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RITA JIMÉNEZ ROLLAND AND PORFIRIO L. LEÓN ÁLVAREZ

Abstract. In this note we give an upper bound for the virtually cyclic dimension of any
normally poly-free group in terms of its length. In particular, this implies that virtually even
Artin groups of FC-type admit a finite dimensional model for the classifying space with respect
to the family of virtually cyclic subgroups.

1. Introduction

Given a group G, we say that a collection F of subgroups of G is a family if it is non-empty
and closed under conjugation and taking subgroups. For a given family F of subgroups of G, a
G-CW-complex X is a model for the classifying space EFG if all of its isotropy groups belong
to F and the fixed point set XH is contractible whenever H belongs to F . It can be shown
that a model for the classifying space EFG always exists and it is unique up to G-homotopy
equivalence. In particular, the classifying spaces for the family F IN of finite subgroups of G
and the family V CYC of virtually cyclic subgroups of G, denoted by EG and EG respectively,
are relevant due to their connection with the Farrell-Jones and Baum-Connes isomorphism
conjectures; see for example [LR05].

The F-geometric dimension of G is defined as

gdF(G) = min{n ∈ N| there is a model for EFG of dimension n}.
For the trivial family and for the families F IN and V CYC , the number gdF(G) is usually denoted
by gd(G), gd(G) and gd(G), respectively.

The F -geometric dimension has its algebraic counterpart. The orbit category OFG is the
category whose objects are G-homogeneous spaces G/H with H ∈ F and morphisms are G-
functions. The category of Bredon modules is the category whose objects are contravariant
functors M : OFG → Ab from the orbit category to the category of abelian groups, and mor-
phisms are natural transformations f : M → N . The F-cohomological dimension of G, often
denoted by cdF(G), is defined as the minimum integer n such that there exists a projective
resolution P• of length n, in in the category of Bredon modules, of the constant Bredon mod-
ule ZF . The F -geometric dimension and the F -cohomological dimension satisfy the following
inequality (see [LM00, Theorem 0.1]):

cdF(G) ≤ gdF(G) ≤ max{cdF(G), 3}.
In this note we study the geometric dimensions gd(G), gd(G) and gd(G) when G is a normally

poly-free group. A group G is called poly-free if there exists a finite filtration of G by subgroups

1 = G0 ◁G1 ◁ · · ·◁Gn−1 ◁Gn = G

such that the quotient Gi+1/Gi is a free group, for 0 ≤ i ≤ n− 1. If we have that each Gi ◁G,
we say that G is normally poly-free. If there is a filtration such that the free groups Gi+1/Gi are
of finite rank, we say that G is poly-f.g.-free. We define the length of G as the minimum n ∈ N
such that there is a filtration as before. Poly-free groups are torsion-free, locally indicable,
have finite asymptotic dimension (see [Mor19], [Wu22] and references therein) and satisfy the
Baum–Connes Conjecture with coefficients [BKW21, Remark 2]. Furthermore, it has been
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proved that normally poly-free groups satisfy the Farrell-Jones conjecture [BKW21, Theorem
A], see also [AFR00], [BFW23, Theorem 1.1], [JPSSn16, Theorem 2.3.7].

In the literature, there are several examples of poly-free and normally poly-free groups. For
instance, free groups and free-by-infinite cyclic group are normally poly-free groups of length
≤ 2. Poly-Z groups are a particular case of poly-free groups and their geometric and virtually
cyclic dimensions have been completely characterized in [LW12, Section 5]. Furthermore, pure
braid groups of surfaces with nonempty boundary are known to be normally poly-free [AFR00]
and so are even Artin groups of FC-type [BGMPP19, Theorem 3.18], [Wu22, Theorem A]. It
is an open question [Bes99, Question 2] whether all Artin groups are virtually poly-free.

We give upper bounds for the geometric dimensions gd(G), gd(G) and gd(G) of any normally

poly-free group G in terms of its length.

Theorem 1.1. Let G be a poly-free group of length n ∈ N.
a) The geometric dimension gd(G) = gd(G) is bounded above by n. Furthermore, if G is

normally poly-f.g.-free, then gd(G) = n.
b) If G is a normally poly-free group, then the virtually cyclic dimension satisfies

gd(G) ≤ 3(n− 1) + 2.

By [Lüc00, Theorem 2.4], it follows from Theorem 1.1(b) that any virtually normally poly-
free group admits a finite dimensional model for the classifying space with respect to the family
of virtually cyclic subgroups. Some examples include:

• Virtually even Artin groups of FC-type.
• The braid group Bn(S) and the pure braid group Pn(S) of n strings on a connected
compact surface S with non-empty boundary.

For Artin braid groups Bn = Bn(D2) and pure braid groups Pn = Pn(D2) the virtually cyclic
geometric dimension was explicitly computed in [FGM20]. The existence of finite dimensional
models for EBn(S) and EPn(S) also follows from [NP18, Theorem 1.4] and the Birman exact
sequence when the underlying surface S is hyperbolic. However, the upper bounds that we get
from Theorem 1.1, when the surface S has non-empty boundary, only depends of n and not of
the topology of the underlying surface S.

Remark 1. We do not expect the upper bound obtained in Theorem 1.1 (b) to be optimal.
For instance, for n ≥ 2, if G is a poly-Z group of length n, then gd(G) ≤ n + 1, see [LW12,

Theorem 5.13]. Furthermore, the pure braid group Pn is normally poly-free of length ≤ n− 1
and gd(Pn) = n for n ≥ 3, see [FGM20, Corollary 5.9]. When the group G is free-by-infinite

cyclic, we prove in Proposition 2.5 below that gd(G) ≤ 3.

Our Theorem 1.1 is proved by an induction argument on the length of the normally poly-free
group G. The proof of part (b) uses, as the base for the induction, that the virtually cyclic
geometric dimension of a non-abelian free groups is equal to 2. This is known to hold for finitely
generated non-abelian free groups [JPL06], and we prove it for general non-abelian free groups
in Corollary 2.1. Our argument uses the next result that may be of independent interest.

Theorem 1.2. Let G be a group such that gd(G) = 1, then gd(G) ≤ 2. Moreover, if G is not

virtually cyclic and has an element of infinite order, then gd(G) = 2.

Remark 2. There are groupsG that are not virtually free and that satisfy gd(G) = 1, and hence
gd(G) ≤ 2 by our Theorem 1.2. If G is the fundamental group of a graph of groups in which all

vertex groups are finite and such that the orders of the vertex groups are not uniformly bounded,
then gd(G) = 1, but the group G is not virtually free; see for instance [SW79, Theorem 7.3]
and references therein. An example of such a group is G = Z2 ∗ (Z2×Z2)∗ (Z2×Z2×Z2)∗ · · · ,
which is not finitely generated. In fact, since such G is not virtually cyclic and has elements of
infinite order, Theorem 1.2 implies that gd(G) = 2.
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For a group G which is not virtually cyclic, M. Fluch proved that gd(G) = 2 when G is a

Gromov-hyperbolic group with gd(G) ≤ 2 [Flu10, Proposition 4.9], this includes the case when
G is the fundamental group of a finite graph of finite groups [Flu10, Proposition 4.12].

2. Proof of Theorems 1.1 and 1.2

We first prove Theorem 1.1(a) about the geometric dimension of poly-free groups. Notice
that since poly-free groups are torsion free, then gd(G) = gd(G).

Theorem 1.1(a) If G is a poly-free group of length n, then gd(G) ≤ n. Furthermore, if G is
normally poly-f.g.-free of length n we have that gd(G) = n.

Proof. The proof is by induction on the length n of the poly-free group. If n = 1, then G is
a non-trivial free group and gd(G) = 1. Suppose that the claim is true for poly-free groups of
length n ≤ k − 1 and let G be a poly-free group of length k. By definition, there is a filtration
of G by subgroups 1 = G0 ◁ G1 ◁ · · · ◁ Gk−1 ◁ Gk = G such that Gi+1/Gi is a free group for
0 ≤ i ≤ k − 1. Consider the following short exact sequence

1 → Gk−1 → G → G/Gk−1 → 1.

Notice that G/Gk−1 is a free group with gd(G/Gk−1) = 1 and gd(Gk−1) = k − 1 by induction
hypothesis since Gk−1 is a poly-free group of length k−1. Then, it follows from [Lüc05, Theorem
5.15] that

gd(G) ≤ gd(Gk−1) + gd(G/Gk−1) ≤ (k − 1) + 1 = k.

If G is a normally poly-f.g.-free of length n, it follows from [Mei80, Theorem 16] that the
homological dimension of G over Q is given by hdQ(G) = n. On the other hand

gd(G) ≥ cd(G) ≥ cdQ(G) ≥ hdQ(G).

For the last inequality see for example [Bie81, Theorem 4.6]. Therefore the furthermore part
of the statement follows. □

For n = 1, 2, the equality gd(G) = n holds for example of normally poly-free groups G of
length n that may not be finitely generated. That is the case when G is a free group or a
free-by-infinite cyclic group; see Proposition 2.5 (a) below. The equality gd(G) = n also holds
for poly-Z groups G of lenght n [Lüc05, Example 5.26].
The proof of Theorem 1.1 (b) is also done by induction on the length of the poly-free group.

We first need some preparatory results. We prove in Corollary 2.1 that the virtually cyclic
dimension of non-abelian free groups is equal to 2 and show in Proposition 2.5 that it is at
most 3 for free-by-infinite cyclic groups.

In order to include non-finitely generated groups, we prove first Theorem 1.2. Our argument
was inspired by [LASSn22, Section 6]. It uses the fact that every virtually cyclic group acting
on a simplicial tree T fixes a vertex or acts co-compactly on a unique geodesic line; see [DS99,
Lemma 1.1]. Recall that a geodesic line of a tree T is a simplicial embedding of R in T , where
R has a vertex set Z and an edge joining any two consecutive integers.

Theorem 1.2 Let G be a group such that gd(G) = 1, then gd(G) ≤ 2. Moreover, if G is not

virtually cyclic and has an element of infinite order, then gd(G) = 2.

Proof. Let G be a group with gd(G) = 1. Then there is a simplicial tree T which is a model for
the classifying space EG. We promote T to a model for EG by coning-off on T some geodesics
as we now explain, see Fig. 1.

First we prove that the set-wise stabilizer StabG(γ) of any geodesic line γ in T is a virtually
cyclic group. Consider γ with the simplicial structure induced by T . Note that the group
Aut(γ) of simplicial automorphisms of γ is isomorphic to the infinite dihedral group D∞. Since
StabG(γ) acts by simplicial automorphisms on γ, then there is a homomorphism of groups
φ : StabG(γ) → Aut(γ) = D∞. Let us denote by D the image of φ and notice that it is a
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Figure 1. Promoting T to T̂ .

virtually cyclic group since it is subgroup of a D∞. On the other hand, ker(φ) fixes point-wise
the vertices of γ. Since T is a model for EG, we have that ker(φ) must be a finite group. It
follows from the short exact sequence

1 → ker(φ) → StabG(γ)
φ−→ D → 1

that StabG(γ) is a virtually cyclic group.
Since T is a model for EG we have that any infinite virtually cyclic subgroup of G does not

fix a point in T . Hence, it follows from [DS99, Lemma 1.1] that any infinite virtually cyclic
subgroup of G must act co-compactly in a unique geodesic line of T . Let A be the collection
of all the geodesics of T that admit a co-compact action of an infinite virtually cyclic subgroup
of G. Consider the space T̂ given by the following homotopy G-push-out:⊔

γ∈A

γ

��

// T

��⊔
γ∈A

{∗γ} // T̂

If H ≤ G acts co-compactly on the geodesic line γ of T and g ∈ G, then gHg−1 acts co-
compactly on gγ. It follows that both

⊔
γ∈A γ and

⊔
γ∈A{∗γ} are G-CW-complexes, and there-

fore the space T̂ is a G-CW-complex of dimension 2.
We claim that T̂ is a model for EG. To show this we need to check the following:

a) For all x ∈ T̂ the isotropy group StabG(x) ∈ V CYC .

b) The fixed point set T̂H = {x ∈ T̂ | hx = x, for all h ∈ H} is contractible if H ∈ V CYC .

Item a) follows from the construction of T̂ . Indeed, we have two cases x ∈ T or x ∈ T̂ − T .
Observe that in the first case we have that the isotropy group StabG(x) is finite. In the second

case, if x ∈ T̂ − T is a conic point, then StabG(x) is infinite virtually cyclic; otherwise the
isotropy StabG(x) is contained in the stabilizer of a conic point, hence it is virtually cyclic.
It remains to show that item b) holds. Let H ∈ V CYC and consider the action of H on the

tree T obtained by restricting the action of G on T . It follows that H fixes a vertex of T or it
acts co-compactly on a unique geodesic line γ of T .
If H fixes a vertex of T , then H is a finite group since T is a model for EG. This implies

that TH is a non-empty subtree of T . Therefore T̂H is obtained from TH possibly coning-off
some geodesics segments, and we conclude that T̂H is contractible.
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Otherwise, we have that H acts co-compactly in a unique geodesic line γ on T , then γ ∈ A
and ∗γ ∈ T̂H . Notice that for any x ∈ T̂ −

⊔
γ∈A{∗γ} the isotropy group StabG(x) is finite.

Indeed, if x ∈ T this claim follows from the fact that T is a model for EG. Now if x /∈ T , then
there is some γ ∈ A such that x lies in the interior of the segment from a point in γ to the
coin point ∗γ. In particular, StabG(x) is contained in the stabilizer of this segment given by
the intersection of the isotropy groups of the end points, one of which is a finite group. Then
T̂H ⊆

⊔
γ∈A{∗γ} and by the uniqueness of the geodesic line γ, and we conclude that T̂H = {∗γ}.

We now prove the second part of the theorem. Assume that G is not virtually cyclic and
let h ∈ G be an element of infinite order. The cyclic subgroup of G generated by h must act
co-compactly in a unique geodesic line γ of T . Since the stabilizer of any geodesic line in T is
virtually cyclic and the group G is not, there exists an element g ∈ G that is not in StabG(γ).
Notice that the subgroup H generated by h and g cannot be virtually cyclic. Indeed, if H is
virtually cyclic, then it must act co-compactly in a unique geodesic line β of T , and so do its
cyclic subgroups generated by h and g. By uniqueness of the geodesic γ stabilized by h, we must
have that β = γ. Then H stabilizes γ and, in particular, gγ = γ which contradicts the fact that
we are taking g /∈ StabG(γ). By [LASSn22, Lemma 2.2] we have that 2 ≤ gd(H) ≤ gd(G). □

The following result was proved in [JPL06] for finitely generated virtually free groups that
are not virtually cyclic.

Corollary 2.1. Let G be a virtually free group which is not virtually cyclic. Then gd(G) = 2.

Proof. Let G be a non-trivial virtually free group. Then G is the fundamental group of a graph
of groups in which all vertex groups are finite; see for example [SW79, Theorem 7.3] and notice
that this structure result holds for virtually free groups that may not be finitely generated.
Therefore, the Bass-Serre tree associated with the graph of groups is a model for EG and
gd(G) = 1. Since G is not virtually cyclic it follows from Theorem 1.2 that gd(G) = 2. □

The induction step in the proof to of Theorem 1.1 (b) requires having an upper bound for
the virtually cyclic dimension of a free-by-infinite cyclic group. To obtain it in Proposition 2.5
below, we use the following condition introduced by Lück.

Definition 2.2. [Lüc09, Condition 4.1] We say that a group G satisfies condition (C) if for
every g, h ∈ G with |h| = ∞ and k, l ∈ Z we have that ghkg−1 = hl implies that |k| = |l|.

There are many collections of groups that satisfy condition (C), including mapping class
groups [JPTN16, Proposition 4.1], any discrete group which acts properly and isometrically
on a complete proper CAT(0)-space [Lüc09, Proof of Theorem 0.1], and outer automorphism
groups of finitely generated free groups [GHS23, Proposition 3.1].

Lemma 2.3. Consider a short exact sequence of groups

1 → F → G → Z → 1

such that F is a free group. Then the group G satisfies condition (C).

Proof. Consider the automorphism φ : F → F such that G ∼= F ⋊φ Z.
Let (x, a), (y, b) ∈ F ⋊φ Z with |(x, a)| = ∞ and k, l ∈ Z such that

(y, b)(x, a)k(y, b)−1 = (x, a)l.

Then b+ ka− b = la; if a ̸= 0, it follows that k = l.
Now assume that a = 0 and x ̸= eF . Then we have that (y, b)(xk, 0)(y, b)−1 = (xl, 0), which

implies that

(1) xl = yφb(xk)y−1 = cy ◦ φb(xk),

where cy : F → F is the automorphism of F given by conjugation by y.
Consider the infinite cyclic subgroup C = ⟨x⟩ of F and let Cmax be the unique maximal cyclic

subgroup of F containing it. From Eq. (1), we have that the automorphism cy ◦ φb of F must
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take Cmax isomorphically onto Cmax. It follows that xl = cy ◦ φb(xk) = ±IdCmax(x
k) = x±k,

therefore |k| = |l|.
□

Remark 3. More generally, notice that the argument in Lemma 2.3 shows that a semi-direct
product G ∼= F ⋊φ Z satisfies condition (C) whenever the group F is torsion free and satisfies
that “any infinite cyclic subgroup C of F is contained in a unique maximal cyclic subgroup
Cmax of F”. See [LW12, Section 3] for examples of such groups.

Given H a subgroup of G, we denote the normalizer of H in G by NG(H) and the corre-
sponding Weyl group by WG(H) = NG(H)/H.

Lemma 2.4. [Lüc09, Lemma 4.4] Let n be an integer. Suppose that G satisfies condition (C).
Suppose that gd(G) ≤ n and for every infinite cyclic subgroup H of G we have gd(WG(H)) ≤ n.
Then gd(G) ≤ n+ 1.

Proposition 2.5. Consider a short exact sequence of groups

1 → F → G → Z → 1

such that F is a free group.

a) The geometric dimension gd(G) ≤ 2, and equality holds if the group G is not free.
b) The virtually cyclic geometric dimension satisfies 2 ≤ gd(G) ≤ 3.

Proof. If G is a free group, then gd(G) = 1 and gd(G) ≤ 2 by Corollary 2.1.

Suppose that G is not a free group. First we prove item a). Since G is a poly-free group of
length 2, by Theorem 1.1(a) we have that gd(G) ≤ 2. On the other hand, since G is non-trivial
and non-free, then cd(G) ≥ 2 by the Stallings and Swan theorem. Hence cd(G) = gd(G) = 2.

We prove item b). For the lower bound notice that if F = Z, then G is isomorphic to Z2 or
Z ⋊ Z, in both cases G is a 2-crystallographic group, it follows from [CFH06] that gd(G) = 3.

If F is not cyclic, then it follows from Corollary 2.1 that 2 = gd(F ) ≤ gd(G).

We prove next that gd(G) ≤ 3. By Lemma 2.3, a free-by-cyclic group G ∼= F ⋊ Z satisfies

condition (C). Therefore, from Lemma 2.4 and item a), it is enough to show that the geometric
dimension gd(WG(H)) ≤ 2 for any infinite cyclic subgroup H of G.

Let H be a cyclic subgroup of G. From the short exact sequence 1 → F → G
p−→ Z → 1 we

have, by restriction, the short exact sequence

(2) 1 → F ∩NG(H) → NG(H) → Q → 1,

where Q is a subgroup of Z. We need to consider two cases: i) p(H) = 0 or ii) p(H) ̸= 0.
In case i), we assume that p(H) = 0, then H ⊆ F . Since F is a free group, it follows that

F ∩NG(H) = NF (H) is a cyclic subgroup of F and (F ∩NG(H))/H is finite. From the short
exact sequence (2) we obtain

1 → (F ∩NG(H))/H → WG(H) → Q → 1,

and therefore WG(H) is a virtually cyclic group.
In the case ii), we have p(H) ̸= 0 and Q/p(H) is a finite cyclic group. From the short exact

sequence (2) we get
1 → F ∩NG(H) → WG(H) → Q/p(H) → 1,

where F ∩NG(H) is a free group. Hence WG(H) is a virtually free group.
In both cases i) and ii) we have that gd(WG(H)) ≤ 1 and hence gd(G) ≤ 3. □

Remark 4. If we assume in Proposition 2.5 that G is a countable group, then the result can
be deduced from [Deg17, Corollary 3]. See also [DP14, Theorem B] for a criterion for more
general groups that fit into an extension with torsion-free quotient to admit a finite-dimensional
classifying space with virtually cyclic stabilizers.
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The following result of Lück and Weiermann allows us to relate the geometric dimensions
associated to nested families of subgroups.

Lemma 2.6. [LW12, Proposition 5.1 (i)] Let F ⊆ G be two families of subgroups of a group
G. Let n ≥ 0 be an integer such that for any H ∈ G, there is an n-dimensional model for
EF∩H(H). Then gdF(G) ≤ gdG(G) + n.

We are ready to prove Theorem 1.1 (b).

Theorem 1.1 (b) Let G be a normally poly-free group of length n. Then gd(G) ≤ 3(n−1)+2.

Proof. The proof is done by induction on n. If n = 1, the statement follows from Corollary 2.1.
Suppose that the result holds for normally poly-free groups of length n ≤ k − 1.
Let G be a normally poly-free group of length k. Then there is a filtration of G by subgroups

1 = G0◁G1◁ · · ·◁Gk−1◁Gk = G such that Gi◁G, and the quotient Gi+1/Gi is a free group.
We consider the following short exact sequence

1 → G1 → G
p−→ G/G1 → 1.

Note that G/G1 is a normally poly-free group of length ≤ k− 1. Consider the family pull-back
p∗(G) of the family G of virtually cyclic subgroups of G/G1, i.e. p

∗(G) is the family of subgroups
of G generated by

{p−1(L) : L is a virtually cyclic subgroup of G/G1}.

A model X of EG(G/G1) is a model of Ep∗(G)G via the action given by the projection p. For
the sake of completeness we give a proof, by checking the following:

a) For all x ∈ X the isotropy group StabG(x) ∈ p∗(G).
b) The fixed point set XH = {x ∈ X | hx = x, for all h ∈ H} is contractible if H ∈ p∗(G).

For item a) note that StabG(x) = {g ∈ G | p(g)x = x} ⊆ p−1(StabG/G1(x)), since
StabG/G1(x) ∈ G it follows that StabG(x) ∈ p∗(G).

For item b) let H ∈ p∗(G). Then there is L ∈ G such that H < p−1(L) and it follows that
p(H) is virtually cyclic. Note that XH = {x ∈ X | p(h)x = x, for all h ∈ H} = Xp(H), which
is contractible since X is a model for EG(G/G1).

For the preceding paragraph, we have gdp∗(G)(G) ≤ gdG(G/G1) = gd(G/G1). Let V CYC

denote the family of virtually cyclic subgroups of G and notice that V CYC ⊆ p∗(G). By
Lemma 2.6 we have

gd(G) ≤ gd(G/G1) + max{gdV CYC∩p−1(L)(p
−1(L)) : L ∈ G}.(3)

We show that gdV CYC∩p−1(L)(p
−1(L)) ≤ 3 for any L ∈ G.

If L is the trivial group, then p−1(L) ∼= G1 is a free group and gdV CYC∩p−1(L)(p
−1(L)) =

gd(p−1(L)) = 2 by Corollary 2.1. Otherwise, L is an infinite cyclic subgroup of the torsion free

group G/G1. From the short exact sequence

1 → G1 → p−1(L) → L → 1,

we see that p−1(L) is a free-by-cyclic group. By Proposition 2.5 we have that

gdV CYC∩p−1(L)(p
−1(L)) = gd(p−1(L)) ≤ 3.

From Eq. (3) and the induction hypothesis we have gd(G) ≤ gd(G/G1)+3 ≤ 3(k−1)+2. □
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