g
(Z/p)/CNk

g
(Z/p) → {m ∈ {1, . . . , p− 1} | αm is conjugate to α}.
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By the Nielsen realization theorem there exists a diffeomorphism f ∈ PDiff(Ng; k)
such that f ∈ α and fp = 1. By Theorem 4.2 we have that f and f−1 are conjugated
in PHomeo(Ng; k). Thus, there exists s ∈ PHomeo(Ng; k) such that sfs−1 = f−1.
Let β denote the image of s under the canonical projection PHomeo(Ng; k) → N k

g ,

then βαβ−1 = α−1. Thus, α is conjugated to α−1 in N k
g , which implies that

[NNk
g
(Z/p) : CNk

g
(Z/p)] ⩾ 2.

By Theorem 4.1, we have the following expression of the p-period

p(N k
g ) = 2 · lcm{[NNk

g
(Z/p) : CNk

g
(Z/p)] | Z/p ∈ S} · pd,

where S is a set of representatives of the conjugation classes of subgroups of order
p and d ⩾ 0. Thus, the formula entails

p(N k
g ) ⩾ 4 · pd ⩾ 4,

which proves the result. □

Proof of the Theorem 4.2.

In this section, we complete the proof of our main theorem by proving that
f and f−1 are conjugated in PHomeo(Ng; k), whenever f ∈ PDiff(Ng; k) is of
order p. For this purpose, we will use non-Euclidean crystallographic groups (NEC
groups, for short), which are similar to Fuchsian groups, but orientation-reversing
isometries of the hyperbolic plane H2 are allowed. For a general discussion of
this topic, we refer the reader to [4, Section 0.2] and [3, Section 1]. The surface
Ng will be uniformized by a NEC group K such that f : H2/K → H2/K is a
dianalytic map. To find a homeomorphism that conjugates the diffeomorphisms,
f and f−1, we construct an automorphism of K that connects f and its inverse.
The advantage of using NEC groups lies in the fact that every automorphism of a
NEC group can be realized geometrically (see [16, Theorem 3]). In this way, we
can find a homeomorphism τ : H2 → H2 such that with respect to the universal
cover qK : H2 → H2/K, this induces a homeomorphism s : H2/K → H2/K with
the desired property s ◦ f ◦ s−1 = f−1.

Surface-kernel epimorphism. Let f ∈ PDiff(Ng; k) be an element of order p.

By [19, Proposition 1], the lifting f̃ := ϕ̃(f) ∈ Diff(Sg−1; 2k) has a finite number of
fixed points, thus f also has a finite number of fixed points. Denote the fixed points
of f by z1, . . . , zt ∈ Ng, with the convention that the first k points are the marked
points. We can endow the surface Ng with a dianalytic structure X such that ⟨f⟩
is a group of automorphisms of the Klein surface (Ng;X) or, in other words, the
mapping

f : (Ng;X) → (Ng;X)

is dianalytic. By the uniformization theorem of Klein surfaces, there exists a non-
Euclidean crystallographic group K isomorphic to the fundamental group of Ng
such that the quotient surface H2/K is isomorphic to Ng as Klein surfaces. Let
γ : H2 → H2 be the lifting of the diffeomorphism f : Ng → Ng to the universal
cover qK : H2 → H2/K. Since f is dianalytic, then γ : H2 → H2 is an isometry and
this allows us to define the NEC group

Γ := ⟨K, γ⟩.
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Therefore the quotient space H2/Γ is homeomorphic to Ng/⟨f⟩ which in turn is
homeomorphic to Nh, where h satisfies the Riemann-Hurwitz equation,

g − 2 = p(h− 2) + t(p− 1),

for h ⩾ 1 and t ⩾ k. On the other hand, it is not hard to see that K ◁ Γ, thus,
we have a ramified covering q : H2/K → H2/Γ and for every element u ∈ Γ there
exists an induced homeomorphism û : H2/K → H2/K defined for each ζ ∈ H2 as

ζ ·K 7→ u(ζ) ·K,

which makes the following diagram commutative

H2 u //

��

H2

��

Ng ∼= H2/K
û // Ng ∼= H2/K.

We can see that û : H2/K → H2/K is a covering transformation for the ramified
cover q : H2/K → H2/Γ. We now define the epimorphism θ : Γ → ⟨f⟩ ∼= Z/p given
by

θ(u) = û for all u ∈ Γ,

and in this way, a short exact sequence is obtained

1 → K → Γ
θ−→ ⟨f⟩ → 1.

In the literature, the epimorphism θ is called smooth or surface-kernel epimorphism;
see for example [3, Section 1.4]. From now on, we will consider the surface Ng as
the quotient H2/K and its elements are represented by ζ ·K.

Canonical presentation of the NEC group Γ. Since the canonical projection
qΓ : H2 → H2/Γ has t branched points corresponding to the fixed points of f , whose
ramification index is equal to p and H2/Γ is homeomorphic to Nh, then Γ has an
algebraic presentation given by (see [3, Proposition 1.1.4])

(3) ⟨x1, . . . , xt, d1, . . . , dh | x1 · . . . · xt · d21 · . . . · d2h = xp1 = . . . = xpt = 1⟩,

where x1, . . . , xt are elliptic elements of Aut(H2) and d1, . . . , dh are glide reflections
of Aut(H2). The above presentation will be called a canonical presentation of Γ
and the generators will also be called canonical generators. With this presentation,
notice that the elliptic generators contain, in some sense, the information about the
fixed points of f .

Remark 4.5. Consider the canonical presentation (3) of Γ. Let ζ1, . . . , ζt ∈ H2

be the fixed points of the elliptic canonical generators x1, . . . , xt, respectively. By
definition of θ : Γ → ⟨f⟩, we have that

θ(xi)(ζi ·K) := xi(ζi) ·K = ζi ·K

and θ(xi) = fmi for some 1 ⩽ mi ⩽ p− 1. Since (mi, p) = 1, we have that ζi ·K is
also a fixed point of f , for each i = 1, . . . , t.
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Remark 4.6. Suppose that ζ · K ∈ H2/K is a fixed point of f . Then for each
u ∈ Γ we have that

u(ζ) ·K = ζ ·K.

Auxiliary epimorphisms θ1 and θ2. Given an element u ∈ Γ it is clear that

θ(u) = fmu = (f−1)−mu , for some 1 ⩽ mu ⩽ p.

We will consider mu as an element of Z/p, to avoid problems with the range from
which we can select mu. We define the epimorphisms θ1 : Γ → Z/p and θ2 : Γ →
Z/p given by θ1(u) = mu and θ2(u) = −mu. Observe that, by definition

θ(u) =fθ1(u) and θ(u) =(f−1)θ2(u)

where, abusing the notation θ1(u) and θ2(u) are thought of as integers and not as
classes of Z/p. With this observation, we can see that the epimorphisms θ1 and
θ2 give us a distinction on how to choose a preferred generator from the group of
covering transformations of q : H2/K → H2/Γ. Namely, for θ1 we take f as the
preferred generator while for θ2 we take f−1.

The following result connects the two epimorphisms θ1 and θ2 by an isomorphism
ψ : Γ → Γ. This result, combined with the previous discussion that θ1 and θ2
contain information on the choice of a preferred generator of Z/p (which are f and
f−1), gives us the guideline to prove that f and f−1 are conjugate, as will be seen
in later results.

Lemma 4.7. For the epimorphisms θ1 : Γ → Z/p and θ2 : Γ → Z/p there exists
an isomorphism ψ : Γ → Γ such that the following diagram is commutative:

(4) Γ
θ1

''
ψ

��
Z/p

Γ θ2

77

Moreover, if ζi ∈ H2 is the fixed point of the elliptic generator xi, then there exists
ui ∈ Γ such that the elliptic generator ψ(xi) has ui(ζi) ∈ H2 as a fixed point.

Proof. Consider the canonical presentation (3) of Γ and define the following ele-
ments of Γ:

η =x1 · . . . · xt · d1,
χi =xi+1 · xi+2 · . . . · xt for i = 1, . . . , t− 1, χt =1,

δj =d
2
j+1 · d2j+2 · . . . · d2h for j = 1, . . . , h− 1, δh =1.

We define the function ψ : Γ → Γ at the level of generators as follows:

xi 7→ η · χi · x−1
i · χ−1

i · η−1 for i = 1, . . . t

d1 7→ η2 · δ1 · η−1

dj 7→ η · δj · d−1
j · δ−1

j · η−1 for j = 2, . . . h.

Since the relation of the group Γ is preserved by ψ, it follows that ψ defines a group
homomorphism from Γ to Γ. Moreover, it can be checked that ψ is an isomorphism.
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On the other hand, notice that ψ satisfies the following properties:

θ2(ψ(xi)) =θ2(η · χi · x−1
i · χ−1

i · η−1) = −θ2(xi) for i = 1, . . . t,

θ2(ψ(d1)) =θ2(η
2 · δ1 · η−1) = θ2(d1) +

t∑
i=1

θ2(xi) + 2 ·
h∑
j=2

θ2(dj)

θ2(ψ(dj)) =θ2(η · δj · d−1
j · δ−1

j · η−1) = −θ2(dj) for j = 2, . . . h.

Since the generators of the group Γ satisfy the relation x1 · . . . · xt · d21 · . . . · d2h = 1,
it follows that

−θ2(d1) = θ2(d1) +

t∑
i=1

θ2(xi) + 2 ·
h∑
j=2

θ2(dj),

which implies that

θ2(ψ(xi)) =− θ2(xi) = θ1(xi) for all i = 1, . . . , t,

θ2(ψ(dj)) =− θ2(dj) = θ1(dj) for all j = 1, . . . , h,

since, by the definition of θ2 : Γ → Z/p, we have θ1(u) = −θ2(u) for all u ∈ Γ. It
follows that the condition holds for all u ∈ Γ, that is, θ2(ψ(u)) = θ1(u). Therefore,
ψ : Γ → Γ is the desired isomorphism.

Finally, by the definition of ψ, for each i = 1, . . . , t, if ζi is the fixed point of the
elliptic generator xi, then ui(ζi) ∈ H2 is the fixed point of ψ(xi), where ui = η · χi.
This completes the proof. □

We now proceed to prove that if f ∈ PDiff(Ng; k) is of order p, then f and f−1

are conjugated in PHomeo(Ng; k).

Proof of the Theorem 4.2. Let K be the NEC surface group such that f : H2/K →
H2/K is an isometry and γ : H2 → H2 the lifting of f to the universal cover qK :
H2 → H2/K. Consider the NEC group Γ = ⟨K, γ⟩, the surface kernel epimorphism
θ : Γ → ⟨f⟩ and the two auxiliary epimorphisms θ1, θ2 : Γ → Z/p defined above. By
Lemma 4.7, we can construct an isomorphism ψ : Γ → Γ such that the diagram (4)
is commutative and if the fixed points of the elliptic generators are ζi ∈ H2, then the
fixed points of ψ(xi) are equal to ui(ζi) ∈ H2, for some ui ∈ Γ. By [16, Theorem 3],
the isomorphism ψ : Γ → Γ is realized geometrically, this means that there exists a
homeomorphism τ : H2 → H2 such that

(5) ψ(u) = τuτ−1 for all u ∈ Γ.

Now, by the commutativity of diagram (4), we can see that ψ(ker(θ1)) = ker(θ2).
But K = ker(θ1) = ker(θ2), which implies that ψ|K : K → K is an automorphism
of K. Thus, τ : H2 → H2 induces the following homeomorphisms

ŝ : H2/Γ → H2/Γ s : H2/K → H2/K

ζ · Γ 7→ τ(ζ) · Γ ζ ·K 7→ τ(ζ) ·K,
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and these are such that the following diagram is commutative

H2 τ //

��

H2

��

H2/K
s //

��

H2/K

��

H2/Γ
ŝ // H2/Γ.

By definition of the epimorphism θ : Γ → ⟨f⟩ and using the above diagram, it follows
that θ(τγτ−1) = s ◦ f ◦ s−1. On the other hand, by definition of θ2 : Γ → Z/p,
we have that θ(τγτ−1) = (f−1)θ2(τγτ

−1), but from diagram (4) and equation (5) it
follows that θ2(τγτ

−1) = θ2(ψ(γ)) = θ1(γ) = 1, therefore

s ◦ f ◦ s−1 = f−1.

It remains to prove that s ∈ PHomeo(Ng; k). According to the Lemma 4.7, for
each i = 1, . . . , t if ζi ∈ H2 is the fixed point of the elliptic generator xi, then the
fixed point of ψ(xi) is ui(ζi) for some ui ∈ Γ. Applying ψ to each of the elliptic
generators and by equation (5) we have that ψ(xi) = τ xi τ

−1. Thus, τ(ζi) is a fixed
point of ψ(xi). Since the elliptic transformation ψ(xi) only has one fixed point in
H2, it follows that τ(ζi) = ui(ζi). This implies, by Remark 4.6 and the definition
of s that

s(ζi ·K) = τ(ζi) ·K = ui(ζi) ·K = ζi ·K.
Moreover, as we pointed out in Remark 4.5, the points ζi·K are the fixed points of f .
Hence, the marked points of Ng remain fixed by s. Therefore s ∈ PHomeo(Ng; k),
which completes the proof. □
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