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ABSTRACT

In this thesis we consider some sequences of groups or spaces {Xn}n∈N and are interested

in how the degree i cohomology Hi(Xn; Q) changes as the parameter n increases. Our main

examples are:

• the cohomology of the moduli space of n-pointed curves of genus g,

• the cohomology of the pure mapping class group of surfaces and some manifolds of

higher dimension, and

• the cohomology of classifying spaces of some diffeomorphism groups.

We do not expect that our sequences satisfy (co)homological stability, meaning that the

(co)homology groups are isomorphic for large n, because of existence of nontrivial symmetries.

We prove, in Chapter 3, that in each case we have a sequence of Sn-representations which

is uniformly representation stable in the sense of Church–Farb. This condition puts strong

constraints on the rate of growth of the representations and the patterns of irreducible Sn-

representations occurring. In particular this result applied to the trivial Sn-representation

implies rational “puncture homological stability” for the mapping class group Modng .

In Chapter 4 we apply the theory of finitely generated FI-modules developed by Church,

Ellenberg and Farb to our examples. We introduce the notion of FI[G]-module and use it to

strengthen and give new context to results on representation stability discussed in Chapter

3. With this approach we conclude that for each sequence of representations the characters

are polynomial and find bounds on their degree. As a consequence we obtain that the Betti

numbers of these spaces and groups are polynomial. Finally, rational homological stability

of certain wreath products is obtained.
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CHAPTER 1

INTRODUCTION

Given a sequence of either groups or spaces {Xn}n∈N there has been much interest in how the

(co)homology changes as the parameter n gets large. A possible phenomenon is homological

stability: as the parameter n is large enough, the homology groups are isomorphic. In the last

fifty years several examples have exhibit this behavior. For example, it is known to hold for

the symmetric groups Sn (Nakaoka, 1961 [39]); the braid groups Bn (Arnold’ 1968 [3]); the

mapping class groups Modn,r (Harer 1985 [23]) and Modng (see [47]); the outer automorphisms

group of the free group Out(Fn) (Hatcher–Vogtmann, 2004 [28]); the configuration spaces

of unordered points Bn(M) (by McDuff 1975 [38] and Segal 1979 [41] for open manifolds);

linear and arithmetic groups (Vogtmann 1979 [45], Charney 1979 [8], Maazen, 1979 [35], van

der Kallen, 1980 [44]). We refer the interested reader to [14], [46], [16] and the references

therein.

However, this behavior generally does not occur when nontrivial symmetries are present.

This is the case of the pure braid group Pn, where each cohomology group Hi(Pn; Q)

comes with an action of the symmetric group Sn. Arnold’s computations in [2] imply that

dimQH
i(Pn; Q) grows to infinity with n, for any i ≥ 1. In this thesis we are interested

in some particular examples, such as the pure braid group Pn, where the phenomenon of

homological stability fails. We focus on some sequences of groups or spaces {Xn} where each

cohomology group Hi(Xn; Q) is equipped with an action of the symmetric group Sn. Our

goal is to describe how the (co)homology groups change as the parameter n increases.

1.1 Examples of interest

We begin by describing the sequences of spaces and groups {Xn} that we are interested in:

the pure mapping class group PModn(M); the moduli space Mg,n of n-pointed curves of

genus g, and the classifying spaces of some diffeomorphisms groups B PDiffn(M).
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1.1.1 Pure mapping class groups

Given M a connected, smooth manifold, consider an “ordered configuration” p = (p1, . . . , pn)

of n distinct points in the interior of M .

We denote by Diffp(M) the subgroup in Diff(M rel ∂M) of diffeomorphisms that leave

invariant the set {p1, . . . , pn}. On the other hand, PDiffp(M) is the subgroup that consists

of the diffeomorphims that fix each point in {p1, . . . , pn}.

We refer to p1, . . . , pn as the “punctures” or the “marked points”.

The mapping class group is the group

Modn(M) := π0
(

Diffp(M)
)
.

Similarly the pure mapping class group is

PModn(M) := π0(PDiffp(M)).

Notice that if we have two distinct configurations p = (p1, . . . , pn) and q = (q1, . . . , qn) in the

interior of M , since M is connected, then Diffp(M) ≈ Diffq(M) and PDiffp(M) ≈ PDiffq(M).

We refer to them by Diffn(M) and PDiffn(M), respectively.

Pure mapping class groups of surfaces. Our discussion and techniques below were origi-

nally motivated by the example of pure mapping class groups of surfaces. The understanding

of their cohomology has relevance in both geometric group theory and algebraic geometry.

Let Σg,r be a compact orientable surface of genus g ≥ 0 with r ≥ 0 boundary components.

If p1, . . . , pn are distinct points in the interior of Σg,r, then we write Σng,r to denote the surface

Σg,r − {p1, . . . , pn}. If r = 0 or n = 0, we omit it from the notation.

The mapping class group Modng,r is the group of isotopy classes of orientation-preserving

self-diffeomorphisms of Σng,r that restrict to the identity on the boundary components (i.e.

Modng,r = Modn(Σg,r)). The pure mapping class group PModng,r is defined analogously by

asking that the punctures remain fixed pointwise (i.e. PModng,r = PModn(Σg,r)).
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The group PModn0,1 is the pure braid group Pn and Modn0,1 is the braid group Bn.

Genus and puncture homological stability. One basic question is to understand how,

for a fixed i ≥ 0, the cohomology groups Hi(PModng,r; Q) change as we vary the parameters

g, r and n, in particular when the parameters are very large with respect to i.

It is known that the groups PModng,r and Modng,r satisfy “genus homological stability”:

For fixed i, n ≥ 0 the homology groups Hi(PModng,r; Z) and Hi(Modng,r; Z)

do not depend on the parameters g and r, for g � i.

This was first proved in the 1980’s by Harer [23] and the stable ranges have been improved

since then by the work of several people (see Wahl’s survey [47]).

An additional stabilization map can be defined by increasing the number of punctures.

We refer to “puncture homological stability” when homological stability holds with respect

to the parameter n. In the case of surfaces with non-empty boundary, we can consider a map

Σng,r → Σn+1
g,r by gluing a punctured cylinder to one of the boundary components of Σng,r.

This map gives a homomorphism

µn : Modng,r → Modn+1
g,r .

In [29, Proposition 1.5], Hatcher and Wahl proved that the map µn induces an isomorphism

in Hi(−; Z) if n ≥ 2i + 1 (for fixed g ≥ 0 and r > 0). Puncture stability for closed surfaces

follows, as it is known that

Hi(Modng,1; Z) ≈ Hi(Modng ; Z) for g ≥ 3

2
i

(see [47, Theorem 1.2]). Handbury proved this puncture homological stability for non-

orientable surfaces in [21] with techniques that can also be applied to the orientable case.

When the surface is a punctured disk, this is Arnold’s classical stability theorem for the

cohomology of braid groups Bn [3]. Together, puncture and genus stability imply that the

3



homology of the mapping class group of an orientable surface stabilizes with respect to con-

nected sum with any surface.

The question of puncture homological stability can also be asked for mapping class groups

of manifolds of higher dimensions. This was proved, with integral coefficients, by Hatcher–

Wahl in [29, Proposition 1.5] for the mapping class group Modn(M) of connected manifolds

M with boundary of dimension d ≥ 2.

On the other hand, for the pure mapping class groups, attaching a punctured cylinder to

Σng,r also induces homomorphisms

µn : PModng,r → PModn+1
g,r ,

when r > 0. Hence we can ask whether PModng,r satisfies or not puncture homological

stability.

The homology groups of PModng,r are largely unknown, apart from some low dimensional

cases such as:

H1(PModng,r; Z) = 0 for g ≥ 3

(see [18, Theorem 5.2] for a proof). Furthermore,

H2(PModng,r; Z) ≈ H2(Modg,r+n; Z)⊕ Zn for g ≥ 3

(this is [34, Corollary 4.5], but the original computation for g ≥ 5 is due to Harer [22]).

We notice that the rank of H2(PModng,r; Z) blows up as n → +∞. Moreover, Arnold’s

computations in [2] imply that dimQH
k(Pn; Q) grows to infinity with n, for any k ≥ 1.

Hence, the pure braid groups Pn ≈ PModn0,1 fail in each dimension i ≥ 1 to satisfy ho-

mological stability (see discussion in [12, Section 4]). This suggests to us the failure of

puncture homological stability in the general case. In this thesis we consider the sequences

4



{PModng,r}n∈N and {PModn(M)} and address the problem of describing how their cohomol-

ogy groups change as the parameter n increases.

For large g, Bödigheimer and Tillmann results in [6], combined with Madsen-Weiss’ results

in [37], give explicit calculations, although we do not discuss them in this thesis.

1.1.2 Moduli space of curves

A space of interest that lies at the juncture of complex analysis, geometric topology, algebraic

topology and algebraic geometry is the moduli space Mg,n. It is the space of n-pointed

Riemann surfaces of genus g up to biholomorphism. The elements in Mg,n are equivalent

classes, up to biholomorphism, of pairs (X, p), where X is a Riemann surface of genus g and

p = (p1, . . . , pn) is an “ordered configuration of n points” in X. Moreover, Mg,n is also the

space of metrics of constant curvature in Σng up to isometry. Furthermore,Mg,n is the space

of n-pointed non-singular projective curves of genus g up to isomorphism.

Understanding its topology is a fundamental question, in particular, its cohomology ring.

It is known to be an orbifold of dimension 3g − 3 + n and moreover, a quasiprojective

non-compact algebraic variety. Nevertheless, the cohomology groups of Mg,n are largely

unknown, besides some low dimensional and low genus cases. One question to ask is how, for

a fixed i ≥ 0, the cohomology groups Hi(Mg,n; Q) change as the parameters g and n vary.

The homology groups of the pure mapping class group PModng are of interest due to their

relation with the topology of the moduli space Mg,n. The space Mg,n is a rational model

for the classifying space B PModng for g ≥ 2. Hence

H∗(Mg,n; Q) ≈ H∗(PModng ; Q). (1.1)

We refer the reader to [18], [20], [32] and [25] for more about the relation betweenMg,n and

PModng . Therefore Harer’s stability theorem answers the previous question with respect to

the parameter g. For the parameter n, there is a forgetful morphism between moduli spaces

fn :Mg,n+1 →Mg,n that induces a map that relates the corresponding cohomology groups.
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Again, by equation (1.1), we could answer the question of how Hi(Mg,n; Q) change as

n varies, by understanding what happens for the rational cohomology of the pure mapping

class group PModng , our previous example.

A related space of interest isMg,n, the Deligne–Mumford compactification of the moduli

space Mg,n.

Mg,n is the moduli space of stable n-pointed curves of arithmetic genus g. A stable

n-pointed curve is a connected n-pointed curve C, with ordinary double points as worst

singularities, that satisfy the following stability condition: every genus 0 component must

have at least three special points and every genus 1 component must have at least one

special point. By special point we refer to either a double point or a smooth marked point.

This stability condition is equivalent to requiring that the curve has only finitely many

automorphisms. Informally, the arithmetic genus of a curve with nodes is the genus of its

smoothing.

It turns out that Mg,n is a normal projective variety of dimension 3g − 3 + n and it is

a compactification ofMg,n. Few explicit computations of its cohomology are known and all

have an algebro-geometric flavor. For an introduction to moduli space and its compactifica-

tion we refer the reader to [43].

1.1.3 Classifying spaces for diffeomorphism groups

Consider the classifying space B PDiffn(M) of the group of diffeomorphisms PDiffn(M),

where M is a smooth, compact and connected manifold of dimension d ≥ 3. Notice that the

forgetful homomorphisms PDiffn+1(M) → PDiffn(M) induce corresponding map between

classifying spaces

fn : B PDiffn+1(M)→ B PDiffn(M).

We are interested on the sequence {Hi(B PDiffn(M); Q)}n∈N for any i ≥ 0, and we want to

understand how the cohomology Hi(B PDiffn(M); Q) changes as the parameter n gets large.
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1.1.4 Configuration spaces

Finally we mention the example of configuration spaces because of its relation with pure

mapping class groups and B PDiffn(M) (see Sections 3.4.1, 3.5.1 and 3.6). It turns out to

be a key ingredient for our computations below.

We denote by Confn(M) the configuration space of n distinct ordered points in the interior

of any topological space M :

Confn(M) =
{

(p1, . . . , pn) ∈Mn : pi 6= pj
}
.

The symmetric group Sn acts freely on Confn(M) by permuting the coordinates. The

The action of the symmetric group Sn on Mn = M × · · · ×M︸ ︷︷ ︸
n

restricts to a free action on

Cn(M), and the quotient quotient Bn(M) = Confn(M)/Sn is the configuration space of n

distinct unordered points in the interior of M .

We will usually take the n-tuple p = (p1, . . . , pn) ∈ Confn(M) used in the definition of

PDiffn(M) as the base point of π1(Confn(M)).

We can also think of Confn(M) as the space of embeddings Emb([n],M) of the finite set

[n] = {1, . . . , n} into M .

Homological stability for unordered configuration spaces. The first conguration

spaces to be studied were Confn(R2) and Bn(R2). These are aspherical spaces whose fun-

damental groups are the pure braid group Pn and the braid group Bn respectively. There

are inclusions Bn(R2) → Bn+1(R2) and Arnold ([3]) proved that Bn(R2) satisfies integral

homological stability with respect to these maps. Cohen’s 1972 thesis ([13]) computes the

homology groups for Bn(Rq) for all q ≥ 2 and for all n ≥ 0. Homological stability in these

cases is an immediate consequence of the computations. More generally, if M is the interior

of a compact manifold with boundary, maps Bn(M)→ Bn+1(M) can be defined by “pushing

the additional point in from infinity”. For such manifolds M , McDuff ([38, Theorem 1.2])

proved that Bn(M) satises integral homological stability and extended the result to arbitrary

7



open manifolds. The same result was proved by Segal [41, Appendix to 5] by an approach

closer to Arnol’d’s.

Nevertheless, the corresponding theorem is false for closed manifolds where the stabiliza-

tion map Bn(M)→ Bn+1(M) does not exist. The simplest example where homological sta-

bility fails is the 2-sphere, where (see e.g. [5, Theorem 1.11]): H1(Bn(S2); Z) = Z/(2n−2)Z.

Instead we could consider the ordered conguration spaces Confn(M). In this case we have

a natural map Confn+1(M)→ Confn(M) given by “forgetting the last point”, which induces

maps in cohomology Hi(Confn(M))→ Hi(Confn+1(M)) for any manifold M , whether open

or closed. The action of Sn on Confn(M) induces an action on the cohomology groups

and gives Hi(Confn(M); Q) the structure of an Sn-representation. It turns out that to

understand the rational cohomology of Bn(M), it suffices to understand the cohomology

of Confn(M) together with the action of Sn on it. In [9], Church describes how, for any

i ≥ 0, the sequence of representations {Hi(Confn(M); Q)} changes as n gets large. From his

main result he concludes rational homological stability for B(M) when M is any connected

orientable manifold, open or closed ([9, Corollary 3]). In [10], Church–Ellenberg–Farb give

the corresponding description for the cohomology of Confn(M) with coefficients in any field

of characteristic zero and Z. In [11], Church–Ellenberg–Farb–Nagpal address the case with

coefficients in any field k and prove that dimk

(
Hi(Confn(M); k)

)
is a polynomial in n for

sufficiently large n ([11, Theorem 1.8]). In Section ?? we recall some of those results and

compute specific ranges for the configuration space of surfaces.

1.2 Representation Stability

Church and Farb suggested that in many examples where homological stability fails there is

a form of stability relative to the inherent symmetries of the spaces or groups. This is the

notion of representation stability introduced in [12].

Roughly speaking, a sequence of rational Sn-representations {Vn} is said to be uniformly

representation stable if the decomposition of Vn =
⊕

λ cλ,nV (λ) into irreducible represen-

8



tations can be described independently of n for sufficiently large n: the multiplicities cλ,n

are eventually independent of n, for each λ. This definition has proved to be the right one

in many cases. For instance, it explains the behavior of the cohomology of the pure braid

groups Pn (due to Farb–Church in [12]) and of the configuration space Confn(M) of n dis-

tinct ordered points on any connected oriented manifold M (see work by Church in [9]). We

introduce the precise definition in Section 2.1.

In this thesis we prove that uniform representation stability holds for the rational coho-

mology of the pure mapping class groups of surfaces PModng,r, the moduli space Mg,n of

n-pointed curves of genus g, the pure mapping class groups PModn(M) and the classify-

ing spaces B PDiffn(M) for some manifolds M (see Theorem 1.3.1 below for precise result).

Therefore the growth of the rational cohomology groups of these examples is explained pre-

cisely by the symmetries of the spaces or groups. We do this in Chapter 3 below which

corresponds to the content of the paper [30].

As a consequence, classical homological stability for the sequences {Xn/Sn} with coeffi-

cients in any finite dimensional rational Sn-representation is obtained. In particular, when

taking the trivial representation, we recovered rational homological stability for Modng,r, pre-

viously obtained integrally by Hatcher–Wahl ([29]) with completely different techniques. See

3.1.3 in Chapter 3 for the precise result.

After proving representation stability, several problems remain open for future research.

For instance, for each of the examples above:

a. Determine how large n needs to be for the degree i cohomology to stabilize.

b. Compute the explicit decomposition into irreducible Sn-representations.

c. Understand cohomology classes geometrically and the meaning of the Sn-action.

d. Investigate stability behavior of cohomology groups with other coefficients besides Q.

The answers to the previous problems are known when g ≥ 4 for the second cohomology

of PModng , for instance H2(PModng ; Z) ≈ Zn+1, when n ≥ 3 (see discussion in Section 3.2).

9



Moreover, the decomposition into irreducible representations is completely understood:

H2(PModng ; Q) ≈ (standard Sn-rep)⊕ (trivial Sn-rep)⊕ (trivial Sn-rep).

In Chapter 3 we provide an answer for the first problem above. For each example we obtain

a stable range N , which is quadratic in i, such that for n ≥ N the degree i cohomology

stabilizes in the sense of representation stability. We improve this stable range to be linear

in i in Chapter 4.

1.3 The theory of FI-modules

The notion of an FI-module was introduced by Church, Ellenberg and Farb ([10]) in order

to encode the information of a sequence of Sn-representations in a single object and convert

the condition of representation stability into a finite generation property. An FI-module over

a ring R is a functor from the category of finite sets and injections (FI) to R-modules. Their

theory implied new theorems about configuration spaces, the diagonal coinvariant algebra on

r sets of n variables and the space of polynomials on rank varieties of n × n matrices. We

discuss the notion of FI-module and finite generation in Sections 2.2 and 2.4.

Some sequences of spaces or groups {Xn} can be encoded by considering a functor X

from FIop to the category of topological spaces or groups. Then their cohomology can be

understood as the FI-module Hi(X;R) over R, obtained by composing X with the cohomol-

ogy functor Hi( ;R). This is the case of the cohomology of our examples of interest (see

Section 2.3): the pure mapping class groups of surfaces PModng,r, the pure mapping class

groups PModn(M) and the classifying spaces B PDiffn(M) for some manifolds M , and the

configuration space of ordered point in a surface Confn(Σ). In Chapter 4 we prove that

each of such sequences has the structure of a finitely generated FI-module over any field k.

Then we can use the theory developed by Church–Ellenberg–Farb and further results by

Church–Ellenberg–Farb–Nagpal to obtain the following statement:
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Theorem 1.3.1. For i ≥ 0, and each of the sequences {Xn} in Table 1.1, there is an integer

N ≥ 0 such that for n ≥ N the following holds:

i) The decomposition of Hi(Xn; Q) into irreducible Sn-representations stabilizes in the

sense of uniform representation stability with stable range n ≥ N .

ii) The sequence of quotients {Xn/Sn} satisfies rational homological stability for n ≥ N .

iii) The character χn of Hi(Xn; Q) is of the form:

χn = Qi(Z1, Z2, . . . , Zr),

where deg(χn) = r > 0 only depends on i and Qi ∈ Q[Z1, Z2, . . .] is a unique polynomial

in the class functions

Zl(σ) := # cycles of length l in σ, for any σ ∈ Sn.

iv) The length of the representation `
(
Hi(Xn; Q)

)
is bounded above independently of n.

The specific bounds for each example are presented in Table 1.1.

Moreover, if k is any field, for each Xn in Table 1.1 (except for Mg,n) there exists an

integer-valued polynomial P (T ) ∈ Q[T ] so that for all sufficiently large n,

dimk

(
Hi(Xn; k)

)
= P (n).

For Xn =Mg,n this is true when k = Q.
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Table 1.1: Main conclusions for the examples of interest in Theorem 1.3.1.

Xn Hypotheses N `
(
Hi(Xn; Q)

)
≤ deg(χn) ≤

Confn(Σ) Σ a surface 4i 2i+ 1 2i
(Thm 4.3.3)

Mg,n g ≥ 2 6i 2i+ 1 2i
(Thm 4.5.1)

PModng,r 2g + r > 2 and r > 0 4i 2i+ 1 2i

(Thm 4.5.3)

M is a smooth connected manifold;
PModn(M) dimM ≥ 3; π1(M) and Mod(M) are of 3i i+ 1 i
(Thm 4.5.2) type FP∞, and either π1(Diff(M)) = 0

or π1(M) has trivial center

M is a smooth, compact and connected
B PDiffn(M) manifold; dimM ≥ 3, and BDiff(Mrel∂M) 3i i+ 1 i
(Thm 4.5.6) has the homotopy type of a CW-complex with

finitely many cells in each dimension
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Theorem 1.3.1 gives a unified understanding of the cohomology groups of such examples as

sequences in n and puts strong constraints on their rate of growth, the patterns of irreducible

Sn-representations occurring and the form of their characters. With the theory of FI-modules

we also obtain homological stability results for some wreath products (see Theorem 4.1.5).

Moreover, when considering surfaces with boundary (r > 0), we can conclude that the rank

of Hi(PModng,r; Z) and the number of cyclic summands in its p-torsion part are polynomials

in n of degree at most 2i (Theorem 4.1.1).

The basic idea to prove Theorem 1.3.1 is to use a spectral sequence of FI-modules con-

verging to the graded FI-module of interest. Closure properties of finite generation under

subquotients and extensions allow us to reduce the argument to proving finite generation of

the FI-modules in the E2-page to get our conclusion. This approach was previously used

successfully in [10] to obtain finite generation for configuration spaces. In Chapter 4, we

develop the details to apply this to spectral sequences arising from “FI-fibrations” over a

fixed space and “FI-group extensions” of a given group. In the case of pure mapping class

groups our argument is made possible by the existence of a Birman exact sequence.

For a given group G, we introduce in Section4.4 the notion of a FI[G]-module: it is

a functor V from the category FI to the category of G-modules over Q. This definition

incorporates the action of a group G on our sequences of Sn-representations and allows us

to take V as twisted coefficients for cohomology. Therefore we can use finite generation of

an FI[G]-module V to obtain finite generation and specific bounds for the new FI-modules

Hp(X;V ) (Theorem 4.4.1). With this result we prove finite generation of the FI-modules in

the E2-page for each of our examples.

It remains open the computation of the specific Betti numbers and the character polynomi-

als for each example. As an illustration, the character polynomial for the second cohomology

of PModn0,1 (the pure braid group Pn) is given by

χn = 2

(
X1
3

)
+ 3

(
X1
4

)
+

(
X1
2

)
X2 −

(
X2
2

)
−X3 −X4,
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where Xi(σ) is the number of i-cycles in σ ∈ Sn, for any n ∈ N. For the second cohomology

of PModng,r (when g ≥ 4) the character polynomial is

χn = X1 + 1

and b2(PModng,r) = n + 1. In both cases the polynomial χn is independent of n. Obtaining

the ring structure of the cohomology is a more ambitious goal for future research.

14



CHAPTER 2

PRELIMINARIES

In this chapter we go over the notions and consequences from the theory of representation

stability and the theory of FI-modules that are the main tools for our computations in

Chapters 3 and 4. The content presented here was mainly introduced in [12], [10] and [9].

We emphasize the results that are relevant for the discussion below and rearrange them in

a convenient way for the sake of this thesis. Proofs can be found in [9, Section 2] and [10,

Sections 1 & 2]. We finish the chapter by recalling some useful facts about group extensions

and cohomology of groups.

2.1 Representation Stability and Monotonicity

The notion of representation stability for different families of groups was first defined in [12].

This language has proved to be useful since it allows generalization of stability theorems in

topology and algebra. We recall this notion for the case of Sn-representations.

Definition 2.1. A sequence {Vn}∞n=1 of finite dimensional rational Sn-representations with

linear maps φn : Vn → Vn+1 is said to be uniformly representation stable with stable range

n ≥ N if the following conditions are satisfied for all n ≥ N :

0. Consistent Sequence. The maps φn : Vn → Vn+1 are equivariant with respect to the

natural inclusion Sn ↪→ Sn+1.

I. Injectivity. The maps φn : Vn → Vn+1 are injective.

II. Surjectivity. The Sn+1-span of φn(Vn) equals Vn+1.

III. Uniformly Multiplicity Stable with range n ≥ N. The decomposition of Vn into

irreducible representations

Vn =
⊕
λ

cλ,nV (λ)
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can be eventually described independently of n; more precisely, when n ≥ N , the mul-

tiplicities cλ,n are independent of n, for each λ.

Notation (Representations of Sn in characteristic zero): An Sn-representation over

a field of characteristic zero k is a k-vector space equipped with a linear Sn-action. The

irreducible representations of Sn over k are classified by partitions λ of n. By a partition of

n we mean λ = (λ1 ≥ · · · ≥ λl > 0) where l ∈ Z and λ1 + · · ·+λl = n. We will write |λ| = n.

The corresponding irreducible Sn-representation will be denoted by Vλ. Every Vλ is defined

over Q and any Sn-representation decomposes over Q into a direct sum of irreducibles ([19]

is a standard reference). The decomposition of an Sn-representation over any such field k

does not depend on k.

If λ is any partition of m, i.e. |λ| = m, then for any n ≥ |λ| + λ1 the padded partition

λ[n] of n is given by λ[n] = (n − |λ|, λ1, · · · , λl). Keeping the notation from [12] we set

V (λ)n = Vλ[n] for any n ≥ |λ|+λ1. Every irreducible Sn-representation is of the form V (λ)n

for a unique partition λ.

We define the length of an irreducible representation of Sn to be the number of parts in

the corresponding partition of n. The trivial representation has length 1, and the alternating

representation has length n. We define the length `(V ) of a finite dimensional representation

V of Sn to be the maximum of the lengths of the irreducible constituents. Notice that

`(Vλ) ≤ |λ|.

The notion of monotonicity introduced in [9] will be key in our arguments in Chapter 1.

Definition 2.2. A consistent sequence {Vn}∞n=1 of Sn-representations with injective maps

φn : Vn ↪→ Vn+1 is monotone for n ≥ N if for each subspace W < Vn isomorphic to V (λ)⊕kn ,

the Sn+1-span of φn(W ) contains V (λ)⊕kn+1 as a subrepresentation for n ≥ N .

Now we point out the properties of monotone sequences that are useful for our purpose.

These results are proven in [9, Sections 2.1 and 2.2].
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Proposition 2.1.1. Given {Wn} < {Vn}, if the sequence {Vn} is monotone then so is {Wn}.

If {Vn} and {Wn} are monotone and uniformly representation stable with stable range n ≥ N ,

then {Vn/Wn} is monotone and representation stable for n ≥ N . Conversely, if {Wn} and

{Vn/Wn} are monotone and uniformly representation stable with stable range n ≥ N , then

{Vn} is monotone and uniformly representation stable for n ≥ N .

Proposition 2.1.2. Let {Vn} and {Wn} be monotone sequences for n ≥ N , and assume

that {Vn} is uniformly representation stable for n ≥ N . Then for any consistent sequence of

maps fn : Vn → Wn that makes the following diagram commutative

Vn
fn //

φn
��

Wn

ψn
��

Vn+1
fn+1// Wn+1,

the sequences {kerfn} and {imfn} are monotone and uniformly representation stable for

n ≥ N .

The previous propositions apply also to V (λ)n for a single partition λ. In particular to

the case of the trivial representation V (0)n.

Proposition 2.1.3. For a fixed partition λ, assuming monotonicity just for V (λ)⊗kn , Proposi-

tions 2.1.1 and 2.1.2 hold if we replace “uniform representation stability” by “the multiplicity

of V (λ)n is stable”.

2.2 FI and FI#-modules

Let FI be the category whose objects are natural numbers n and the morphisms m→n are

injections from {1, . . . ,m} to {1, . . . , n}. Similarly we denote by FI# the category whose

objects are natural numbers n and the morphisms m 7→ n are triples (A,B, ψ), where

A ⊂ {1, . . .m}, B ⊂ {1, . . . n} and ψ : A→ B is a bijection.
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Remark. The category FI# can be also defined by adding in the base point 0 and taking

based injections and based maps m 7→ n with at most one preimage of each non-basepoint.

The categories FI and FI# are also called Λ and Π and have been used in algebraic topology

since 1970’s.

Definition 2.3. An FI-module over a commutative ring k is a functor V from the category

FI to the category Modk of modules over k. An FI#-module over k is a functor V from

FI# to Modk. We denote V (n) by Vn and V (f) by f∗, for any f ∈ HomFI(m,n). In the

same manner a functor V =
⊕

V i from FI to the category of graded modules over k is called

a graded FI-module over k. In particular, each V i is an FI-module over k.

The category of FI-modules over k, FI-Modk, is an abelian category. The concepts of kernel,

cokernel, sub-FI-module, quotient, injection and surjection are defined “pointwise”.

Remarks:

• For us k will be either a field or Z. Most of the examples that we consider are finite

dimensional vector spaces over Q, unless otherwise specified. Therefore, we use the

notation FI-Mod for the category of FI-modules over Q. In that case, an FI-module

V provides each Vn with the structure of a rational Sn-representation. The functor V

allows us to encode the information of some sequences of rational Sn-representations

in a single object (see Section 2.6 below).

• In general, the notation adopted below corresponds to the one for the case when k is a

field. See Notational conventions in [10, Section 2.1].

One of the main advantages of the category FI-Modk is that we can define analogous

concepts of the basic definitions coming from module theory.

Definition 2.4. An FI-module V over k is said to be finitely generated in degree ≤ m if

there exist v1, . . . , vs, with each vi ∈ Vni and ni ≤ m, such that V is the minimal sub-FI-

module of V containing v1, . . . , vs. We write V = span(v1, . . . , vs). An FI#-module over k
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is finitely generated in degree ≤ m if the underlying FI-module is finitely generated in degree

≤ m. A graded FI-module V over k is said to be of finite type if each FI-module V i is finitely

generated.

Finitely generated FI-modules have strong closure properties that allow our arguments be-

low. In particular, extensions and quotients of finitely generated FI-modules are still finitely

generated ([10, Proposition 2.17]). Furthermore they satisfy a “Noetherian property” in the

following sense:

Theorem 2.2.1 (Theorem 1.1 in [11]). If V is a finitely generated FI-module over a Noethe-

rian ring R, and W is a sub-FI-module of V , then W is finitely generated.

It was first proved for FI-modules over a field of characteristic zero in [10, Theorem 2.60].

2.3 Using the FI-module notation

Our objective in Chapter 4 is to study some examples of sequences of cohomology groups

that have an underlying structure of an FI-module as defined by Church–Ellenberg–Farb in

[10] and derive as many consequences as we can from this approach.

Recall from Section 2.2, that FI is the category of finite sets and injections. First we will

consider a functor X from FIop to the category Top of topological spaces or to the category

Gp of groups. In the first case we call X a co-FI-space, in the second case X is a co-FI-group.

Given such a functor X, for any i ≥ 0, we will be interested in the FI-module Hi(X;R) over

a Noetherian ring R that we obtain by composing X with the cohomology functor Hi( ;R).

We also consider the graded FI-module H∗(X;R) over R.

We will focus in the FI-modules that arise from the following examples of co-FI-spaces

and co-FI-groups.

(1) The co-FI-space Conf•(M). It is given by n 7→ Confn(M) and for a given inclusion f :

[m] ↪→ [n] in HomFI(m,n) the corresponding restriction f∗ : Confn(M)→ Confm(M)

is given by precomposition.
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(2) The co-FI-spaceMg,•. This functor is given by n 7→ Mg,n and such that assigns to f ∈

HomFI(m,n) the morphism f∗ :Mg,n →Mg,m defined by f∗
(
[(X; p)]

)
= [(X; p ◦ f)].

(3) The co-FI-group PMod•(M). It is given by n 7→ PModn(M). Any inclusion f : [m] ↪→

[n] induces a restriction map PDiffp(M)→ PDiffp◦f (M), which gives us the morphism

f∗ : PModn(M)→ PModm(M).

When M = Σg,r we denote PMod•(Σg,r) by PMod•g,r.

(4) The co-FI-space BDiff•(M). This is the functor n 7→ B PDiffn(M). The morphisms

are defined in a similar manner as for PMod•(M). If M is orientable, we can restrict

to orientation-preserving diffeomorphisms.

Our main purpose in Chapter 4 is to prove finite generation of the corresponding FI-modules

Hi(X; k) over a field k.

2.3.1 A non-finitely generated FI-module

Consider the functor that assigns to n the space Mg,n, the Deligne-Mumford compactifi-

cation of the moduli space Mg,n. This is the co-FI-space Mg,•. Morphisms are defined

by extending, in a careful way, the corresponding morphisms from Mg,n to Mg,n, so that

the natural inclusions Mg,n ↪→ Mg,n give us a map of co-FI-spaces Mg,• → Mg,•. See

for example [33, Chapter 1] for a definition of Mg,n and its corresponding forgetful maps.

The co-FI-space Mg,• is an example of an FI-module that is not finitely generated. For

instance H2(Mg,•) is not finitely generated for any g > 2 since computations of Arbarello

and Cornalba in [1] show that for that case

dimQ
(
H2(Mg,n; Q)

)
= 2n−1(g + 1),

thus violating Theorem 2.7.1 below.
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2.4 Finitely generated FI#-modules

In some of our examples above, the FI-module V over k has actually the extra structure of

an FI#-module over k. In that case more is true: if V is finitely generated in degree ≤ m,

then any sub-FI#-module is finitely generated in degree ≤ m (follows from [10, Corollaries

2.25 & 2.26]). Moreover, FI#-modules satisfy the following condition.

Theorem 2.4.1 (Corollary 2.27 in [10]). If V is an FI#-module and k is a field of arbitrary

characteristic, the following are equivalent:

(a) V is finitely generated

(b) dimk Vn = O(nd) for some d

(c) dimk Vn = P (n) for some polynomial P ∈ Q[t] and all n ≥ 0

If k is an arbitrary commutative ring, then V is finitely generated if and only if Vn is generated

by O(nd) elements for some d.

Notation (The FI-modules M(W )): Let m ∈ N and consider a fixed Sm-representation

W over a field k or k = Z. The FI-module M(W ) is defined as follows:

M(W )n :=

 0, if n < m

IndSn
Sm×Sn−m

W � k, if n ≥ m.

In particular, when W = k[Sm] we will denote the FI-module M(W ) by M(m). For a

given partition |λ| = m, we use M(λ) to denote the FI-module M(Vλ). These FI-modules

were introduced in [10, Section 2.1]. By definition, they are finitely generated in degree m.

Moreover they have the structure of an FI#-module and have surjectivity degree at most m

(actually M(λ) has surjectivity degree λ1).

The FI#-modules M(W ) are “building blocks” for general FI#-modules.
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Theorem 2.4.2. If V finitely generated FI#-module in degree ≤ d, then V is of the form

V =
d⊕
i=0

M(Wi)

where Wi is a representation (possibly zero) of Si.

This follows from Theorem 2.24 and Corollary 2.26 in [10].

2.5 FI-modules over fields of characteristic zero

The proof of the “Noetherian property” does not give an upper bound on the degree in which

a given subobject is generated. To deal with this for FI-modules over fields of characteristic

zero the notion of weight of an FI-module was introduced in [10, Section 2.5].

In the remaining subsections, k is always a field of characteristic zero, unless otherwise

indicated.

Definition 2.5. Let V be an FI-module over k. We say that V has weight ≤ d if for every

n ≥ 0 and every irreducible constituent V (λ)n we have |λ| ≤ d.

Notice that the weight of an FI-module is closed under subquotients and extensions.

The subgroup of Sn that permutes {a+1, . . . , n} and acts trivially on {1, 2, . . . , a} is denoted

by Sn−a. The coinvariant quotient (Vn)Sn−a
is the Sa-module Vn ⊗k[Sn−a] k, i.e. the largest

quotient of Vn on which Sn−a acts trivially.

The following provides a notion of stabilization and range of stabilization for an FI-module

(this is just a rephrasing of [10, Definitions 2.34 & 2.35]).

Definition 2.6. Let V be an FI-module over k. If for every a ≥ 0 and n ≥ N + a the map

of coinvariants

(Vn)Sn−a
→ (Vn+1)Sn−a

(2.1)

induced by the standard inclusion In : {1, . . . n} ↪→ {1, . . . , n, n + 1}, is an injection of Sa-

modules, we say that V has injectivity degree ≤ N . If the map (2.1) is surjective, we say
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that V has surjectivity degree ≤ N . The FI-module V has stability type (M,N) if it has

injectivity degree M and surjectivity degree N . The stability degree of V is given by at most

max(M,N). When V is an FI#-module, the identity on Vn factors through In, hence the

injectivity degree is always 0.

The next two key properties that we will be using in our arguments below correspond to

[10, Propositions 2.45 & 2.46].

Proposition 2.5.1. Let k be a field of characteristic zero.

(a) Let U
f // V

g // W be a complex of FI-modules. If U has surjectivity degree A, V

has stability type (B,C), and W has injectivity degree D; then the cohomology group

ker g/ im f has stability type
(

max(A,B),max(C,D)
)
.

(b) Let V be an FI-module with a filtration by FI-modules 0 = FkV ⊆ . . . ⊆ F1V ⊆ F0V =

V. If for every 0 ≤ i ≤ k− 1 the quotient FiV/Fi+1V has stability type (A,B), then so

does the FI-module V .

2.6 Finitely generated FI-modules and representation stability

As mentioned before, an FI-module over a field k containing Q encodes the information of

a sequence of Sn-representations. More is true: if V is an FI-module and In the standard

inclusion, then {Vn, V (In)} is a consistent sequence of Sn-representations in the sense of

Definition 2.1. We are interested in the behavior of consistent sequences arising from FI-

modules.

The original motivation to introduce the notion of an FI-module was to give a new

approach to representation stability that would allow to simplify many of the arguments. The

precise correspondence between finitely generated FI-modules and uniformly representation

stable sequences is contained in the following theorem that was proved in [10, Section 2.6].
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Theorem 2.6.1. Let V be an FI-module of weight ≤ d with stability degree ≤ N . Then Vn

is uniformly representation stable with stable range n ≥ N+d. Conversely, if Vn is uniformly

representation stable with stable range n ≥M , then Vn is a monotone sequence in the sense

of [9] and the FI-module V is finitely generated in degree ≤M .

2.7 Polynomiality of characters

For each k ≥ 1 we let Zk :
∐
n≥1 Sn → N be the class function defined by

Zk(σ) = number of k-cycles in the cycle decomposition of σ.

Polynomials with rational coefficients in the variables Zk are called character polynomials.

It turns out that characters of finitely generated FI-modules have a uniform description in

terms of the class functions Zk.

Theorem 2.7.1 (Theorem 2.67 in [10]). Let k be a field of characteristic zero. Let V be

a finitely generated FI-module with stability degree ≤ N and weight ≤ d. Then there is a

unique character polynomial QV in the i-cycle counting functions Zk, such that the character

χVn
= QV (Z1, Z2, . . . , Zd) for all n ≥ N + d.

If V is an FI#-module such equality holds for any n ≥ 0.

The degree of the polynomial QV is at most d (each Zk has degree k).

Remarks:

• As a consequence we have that for σ ∈ Sn, the value of χVn
(σ) only depends on cycles

of length ≤ d (“short cycles”).

• In particular, that implies that for all n ≥ N + d the dimension dimQ
(
Vn
)

= χVn
(id)

is a polynomial in n of degree ≤ d.
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2.8 On the cohomology of group extensions

A group extension of a group Q by a group H is a short exact sequence of groups

1→ H → G→ Q→ 1. (2.2)

Given a G-module M , the conjugation action (h,m) 7→ (ghg−1, g ·m) of G on (H,M) induces

an action of G/H ∼= Q on H∗(H;M) as follows. Let F → Z be a projective resolution of

Z over ZG and consider the diagonal action of G in the cochain complex Hom(F,M) given

by f 7→ [x 7→ g · f(g−1 · x)], for f ∈ Hom(F,M) and g ∈ G. This action restricts to

the subcomplex HomH(F,M) where H acts trivially by definition, hence we get an induced

action of Q ∼= G/H on HomH(F,M). But the cohomology of this complex is H∗(H;M),

giving the desired action of Q on H∗(H;M).

The cohomology Hochschild-Serre spectral sequence for the group extension (2.2) is a first

quadrant spectral sequence converging to H∗(G;M) whose E2 page is of the form

E
p,q
2 = Hp(Q;Hq(H;M)).

Furthermore, from the construction of the Hochschild-Serre spectral sequence it can be shown

that this spectral sequence is natural in the following sense. Assume we have group extensions

(I) and (II) and group homomorphisms fH and fG making the following diagram commute

1 // H1 //

fH
��

G1 //

fG
��

Q //

id

1 (I)

1 // H2 // G2 // Q // 1 (II)

Then the induced map

f∗H : H∗(H2; Q)→ H∗(H1; Q)

is Q-equivariant. Moreover, if ′E∗ and ′′E∗ denote the Hochschild-Serre spectral sequences
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corresponding to the extensions (I) and (II), we have

1) Induced maps (fH)∗r : ′′Ep,qr → ′Ep,qr that commute with the differentials.

2) The map (fG)∗ : H∗(G2; Q)→ H∗(G1; Q) preserves the natural filtrations ofH∗(G1; Q)

and H∗(G2; Q) inducing a map on the succesive quotients of the filtrations which is the

map

(fH)∗∞ : ′′Ep,q∞ → ′Ep,q∞ .

3) The map (fH)∗2 : ′′Ep,q2 → ′Ep,q2 is the one induced by the group homomorphisms

id : Q→ Q and fH : H1 → H2.

For an explicit description of the Hochschild-Serre spectral sequence we refer the reader

to [7] and [36] (where it is called the Lyndon spectral sequence).

2.9 Finiteness Conditions

Finally we want to recall some finiteness conditions for groups that will be needed in our

results below. We refer the reader to [7, Chapter VIII] for a more detailed expositions of

these notions.

To compute H∗(G,M) we can choose an arbitrary projective resolution P = (Pi)i≥0 of Z

over ZG. Similarly, using the topological point of view, we can compute H∗(G,M) in terms

of an arbitrary K(G, 1)-complex Y . Then it is reasonable to take the “smaller” complex Y

possible. In the same way we can look for the “smaller” projective resolution: in terms of its

length or such that each Pi is finitely generated.

The cohomological dimension of a group G, denoted by cd G, is defined as the projective

dimension projdimZG Z. An R-module M has projective dimension projdimRM ≤ n if and

only if M admits a projective resolution 0 → Pn → · · · → P0 → M → 0 of length n. In

other words

cd G = inf{n : Z admits a projective resolution of length n}.
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A module M over a ring R is said to be of type FPn (n ≥ 0) if there is a partial projective

resolution Pn → · · · → P0 → M → 0 of finite type, meaning that each Pi is a finitely

generated projective module. The condition FP0 corresponds to finite generation, FP1 is

finite presentation and the conditions FP2, FP3, . . . are successive strengthening of finite

presentation. When M is type FPn for all integers n ≥ 0 we say that M is of type FP∞.

Moreover, we have the following characterization:

Proposition 2.9.1. The following conditions on a module M are equivalent:

(i) M is of type FP∞

(ii) M admits a free resolution of finite type

(iii) M admits a projective resolution of finite type.

We are interested in the case when the ring R is a group ring ZG and M = Z. We say

that a group G is of type FPn (0 ≤ n ≤ ∞) if Z is of type FPn as a ZG-module.

The FPn conditions behave nicely with respect to subgroups of finite index:

Proposition 2.9.2. Let H ≤ G be a subgroup of finite index. Then G is of type FPn if and

only if H is of type FPn.

One of our main hypothesis in our theorems below is that G is of type FP∞. The reason

is the following proposition.

Proposition 2.9.3. Let G be a group of type FPn and M be a G-module which is finitely

generated as an abelian group. Then Hi(G,M) and Hi(G,M) are finitely generated as abelian

groups for i ≤ n.
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CHAPTER 3

REPRESENTATION STABILITY

In this chapter we prove that, for any i ≥ 0, uniform representation stability holds for

the degree i rational cohomology of the pure mapping class groups of surfaces PModng,r, the

moduli spaceMg,n of n-pointed curves of genus g, the pure mapping class groups PModn(M)

and the classifying spaces B PDiffn(M) for some manifolds M . This is the content of [30].

3.1 Introduction

Our motivating example for this chapter is the pure mapping class group of surfaces. Specifi-

cally, we want to compare Hi(PModng,r; Q) as the number of punctures n varies. The natural

inclusion Σn+1
g,r ↪→ Σng,r induces the forgetful map

fn : PModn+1
g,r → PModng,r .

Notice that fn is a left inverse for the map µn above, when r > 0, but can be defined even

for surfaces without boundary. This map allows us to relate the corresponding cohomology

groups:

f∗n : H∗(PModng,r; Q)→ H∗(PModn+1
g,r ; Q).

Observe that f∗n is also induced by the forgetful morphism between moduli spaces

Mg,n+1 →Mg,n.

The key idea is to consider the natural action of the symmetric group Sn onMg,n given

by permuting the n labeled marked points. Thus we can regard Hi(Mg,n; Q) as rational

Sn-representations and compare them through the maps f in. Moreover, we notice that the

map f in is equivariant with respect to the standard inclusion Sn ↪→ Sn+1. In Section 3.2
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below we explicitly compute the Sn-representation H2(PModng ; Q) and its decomposition into

irreducibles.

3.1.1 Main results

Instead of asking if f in is an isomorphism or not (puncture cohomological stability), we

consider the question of whether the cohomology groups of the pure mapping class group

satisfy representation stability. In [12, Theorem 4.2] Church-Farb prove that the sequence

{Hi(Pn; Q), f in}∞n=1 is representation stable. Our main result in this chapter shows that this

is also the case for the pure mapping class group.

Theorem 3.1.1. For any i ≥ 0 and g ≥ 2 the sequence {Hi(PModng ; Q)}∞n=1 is monotone

and uniformly representation stable with stable range

n ≥ min {4i+ 2(4g − 6)(4g − 5), 2i2 + 6i}.

Our arguments work for hyperbolic non-closed surfaces (Theorem 3.4.9). Hence Harer’s

homological stability and our main theorem imply that Hi(PModng,r; Q), as representation

of Sn, is independent of g, r and n, provided n and g are large enough.

By (1.1), Theorem 3.1.1 can be restated as follows.

Corollary 3.1.2 (Representation stability for the cohomology of the moduli space Mg,n).

For any i ≥ 0 and g ≥ 2 the sequence of cohomology groups {Hi(Mg,n; Q)}∞n=1 is monotone

and uniformly representation stable with stable range n ≥ min {4i+2(4g−6)(4g−5), 2i2+6i}.

Remark. In [6, Theorem 1.1] Bödigheimer and Tillmann proved that

B(PModn∞,r)
+ ' BMod+

∞×(CP∞)n.
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Together with Harer’s homological stability theorem this implies that, in dimensions ∗ ≤ g/2,

H∗(PModng,r; Q) ∼= H∗(PModg,r; Q)⊗
(
H∗(CP∞; Q)

)⊗n ∼= H∗(PModg,r; Q)⊗Q[x1, . . . , xn],

where each xi has degree 2. The action of the symmetric group Sn on the left hand side

corresponds to permuting the n factors CP∞. In other words, it is given by the action of

Sn on the polynomial ring in n variables by permutation of the variables xi. On the other

hand, Church and Farb proved in [12, Section 7] that representation stability holds for the

Sn-action on the polynomial ring in n variables. Hence Bödigheimer and Tillmann result

implies that for i ≤ g/2 representation stability holds for {Hi(PModng,r; Q)}∞n=1. Notice that

this only holds for large g with respect to i. In contrast, our Theorem 3.1.1 and Theorem

3.4.9 give uniform representation stability and monotonicy for arbitrary g ≥ 0 such that

2g + r + s > 2 and large n.

Theorem 3.1.1 implies cohomological stability for Modng with twisted rational coeffi-

cients (see Section 3.4.3). For any partition λ, we denote the corresponding irreducible

Sn-representation by V (λ)n, as we have explained in Section 2.1 above. A transfer argument

gives the proof of the following corollary of Theorem 3.1.1.

Corollary 3.1.3. For any partition λ, the sequence {Hi
(

Modng ;V (λ)n
)
}∞n=1 of twisted co-

homology groups satisfies classical cohomological stability: for fixed i ≥ 0 and g ≥ 2, there is

an isomorphism

Hi(Modng ;V (λ)n
)
≈ Hi(Modn+1

g ;V (λ)n+1
)
,

if n ≥ min {4i+ 2(4g − 6)(4g − 5), 2i2 + 6i}.

In [29, Proposition 1.5], Hatcher-Wahl obtained integral puncture homological stability

for the mapping class group of surfaces with non-empty boundary and established a stable

range linear in i. Plugging in the trivial representation V (0)n into Corollary 3.1.3, we recover

rational puncture homological stability for Modng . The stable range that we obtain either
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depends on the genus g of the surface or is quadratic in i (see Corollary 3.4.8). Nonetheless,

our approach by representation stability is completely different from the classical techniques

used in the proofs of homological stability. Furthermore, we believe that our proof gives yet

another example of how the notion of representation stability can give meaningful answers

where classical stability fails.

In Section 3.5.2 we include a proof, for any group G, of representation stability for the

sequence {Hi(Gn; Q)}∞n=1. This is Proposition 3.5.5 below. We show how to use this result

and the ideas developed in this chapter to establish the analogue of Theorem 3.1.1 and

Corollary 3.1.3 for the pure mapping class groups of some connected manifolds of higher

dimension.

Theorem 3.1.4. Let M be a smooth connected manifold of dimension d ≥ 3 such that π1(M)

is of type FP∞ (e.g. M compact). Suppose that π1(M) has trivial center or that Diff(M)

is simply connected. If Mod(M) is a group of type FP∞, then for any i ≥ 0 the sequence

of cohomology groups {Hi
(

PModn(M); Q
)
}∞n=1 is monotone and uniformly representation

stable with stable range n ≥ 2i2 + 4i.

Corollary 3.1.5. Let M be as in Theorem 3.1.4. For any partition λ, the sequence of twisted

cohomology groups {Hi
(

Modn(M);V (λ)n
)
}∞n=1 satisfies classical homological stability: for

fixed i ≥ 0, there is an isomorphism

Hi(Modn(M);V (λ)n
)
≈ Hi(Modn+1(M);V (λ)n+1

)
if n ≥ 2i2 + 4i.

Hatcher-Wahl proved integral puncture homological stability for mapping class group

of connected manifolds with boundary of dimension d ≥ 2 in [29, Proposition 1.5]. Our

Corollary 3.1.5, applied to the trivial representation, gives rational puncture homological

stability for Modn(M) for manifolds M that satisfy the hypothesis of Theorem 3.1.4, even if

the manifold has empty boundary.

Ezra Getzler and Oscar Randal-Williams pointed out to me that the same ideas also
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give representation stability for the rational cohomology groups of the classifying space

B PDiffn(M) of the group PDiffn(M) defined above.

Theorem 3.1.6. Let M be a smooth, compact and connected manifold of dimension d ≥ 3

such that BDiff(M rel ∂M) has the homotopy type of CW-complex with finitely many cells

in each dimension. Then for any i ≥ 0 the sequence {Hi
(
B PDiffn(M); Q

)
}∞n=1 is monotone

and uniformly representation stable with stable range n ≥ 2i2 + 4i.

The details are described at the end of this chapter in Section 3.6.

3.1.2 Outline of the proof of Theorem 3.1.1

The proof of Theorem 3.1.1 is presented in Section 3.4 and relies on the existence of the Bir-

man exact sequence which realizes π1(Confn(Σg)) as a subgroup of PModng . Here Confn(Σg,r)

denotes the configuration space of n distinct ordered points in the interior of Σg,r. Then for

each n we can consider the associated Hochschild-Serre spectral sequence E∗(n), which allows

us to relate H∗(PModng ; Q) with H∗
(
π1(Confn(Σg)); Q

)
. Following ideas of Church in [9],

we use an inductive argument to show that the terms in each page of the spectral sequence

are uniformly representation stable and thus we conclude the result in Theorem 3.1.1 from

the E∞-page.

The notion of monotonicity for a sequence of Sn-representations introduced in [9] is key

in our inductive argument on the pages of the spectral sequence. The base of the induction

is monotonicity and representation stability for the terms in the E2-page of the Hochschild-

Serre spectral sequence. In order to prove this, we introduce, in Section 3.3 below, the notion

of a consistent sequence of rational Sn-representations compatible with G-actions and prove

the following general result which we hope will be useful in future computations.

Theorem 3.1.7 (Representation stability with changing coefficients). Let G be a group

of type FP∞. Consider a consistent sequence {Vn, φn}∞n=1 of finite dimensional rational

representations of Sn compatible with G-actions. If the sequence {Vn, φn}∞n=1 is monotone
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and uniformly representation stable with stable range n ≥ N , then for any integer p ≥ 0,

the sequence {Hp(G;Vn), φ∗n}∞n=1 is monotone and uniformly representation stable with the

same stable range.

Monotonicity and uniform representation stability for the E2-page follow from Theorem

3.1.7, as a consequence of the following result by Church [9, Theorem 1].

Theorem 3.1.8 (Church). For any connected orientable manifold M of finite type and

any q ≥ 0, the cohomology groups {Hq(Confn(M); Q)} of the ordered configuration space

Confn(M) are monotone and uniformly representation stable, with stable range n ≥ 2q if

dim M ≥ 3 and stable range n ≥ 4q if dim M = 2.

3.2 The second cohomology H2(PModng ; Q)

First we understand the consistent sequence of Sn-representations {H2(PModng ; Q), f2
n} to

give an explicit discussion of the phenomenon of representation stability.

The second cohomology group is given by:

H2(Mg,n; Q) ≈ H2(PModng ; Q) ≈ H2(Modg,n; Q)⊕Qn, for g ≥ 3. (3.1)

We want to compare H2(PModng ; Q) through the forgetful maps

f2
n : H2(PModng ; Q)→ H2(PModn+1

g ; Q).

We already know that f2
n is never an isomorphism (failure of homological stability). Instead,

we consider H2(PModng ; Q) as an Sn-representation and we investigate how those represen-

tations depend on the parameter n.

When g ≥ 4, H2(Modg,n; Q) ≈ Q [22] and the Sn-action on this summand is trivial. On

the other hand, the summand Qn is generated by classes τi ∈ H2(PModng ; Q) (i = 1, . . . , n)
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corresponding to the central extensions PMod(Xi):

1→ Z→ PMod(Xi)→ PModng → 1.

The right map above is induced from the inclusion Xi := Σg−Nε(pi) ↪→ Σng , where Nε(pi) =

{x ∈ Σng : d(x, pi) < ε} for a small ε > 0. Notice that Xi ' Σn−1
g,1 . The kernel is generated

by a Dehn twist around the boundary component, which is the simple loop ∂Nε(pi) around

the puncture pi in Σng . Observe that a permutation of the punctures induces a corresponding

permutation of the surfaces {X1, . . . , Xn}, hence of the classes τi in H2(PModng ; Q).

We can also think of τi as the first Chern class of the line bundle Li over Mg,n defined

as follows: at a point in Mg,n, i.e. a Riemann surface X with marked points p1, . . . , pn,

the fiber of Li is the cotangent space to X at pi. In fact, the τ -classes are the image of the

ψ-classes under the surjective homomorphism H2(Mg,n; Q) → H2(Mg,n; Q), where Mg,n

is the Deligne-Mumford compactification of Mg,n (see [20]). A permutation of the marked

points induces the same permutation of the classes τi in H2(Mg,n; Q). Therefore, Sn acts

on the summand Qn in (3.1) by permuting the generators.

Thus, for g ≥ 4 and n ≥ 3, the decomposition of (3.1) into irreducibles is given by

H2(PModng ; Q) ≈ V (0)n ⊕ V (0)n ⊕ V (1)n,

where, following our notation from Section 2.1, V (0)n is the trivial Sn-representation and

V (1)n is the standard Sn-representation. Notice that, even though the dimension of the

vector space H2(PModng ; Q) blows up as n increases, the decomposition into irreducibles

stabilizes. In terms of definition of representation stability stated in Section 2.1, we have

shown that the sequence of Sn-representations {H2(PModng ; Q)} is uniformly multiplicity

stable with stable range n ≥ 3. This indicates to us that representation stability of the

cohomology groups of PModng may be the phenomena to expect.
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3.3 Representation stability of H∗(G;Vn)

We discuss here when representation stability for a sequence {Vn} of G-modules will imply

representation stability for the cohomology of a group G with coefficients Vn. This is Theorem

3.1.7 below and it is a key ingredient for the base of the induction in the proof of Theorem

3.1.1.

Definition 3.1. Let G be a group. We will say that a sequence of rational vector spaces Vn

with given maps φn : Vn → Vn+1 is consistent and compatible with G-actions if it satisfies

the following:

- Consistent Sequence. Each Vn is a rational Sn-representation and the map φn : Vn →

Vn+1 is equivariant with respect to the inclusion Sn ↪→ Sn+1.

- Compatible with G-actions. Each Vn is a G-module and the maps φn : Vn → Vn+1

are G-maps. The G-action commutes with the Sn-action.

Notice that for a sequence as in the previous definition we have that {Hp(G;Vn);φ∗n} is

a consistent sequence of rational Sn-representations for p ≥ 0. Here

φ∗n : Hp(G;Vn)→ Hp(G;Vn+1)

denotes the map induced by φn : Vn → Vn+1.

Proof of Theorem 3.1.7. Take E → Z a free resolution of Z over ZG of finite type. This

means that each Ep is a free G-module of finite rank, say Ep ≈ (ZG)dp generated by

x1, . . . , xdp
.

There is an Sn-action on the chain complex Hom(E, Vn) given by σ · h : x 7→ σ · h(x)

for any h ∈ Hom(E, Vn) and σ ∈ Sn. Since the Sn-action and the G-action on Vn com-

mute, this action restricts to a well-defined Sn-action on HomG(E, Vn) which makes each

HomG(E, Vn)p := HomG(Ep, Vn) into a rational Sn-representation.
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Observe that any G-homomorphism h : Ep → Vn is completely determined by the dp-tuple

(h(x1), . . . , h(xdp
)). Then the assignment h 7→ (h(x1), . . . , h(xdp

)) gives us an isomorphism

HomG(E, Vn)p ≈ V
⊕dp
n

not just of rational vector spaces, but of Sn-representations. Notice that since Vn is finite

dimensional, HomG(E, Vn)p also has finite dimension. Moreover, under this isomorphism

the map

φ
p
n := HomG(E, φn)p : HomG(E, Vn)p → HomG(E, Vn+1)p

is just (φn)⊕dp : V
⊕dp
n → V

⊕dp
n+1 . From Proposition 2.1.1, it follows that the sequence

{HomG(E, Vn)p;φ
p
n} is monotone and uniformly representation stable for n ≥ N .

The differentials δnp of the cochain complex HomG(E, Vn) are a consistent sequence of

maps, meaning that the following diagram commutes:

HomG(E, Vn)p

δnp
��

φp
n //HomG(E, Vn+1)p

δn+1
p

��

HomG(E, Vn)p+1 φ
p+1
n //HomG(E, Vn+1)p+1

From Proposition 2.1.2 the subsequences {ker δnp } and {im δnp } are monotone and uniformly

representation stable for n ≥ N . Finally Proposition 2.1.1 gives the desired result for

Hp(G;Vn) := ker δnp /im δnp+1.

Since H0(G;Vn) is equal to the G-invariants V Gn , as a particular case of Theorem 3.1.7,

we get the following.

Corollary 3.3.1. The sequence of G-invariants {V Gn , φn} is monotone and uniformly rep-

resentation stable with the same stable range as {Vn, φn}.
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3.4 Representation stability of H∗(PModng ; Q)

In this section we prove our main result Theorem 3.1.1 and some consequences of it. We will

focus on the sequence of pure mapping class groups PModng and its cohomology with rational

coefficients. We consider the case g ≥ 2.

3.4.1 The ingredients for the proof of the main theorem

Here we describe three of the four main ingredients needed in our proof of Theorem 3.1.1 in

Section 3.4.2. The ingredient (iv) is Theorem 3.1.8 [9, Theorem 1].

(i) The Birman exact sequence. Our approach relies on the existence of a nice short

exact sequence, introduced by Birman in 1969, that relates the pure mapping class group

with the pure braid group of the surface: the Birman exact sequence (Bir1n).

The map in (Bir1n) that realizes π1(Confn(Σg), p) as a subgroup of PModng is the point-

pushing map Push. For an element γ ∈ π1(Confn(Σg), p), consider the isotopy defined by

“pushing” the n-tuple (p1, · · · , pn) along γ. Then Push(γ) is represented by the diffeomor-

phism at the end of the isotopy. The map f in (Bir1n) is a forgetful morphism induced by

the inclusion Σng ↪→ Σg.

Taking the quotient (Bir1n) by the Sn-action there, we obtain the Birman exact sequence

(Bir2n). The relation between these two sequences is illustrated in the following diagram.

1

��

1

��

1 // π1(Confn(Σg))

q
��

Push // PModng

q
��

f // Modg

id

// 1 (Bir1n)

1 // π1(Bn(Σg))

��

Push // Modng

��

f // Modg // 1 (Bir2n)

Sn

��

id
Sn

��
1 1

(3.2)

37



The columns in this diagram relate the groups π1(Confn(Σg)) and PModng with π1(Bn(Σg))

and Modng , respectively, in the same way as the pure braid group Pn is related to the braid

group Bn by the short exact sequence

1→ Pn → Bn → Sn → 1.

Proofs of the exactness of the sequences in diagram (3.2) can be found in [5] and [18]. The

exactness of (Bir11) and (Bir2n) requires g ≥ 2.

From the short exact sequence (Bir1n) we get a Modg-action on H∗(π1(Confn(Σg)); Q).

The second column in diagram (3.2) defines an Sn- action on H∗(PModng ; Q) which restricts

to the Sn-action on H∗(π1(Confn(Σg)); Q) defined by the short exact sequence in the first

column. The induced map

Push∗ : H∗(PModng ; Q)→ H∗(π1(Confn(Σg)); Q)

is a Sn-map between rational Sn-representations. Moreover, from the commutativity of

diagram (3.2) we have the following.

Proposition 3.4.1. The actions of Sn and Modg on H∗(π1(Confn(Σg)); Q) commute.

(ii) The Hochschild-Serre spectral sequence. We denote the Hochschild-Serre spec-

tral sequence associated to the short exact sequence (Bir1n) by E∗(n), where the E2-page is

given by:

E
p,q
2 (n) = Hp(Modg;H

q(π1(Confn(Σg)); Q)
)
,

and the spectral sequence converges to Hp+q(PModng ; Q). This spectral sequence gives a

natural filtration of Hi(PModng ; Q):

0 ≤ F ii (n) ≤ F ii−1(n) ≤ · · · ≤ F i1(n) ≤ F i0(n) = Hi(PModng ; Q), (3.3)
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where the successive quotients are F ip(n)/F ip+1(n) ∼= E
p,i−p
∞ (n).

The following lemma is due to Harer ([24, Theorem 4.1]) and establishes that Modg

satisfies the finiteness conditions that our argument requires.

Lemma 3.4.2. For 2g + s + r > 2, the mapping class group Modsg,r is a virtual duality

group with virtual cohomological dimension d(g, r, s), where d(g, 0, 0) = 4g − 5, d(g, r, s) =

4g + 2r + s − 4, g > 0 and r + s > 0, and d(0, r, s) = 2r + s − 3. In particular, Modsg,r is

a group of type FP∞, and for any rational Modsg,r-module M , we have Hp(Modsg,r;M) = 0

for p > d(g, r, s).

We now see that the terms of the spectral sequence E∗(n) are finite dimensional Sn-

representations.

Proposition 3.4.3. For 2 ≤ r ≤ ∞, each E
p,q
r (n) is a finite dimensional rational Sn-

representation and the differentials

d
p,q
r (n) : E

p,q
r (n)→ E

p+r,q−r+1
r (n)

are Sn-maps.

Proof. Let σ ∈ Sn and take σ̃ ∈ Push(π1(Bn(Σg)) < Modng (see (Bir2n)). Denote by c(σ̃)

the conjugation by σ̃. Diagram (3.2) then gives:

1 // π1(Confn(Σg))

c(σ̃)
��

// PModng

c(σ̃)
��

// Modg

id

// 1

1 // π1(Confn(Σg)) // PModng // Modg // 1

The induced maps c(σ̃)∗r : E
p,q
r (n) → E

p,q
r (n) do not depend on the lift of σ ∈ Sn and,

by naturality of the Hochschild-Serre spectral sequence, they commute with the differentials.

Hence we get an Sn-action on each E
p,q
r (n) for 2 ≤ r ≤ ∞ that commutes with the differ-
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entials. Moreover, naturality also implies that the Sn-action on H∗(PModng ; Q) induces the

corresponding Sn-action on E
p,q
∞ (n).

By Lemma 3.4.2, the group Modg is of type FP∞. Totaro showed in [42, Theorem 4]

that the cohomology ring H∗(π1(Confn(Σg)); Q) is generated by cohomology classes from the

rings H∗(Σg; Q) and H∗(Pn; Q). In particular, his result implies that Hq(π1(Confn(Σg)); Q)

is a finite dimensional Q-vector space for q ≥ 0. It follows that

E
p,q
2 (n) = Hp(Modg;H

q(π1(Confn(Σg)); Q)
)

is a finite dimensional Q-vector space, and likewise for the subquotients E
p,q
r (n).

(iii) The forgetful map. For the pure braid group, there is a natural map fn : Pn+1 →

Pn given by “forgetting” the last strand. Similarly, the inclusion Σn+1
g ↪→ Σng induces a

homomorphism

fn : PModn+1
g → PModng

that we call the forgetful map. We can also think of this map as the one induced by “forgetting

a marked point” in Σng . When restricted to the subgroup Push
(
π1(Confn+1(Σg))

)
it corre-

sponds to the homomorphism in fundamental groups induced by the map Confn+1(Σg) →

Confn(Σg) given by “forgetting the last coordinate”. This gives rise to the commutative

diagram (3.4) that relates the exact sequences (Bir1n+1) and (Bir1n).

Diagram (3.4) and our remarks in Section 2.8 imply the following.

Proposition 3.4.4. The induced maps f∗n : H∗(π1(Confn(Σg)); Q)→ H∗(π1(Confn+1(Σg); Q)

are Modg-maps.

Moreover, diagram (3.4) and naturality of the Hochschild-Serre spectral sequence give us:

1) Induced maps (fn)∗r : E
p,q
r (n)→ E

p,q
r (n+ 1) that commute with the differentials. This

means that the differentials d
p,q
r (n) are consistent maps in the sense of Proposition

2.1.2.
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2) The map (fn)∗ : H∗(PModng ; Q) → H∗(PModn+1
g ; Q) preserves the filtrations (3.3)

inducing a map on the succesive quotients E
p,q
∞ (n) which is the map (fn)∗∞ : E

p,q
∞ (n)→

E
p,q
∞ (n+ 1).

3) The map (fn)∗2 : E
p,q
2 (n)→ E

p,q
2 (n+1) is the one induced by the group homomorphisms

id : Modg → Modg and fn : π1(Confn+1(Σg))→ π1(Confn(Σg)).

1

��

1

��
π1(Σng )

��

id π1(Σng )

��

1 // π1(Confn+1(Σg))

fn
��

// PModn+1
g

fn
��

// Modg

id

// 1 (Birn+1)

1 // π1(Confn(Σg))

��

// PModng

��

// Modg // 1 (Bir1n)

1 1

(3.4)

3.4.2 The proof of Theorem 3.1.1

In order to prove Theorem 3.1.1 we use an inductive argument on the pages of the spec-

tral sequence described in Section 3.4.1 (ii). The following lemma gives us the base of the

induction.

Lemma 3.4.5. For each p ≥ 0 and q ≥ 0, the consistent sequence of rational representations

of Sn

{Ep,q2 (n) = Hp(Modg;H
q(π1(Confn(Σg)); Q)

)
}

is monotone and uniformly representation stable with stable range n ≥ 4q.

Proof. Let q ≥ 0. Since Confn(Σg) is aspherical, by Theorem 3.1.8 of Church we have

that the consistent sequence of rational Sn-representations {Hq(π1(Confn(Σg)); Q)} with
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the forgetful maps

fn : Hq(π1(Confn(Σg)); Q)→ Hq(π1(Confn+1(Σg)); Q)

is monotone and uniformly representation stable with stable range n ≥ 4q. Moreover, Propo-

sitions 3.4.1 and 3.4.4 imply that the sequence is compatible with the Modg-action. The group

Modg is FP∞ (Lemma 3.4.2). Hence we can apply Theorem 3.1.7.

From Lemma 4.4.3, we follow the same type of inductive argument from [9, Section 3]

that Church uses in order to prove his main result [9, Theorem 1]. Here we get monotonicity

and uniform representation stability for all the pages of the spectral sequence E∗(n). We

include the proofs here for completeness.

Lemma 3.4.6. The sequence {Ep,qr (n)} is monotone and uniformly representation stable

with stable range n ≥ 4q + 2(r − 1)(r − 2).

Proof. The proof is done by induction on r where the base case r = 2 is given by Lemma

4.4.3. Assume that {Ep,qr (n)} is monotone and uniformly representation stable for n ≥

4(q +
∑r−2
k=1 k).

As noted before, the differentials

d
p,q
r (n) : E

p,q
r (n)→ E

p+r,q−r+1
r (n)

are a consistent sequence of maps in the sense of Proposition 2.1.2. Then {ker d
p,q
r (n)} is

monotone and uniformly representation stable for n ≥ 4(q+
∑r−2
k=1 k) and {im d

p−r,q+r−1
r (n)}

is monotone and uniformly representation stable for n ≥ 4(q+(r−1)+
∑r−2
k=1 k). Therefore by

Proposition 2.1.1 the next page in the spectral sequence E
p,q
r (n) ∼= ker d

p,q
r (n)/im d

p−r,q+r−1
r

is monotone and uniformly representation stable for n ≥ 4(q +
∑r−1
k=1 k).
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Lemma 3.4.7. For every p, q ≥ 0 and every n ≥ 2, we have E
p,q
∞ (n) = E

p,q
R (n), where

R = 4g − 4 = vcd(Modg) + 1.

Proof. The Hochschild-Serre spectral sequence E∗(n) is a first-quadrant spectral sequence.

Moreover, from Lemma 3.4.2 it follows that for every p > 4g − 5

0 = Hp(Modg;H
q(π1(Confn(Σg)) = E

p,q
2 (n) = E

p,q
r (n).

Therefore for R = 4g− 4, q ≥ 0 and 0 ≤ p ≤ 4g− 5, we have that E
p−R,q+R−1
R (n) = 0 since

p − R < 0 and E
p+R,q−R+1
R (n) = 0 since p + R > 4g − 5. Then the differentials d

p,q
R and

d
p−R,q+R−1
R are zero and hence

E
p,q
R+1(n) = ker d

p,q
R /im d

p−R,q+R−1
R = E

p,q
R (n).

Having built up, we are now able to prove our main result Theorem 3.1.1: uniform

representation stability of {Hi(PModng,r; Q)}∞n=1.

Proof of Theorem 3.1.1. Each of the successive quotients of the natural filtration (3.3) of

Hi(PModng ; Q) give us a sequence

{F ip(n)/F ip+1(n) ≈ E
p,i−p
∞ (n)}

which, by Lemmas 4.2.1 and 3.4.7, is monotone and uniformly representation stable with

stable range n ≥ 4(i−p)+2(4g−6)(4g−5). This is the case, in particular, for F ii−1(n)/F ii (n)

and F ii (n) ≈ E
i,0
∞ (n). Then by Proposition 2.1.1 we have that F ii−1(n) is monotone and

uniformly representation stable. Reverse induction and Proposition 2.1.1 imply that the
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sequences {F ip(n)} (0 ≤ p ≤ i) are monotone and uniformly representation stable with the

same stable range. In particular this is true for F i0(n) = Hi(PModng ; Q).

Observe that

4(i− p) + 2(4g − 6)(4g − 5) + 4p ≥ 4(i− p) + 2(4g − 6)(4g − 5)

for all 0 ≤ p ≤ i, which give us the desired stable range.

Finally, we notice that for a fixed i ≥ 0, the group Hi(PModng ; Q) only depends on the

terms E
p,i−p
∞ (n) = E

p,i−p
i+2 (n), i ≥ p ≥ 0. Hence from Lemma 4.2.1 we get a stable range that

does not depend on the genus g. However, this stable range is quadratic on i: the sequence

{Hi(PModng ; Q)} is monotone and uniformly representation stable for n ≥ 4i+ 2(i+ 1)(i) =

(2i)(i+ 3).

3.4.3 Rational homological stability of Modng

From the short exact sequence in the second column of diagram (1), we have that any

rational Sn-representation can be regarded as a representation of Modng by composing with

the projection Modng → Sn. As a consequence of Theorem 3.1.1 we get cohomological stability

for Modng with twisted coefficients. This is Corollary 3.1.3 above.

Proof of Corollary 3.1.3. This is just the argument by Church-Farb in [12, Corollary 4.4].

The group PModng is a finite index subgroup of Modng and the coefficients V (λ)n are rational

vector spaces, therefore the transfer map (see [7]) give us an isomorphism

Hi(Modng ;V (λ)n
)
≈ Hi(PModng ;V (λ)n

)Sn .

Moreover, V (λ)n is a trivial PModng -representation, since the action of Modng on V (λ)n factors
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through Sn. Hence, from the universal coefficient theorem, we have

Hi(PModng ;V (λ)n)
)Sn ≈

(
Hi(PModng ; Q)⊗ V (λ)n

)Sn
. (3.5)

For two partitions λ and µ of n the representation V (λ) ⊗ V (µ) contains the trivial rep-

resentation if and only if λ = µ, in which case it has multiplicity 1 (see [19]) . Therefore

the dimension of (3.5) is the multiplicity of V (λ)n in Hi(PModng ; Q) which is constant for

n ≥ 4i+ 2(4g − 6)(4g − 5) by Theorem 3.1.1.

In particular, the multiplicity of the trivial representation in Hi(PModng ; Q), which equals

Hi(Modng ; Q), is constant for n ≥ 4i+ 2(4g−6)(4g−5). In fact, the stable range in this case

can be slightly improved.

Corollary 3.4.8. For any i ≥ 0 and a fixed g ≥ 2, the sequence of mapping class groups

{Modng}∞n=1 satisfies rational cohomological stability:

Hi(Modng ; Q) ≈ Hi(Modn+1
g ; Q),

if n ≥ max {i+ (2g − 3)(4g − 5), 2i2 + 4i}.

Proof. For any n the Sn-invariants of the spectral sequence (E
p.q
2 )Sn form a spectral sequence

that converges to Hp+q(PModng ; Q)Sn . In fact, (E
p.q
2 )Sn is just the (p, q)-term of the E2-

page of the Hochschild-Serre spectral sequence of the group extension (Bir2n) converging

to Hp+q(Modng ; Q). In [9, Corollary 3] a better stable range than the one in Theorem 3.1.8

is obtained when restricted to the Sn-invariants: the dimension of Hq(Confn(Σg); Q)Sn is

constant for n > q. As a consequence the dimension of (E
p.q
2 )Sn is constant for n ≥ q.

Proposition 2.1.3 allows us to repeat the general argument for this spectral sequence of Sn-

invariants in order to get the desired stable range.

.
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3.4.4 Non-closed surfaces

Our main result is also true if we consider a non-closed surface Σsg,r of genus g, with r

boundary components and s punctures with 2g + r + s > 2.

Let p1, . . . , pn be distinct points in the interior of Σsg,r. We define the mapping class group

Modn(Σsg,r) as the group of isotopy classes of orientation-preserving self-diffeomorphisms of

Σsg,r that permute the distinguished points p1, . . . , pn and that restrict to the identity on

the boundary components. The pure mapping class group PModng,r is defined analogously by

asking that the distinguished points p1, . . . , pn remain fixed pointwise.

When 2g + r + s > 2 we have again a Birman exact sequence (see [18]):

1→ π1(Confn(Σr+sg ))→ PModn(Σsg,r)→ Modsg,r → 1.

In particular, this includes the three punctured sphere Σ3
0 and the punctured torus Σ1

1.

Using this short exact sequence and Theorem 3.1.8 we can use the previous arguments to

get representation stability for the cohomology of PModn(Σsg,r), when 2g + s+ r > 2.

Theorem 3.4.9. For any i ≥ 0 and 2g + s+ r > 2 the sequence {Hi(PModn(Σsg,r); Q)}∞n=1

is monotone and uniformly representation stable with stable range

n ≥ min {4i+ 2
(
d(g, r, s)

)(
d(g, r, s)− 1

)
, 2i2 + 6i}.

Furthermore for any partition λ and any fixed i ≥ 0 and 2g+s+r > 2, there is an isomorphism

Hi(Modn(Σsg,r);V (λ)n
)
≈ Hi(Modn+1(Σsg,r);V (λ)n+1

)
,

if n ≥ min {4i+ 2
(
d(g, r, s)

)(
d(g, r, s)− 1

)
, 2i2 + 6i}.

Here d(g, r, s) denotes the virtual cohomological dimension of Modsg,r as in Lemma 3.4.2.
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In the case of trivial coefficients V (0)n = Q we recover puncture stability for the rational

cohomology groups of Modn(Σsg,r) for 2g + s+ r > 2.

3.5 Pure mapping class groups of higher dimensional manifolds

We now explain how the key ideas from before can be applied to obtain representation

stability for the cohomology of pure mapping class groups of higher dimensional manifolds.

3.5.1 Representation stability of H∗(PModn(M); Q)

Let M be a connected, smooth manifold and consider the mapping class group Modn(M)

and the pure mapping class group PModn(M) as defined in Section 1.1.1. We now show

how, in some cases, the previous techniques and Proposition 3.5.5 from Section 3.5.2 can be

used to prove representation stability for {Hi(PModn(M); Q), f in}.

The inclusion (
M − {p1, . . . , pn, pn+1}

)
↪→
(
M − {p1, . . . , pn}

)
induces the forgetful homomorphism

fn : PModn+1(M)→ PModn(M).

Recall that one of the main ingredients needed in our proof of Theorem 3.1.1 is the exis-

tence of a Birman exact sequence that allows us to relate π1(Confn(M), p) with PModn(M).

First we notice that, when the dimension of M is d ≥ 3, the group π1(Confn(M)) can be

completely understood in terms of π1(M).

Lemma 3.5.1. Let M be a smooth connected manifold of dimension d ≥ 3. Then for any

n ≥ 1 the inclusion map Confn(M) ↪→ Mn induces an isomorphism π1(Confn(M), p) ∼=

π1(Mn, p) ∼=
∏n
i=1 π1(M, pi).
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The case for closed manifolds is due to Birman ([4, Theorem 1]). As Allen Hatcher

explained to me, there are many manifolds for which there is a Birman exact sequence.

Lemma 3.5.2 (Existence of a Birman Exact Sequence). Let M be a smooth connected man-

ifold of dimension d ≥ 3. If the fundamental group π1(M) has trivial center or Diff(M) is

simply connected, then there exists a Birman exact sequence

1 // π1(Confn(M)) // PModn(M) // Mod(M) // 1. (3.6)

Proof. The evaluation map

ev : Diff(M)→ Confn(M),

given by f 7→ (f(p1), . . . , f(pn)) is a fibration with fiber PDiffn(M). Consider the associated

long exact sequence in homotopy groups

· · · // π1(Diff(M)) // π1(Confn(M)) δ // π0(PDiffn(M)) // π0(Diff(M)) // 1.

If Diff(M) is simply connected, then the existence of the short exact sequence (4.2) follows.

On the other hand, we may consider the map

ψ : π0(PDiffn(M))→ Aut[π1(Confn(M))]

given by [f ] 7→ [γ 7→ f ◦ γ].

The composition

π1(Confn(M)) δ // π0(PDiffn(M))
ψ // Aut[π1(Confn(M))]

sends σ ∈ π1(Confn(M)) to the inner automorphism c(σ) given by conjugation by σ. If the

dimension d ≥ 3 and π1(M) has trivial center, then so does π1(Confn(M)) by Lemma 3.5.1.

In this case, the boundary map δ is injective and we get the desired Birman exact sequence
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(4.2).

The E2-page of the Hochschild-Serre spectral sequence associated to (4.2) is then

E
p,q
2 (n) = Hp(Mod(M);Hq(π1(Confn(M)); Q)

)
.

By Lemma 3.5.1

Hq(π1(Confn(M)); Q)) = Hq(π1(M)n; Q).

Moreover, by Proposition 3.5.5 below, if the group π1(M) is of type FP∞, the consistent

sequence {Hq(π1(M)n; Q)}∞n=1 is monotone and uniformly representation stable, with stable

range n ≥ 2q. Hence when Mod(M) is also of type FP∞ (e.g. M is compact), Theorem

3.1.7 and the same inductive argument on the succesive pages of spectral sequence yield the

following:

Lemma 3.5.3. For every i ≥ 0 and every n ≥ 2, the consistent sequence of rational Sn-

representations

{Ei−q,q2 (n) = Hi−q(Mod(M);Hq(π1(Confn(M)); Q)
)
}∞n=1

is monotone and uniformly representation stable with stable range n ≥ 2q. Furthermore

E
i−q,q
∞ (n) = E

i−q,q
i+2 (n), which is monotone and uniformly representation stable with stable

range

n ≥ 2q + 2(i+ 1)(i).

Observe that now we have all the ingredients needed in order to reproduce our arguments

from Section 3.4.2 and prove Theorem 3.1.4 and Corollary 3.1.5.
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3.5.2 Representation stability of H∗(Gn; Q)

Given a group G, we may consider the sequence of groups {Gn =
∏n
i=1G} with the corre-

sponding Sn-action given by permuting the factors. The natural homomorphism Gn+1 → Gn

by forgetting the last coordinate is equivariant with respect to the inclusion Sn ↪→ Sn+1. For

a fixed q ≥ 0 the induced maps

φn : Hq(Gn; Q)→ Hq(Gn+1; Q)

give us a consistent sequence of Sn-representations. IfG is of type FP∞, we have finite dimen-

sional representations. Monotonicity and uniform representation stability of this sequence

are a particular case of [9, Proposition 3.1] (corresponding to the first row in the spectral

sequence). Since this result gives us the inductive hypothesis for the proof of Theorem 3.1.4,

we present here a complete proof for the reader’s convenience.

For a fixed Sl-representation V and each n ≥ l, we denote by Vα � Q the corresponding

(Sl × Sn−l)-representation, where the factor Sn−l acts trivially. We can then consider the

sequence of Sn-representation {IndSn
Sl×Sn−l

Vα � Q} with the natural inclusions

ιn : IndSn
Sl×Sn−l

Vα � Q ↪→ Ind
Sn+1
Sl×Sn+1−l

Vα � Q.

This sequence is monotone and uniform representation stable as proved in [9, Theorem 2.11]:

Lemma 3.5.4. Let V be a finite dimensional Sl-representation, then the sequence of induced

representations {IndSn
Sl×Sn−l

V � Q}∞n=1 is monotone and uniformly representation stable for

n ≥ 2l.

This lemma and the Künneth formula give us the following result.

Proposition 3.5.5. Let G be any group of type FP∞ and q ≥ 0. The consistent sequence

of Sn-representations {Hq(Gn; Q), φn}∞n=1 is monotone and uniformly representation stable

for n ≥ 2q.

50



Proof. By the Künneth formula we have

Hq(Gn; Q) ≈
⊕
a

Ha(Gn)

where the sum is over all tuples a = (a1, . . . , an) such that aj ≥ 0 and
∑
aj = q and Ha(Gn)

denotes Ha1(G; Q)⊗ · · · ⊗Han(G; Q).

Let a = α where α = (α1 ≥ α2 ≥ . . . ≥ αl) is a partition of q and the αj are the positive

values of a arranged in decreasing order. We define supp(a) as the subset of {1, 2, . . . , n} for

which ai 6= 0. Observe that the length of α is l = supp(a) ≤ q. Therefore we have

Hq(Gn; Q) =
⊕
α

Hα(Gn)

where now the sum is over all partitions α of q of length l ≤ q and Hα(Gn) =
⊕

a=αH
a(Gn).

The natural Sn-action on Gn induces an Sn-action on Hq(Gn; Q). More precisely, the

group Sn acts on n-tuples a by permuting the coordinates. This induces an action on⊕
a=αH

a(Gn) by permuting the summands accordingly (with a sign, since cohomology is

graded commutative) . Hence, under this action, each Hα(Gn) is Sn-invariant. We now

describe Hα(Gn) as an induced representation.

For a given α, take b = (α1, . . . , αl, 0, · · · , 0). Observe that we can identify the Sn-

translates of Hb(Gn) with the cosets Sn/Stab(b) by an orbit-stabilizer argument. Thus

Hα(Gn) = IndSn
Stab(b)H

b(Gn).

Moreover, Sn−l < Stab(b) < Sl × Sn−l, where Sl permutes coordinates {1, . . . , l} and Sn−l

permutes coordinates {l + 1, . . . , n}. Therefore Stab(b) = H × Sn−l, for some subgroup

H < Sl.
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Notice that

Hb(Gn) = Hb1(G; Q)⊗ · · · ⊗Hbl(G; Q)⊗ · · · ⊗H0(G; Q) ≈ Hb1(G; Q)⊗ · · · ⊗Hbl(G; Q)

can be regarded as an H-representation.

Let Vα := Ind
Sl
HH

b(Gn) and let Vα�Q denote the corresponding (Sl×Sn−l)-representation.

Then

Hα(Gn) = IndSn
Stab(b)H

b(Gn) = IndSn
H×Sn−l

(
Hb(Gn) � Q

)
= IndSn

Sl×Sn−l

(
Ind

Sl×Sn−l
H×Sn−l

(
Hb(Gn) � Q

))
= IndSn

Sl×Sn−l

((
Ind

Sl
HH

b(Gn)
)

� Q
)

= IndSn
Sl×Sn−l

Vα � Q .

Moreover, we notice that the forgetful map φn restricted to the summand Hα(Gn) cor-

responds to the inclusion

IndSn
Sl×Sn−l

Vα � Q ↪→ Ind
Sn+1
Sl×Sn+1−l

Vα � Q.

Therefore, by Lemma 3.5.4, the consistent sequence {Hα(Gn)} is monotone and uniformly

representation stable with stable range n ≥ 2l, where l is the length of α and l ≤ q. The

result for {Hq(Gn; Q), φn} then follows from Proposition 2.1.1.

Finally we illustrate the notation in the previous proof with the concrete case of G = Z.

By the Künneth formula we have

Hq(Zn; Q) ≈
⊕
∑
ai=q

Ha1(Z; Q)⊗ · · · ⊗Han(Z; Q).

Following our previous notation we take the n-tuple b = (1, . . . , 1, 0, . . . , 0) with supp(b) = q
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and α := b. Since Hq(Z; Q) = Q for q = 0, 1 and zero otherwise, we have that

Hq(Zn; Q) =
⊕
a=α

Ha(Zn) = IndSn
Stab(b)H

b(Zn).

Notice that Stab(b) = Sq × Sn−q. The corresponding (Sq × Sn−q)-representation is

Hb(Zn) = H1(Z; Q)⊗ · · · ⊗H1(Z; Q)⊗ · · · ⊗H0(Z; Q) ≈ Vα � Q

where Vα := H1(Z; Q)⊗· · ·⊗H1(Z; Q) ≈ Hb(Zn) is regarded as an Sq-representation. Then,

as an induced representation,

Hq(Zn; Q) = IndSn
Sq×Sn−q

Vα � Q.

Moreover, if Qn denotes the permutation Sn-representation, then

IndSn
Sq×Sn−q

Vα � Q =
∧q

(Qn) =
∧q(

V (0)n ⊕ V (1)n
)

=
(∧q

V (1)n

)
⊕
(∧q−1

V (1)n

)
= V (1, . . . , 1︸ ︷︷ ︸

q

)n ⊕ V (1, . . . , 1︸ ︷︷ ︸
q−1

)n

Hence, we see explicitly how uniform multiplicity stability holds for this particular case.

3.6 Classifying spaces for diffeomorphism groups

In this last section we see how the same ideas also imply representation stability for the

cohomology of classifying spaces for diffeomorphism groups.

Let M be a connected and compact smooth manifold of dimension d ≥ 3. We denote

by E(M,R∞) the space of smooth embeddings M → R∞. It is a contractible space and
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Diff(M rel ∂M) acts freely by pre-composition. The quotient space

E(M,R∞)/Diff(M rel ∂M)

is the space of smooth submanifolds of R∞ diffeomorphic to M and it is a classifying space

BDiff(M rel ∂M)) for Diff(M rel ∂M)). Similarly we can consider the action of the sub-

group PDiffn(M) of Diff(M rel ∂M) on E(M,R∞). The quotient space is a classifying space

B PDiffn(M) for PDiffn(M) and we have a fiber bundle

B PDiffn(M)→ BDiff(M rel ∂M) (3.7)

where the fiber is given by Diff(M rel ∂M)/PDiffn(M) ≈ Confn(M), the configuration space

of n ordered points in M .

There is a Leray-Serre spectral sequence associated to the fiber bundle (4.3) that converges

to the cohomology H∗(B PDiffn(M); Q) with E2-page given by

E
p,q
2 (n) = Hp(BDiff(M rel ∂M);Hq(Confn(M); Q)

)
. (3.8)

Here, we regard (3.8) as the pth cohomology group of BDiff(M rel ∂M) with local co-

efficients in the G-module Hq(Confn(M); Q), where G = π1(BDiff(M rel ∂M)) (see [26,

Section 3.H]). Notice that the actions of Sn and G on Hq(Cn(M); Q) commute. There-

fore {Hq(Confn(M); Q)}∞n=1 is a consistent sequence compatible with G-actions. Moreover,

by Theorem 3.1.8, it is monotone and uniformly representation stable, with stable range

n ≥ 2q. Monotonicity and uniform representation stability for the terms in the E2-page will

be a consequence of the following result, which is essentially Theorem 3.1.7 from before.

Theorem 3.6.1. Let G be the fundamental group of a connected CW complex X with

finitely many cells in each dimension. Consider a consistent sequence {Vn, φn}∞n=1 of fi-

nite dimensional rational representations of Sn compatible with G-actions. If the sequence
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{Vn, φn}∞n=1 is monotone and uniformly representation stable with stable range n ≥ N , then

for any non-negative integer p, the sequence of cohomology groups with local coefficients

{Hp(X;Vn), φ∗n}∞n=1 is monotone and uniformly representation stable with the same stable

range.

Proof. Since G = π1(X), the universal cover X̃ of X has a G-equivariant cellular chain

complex. Given that X has finitely many cells in each dimension, for each p the group Cp(X̃)

is a free G-module of finite rank, where a preferred G-basis can be provided by selecting a

p-cell in X̃ over each p-cell in X. Hence, the proof of Theorem 3.6.1 is the same as the one for

Theorem 3.1.7, by replacing the notions of cohomology of groups by cohomology of a space

with local coefficients.

Hence when BDiff(M rel ∂M) has the homotopy type of a CW-complex with finitely

many cells in each dimension, we can apply the inductive argument from Section 3.4.2 on the

successive pages of the Leray-Serre spectral sequence from above and obtain the following

result.

Lemma 3.6.2. For every i ≥ 0 and every n ≥ 2, the consistent sequence of rational Sn-

representations

{Ei−q,q2 (n) = Hi−q(BDiff(M rel ∂M);Hq(Confn(M); Q)
)
}∞n=1

is monotone and uniformly representation stable with stable range n ≥ 2q. Furthermore

E
i−q,q
∞ (n) = E

i−q,q
i+2 (n), which is monotone and uniformly representation stable with stable

range

n ≥ 2q + 2(i+ 1)(i).

As a consequence we get Theorem 3.1.6 for the cohomology of the classifying space of a

group of diffeomorphisms.
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If the manifold M is orientable, we can replace Diff(M, rel ∂M) by the group of orien-

tation preserving diffeomorphims Diff+(M, rel ∂M) in the above argument. In particular,

Hatcher and McCullough proved in [27] that if M is an irreducible, compact connected

orientable 3-manifold with nonempty boundary, then BDiff+(M rel ∂M) is a finite K(π, 1)-

space for the mapping class group Mod(M). Therefore, Theorem 3.1.6 is true for this type

of manifold. Moreover, if M satisfies conditions (i)-(iv) in [27, Section 3], then π1(M) is

centerless and we can apply Theorem 3.1.4 to get uniform representation stability for the

cohomology of PModn(M).
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CHAPTER 4

THE THEORY OF FI-MODULES

In this chapter we consider the cohomology of our examples in Section 2.3 and prove that

each of such sequences has the structure of a finitely generated FI-module over any field k.

The content of this chapter corresponds to [31].

4.1 Introduction

Let X be any of the co-FI-spaces or co-FI-groups from Section 2.3. A combination of the

work by Church ([9]), Church–Ellenberg–Farb ([10]) and myself ([30]) implies that, under

some hypotheses recalled below, for any i ≥ 0 the FI-module Hi(X; Q) is finitely generated.

In this chapter we develop a unified approach to proving finite generation for FI-modules

that arise as in the examples above. In Section 4.2 we present a general spectral sequence

argument that allows us to prove finite generation for our examples in Theorems 4.3.3, 4.5.1,

4.5.2 and 4.5.6. Furthermore, this approach applies to spectral sequences arising from “FI-

fibrations” over a fixed space and “FI-group extensions” of a given group (see Section 4.4.2).

The basic idea is to use a spectral sequence of FI-modules converging to the graded FI-

module of interest. We then use knowledge about finite generation of the FI-modules in the

E2-page and an inductive process together with closure properties of finite generation under

subquotients and extensions to get our conclusion. The main difference between Theorems

4.3.3 and the other theorems are the type of spectral sequence that we use and the way that

finite generation is proved for the E2-page.

Given finite generation, the conclusions in Theorem 1.3.1 are consequences of [10, Propo-

sition 2.58 and Theorem 2.67] and [11, Theorem 1.2].
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4.1.1 Specific Bounds

When k = Q, our direct proofs of finite generation below allow us to obtain linear bounds

on i for the degrees of the character polynomials Qi and the lengths of the representations.

Moreover our new stable ranges for uniform representation stability are also linear in i,

instead of the quadratic bounds in i that were obtained in Chapter 3. The precise bounds

obtained in each case are summarized in Table 4.1.

Remarks:

• The explicit bounds for the first two examples in Table 4.1 are due to Church–Ellenberg–

Farb. We recall them here as they are used as main ingredients in our proofs be-

low. For each n, the cohomology ring H∗(Mn; Q) is completely understood and

H∗(Confn(M); Q) is described by Totaro in [42]. However, few explicit computations

are known for the other examples in Table 4.1.

• From Theorem 1.3.1 (iii) it follows that for each σ ∈ Sn, the character χVn
(σ) only

depends on “short cycles”, more precisely on the cycles of σ of length ≤deg(χn). Then

in Table 4.1 we provide an upperbound for the lengths of the cycles.

• Our result for Confn(Σ) recovers the same stable range of n ≥ 4i obtained in [9,

Theorem 1] for the case when Σ is a closed surface or has non-empty boundary. The

statment about dimk

(
Hi(Confn(Σ); k)

)
being a polynomial in n for any field k is a

particular case of [11, Theorem 1.8].

• Theorem 4.5.1 below implies that the consistent sequences of rational Sn-representations

{Hi(PModng,r; Q)} and {Hi(Mg,n; Q)} satisfy uniform representation stability with

stable range n ≥ 4i when r > 0 and n ≥ 6i in general. This improves the stable range

n ≥ min{4i+ 2(4g − 6)(4g − 5), 2i2 + 6i}

obtained in Theorem 3.1.1.
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Table 4.1: Specific bounds for the FI-modules of interest.

Group or Stable degree of Stability
Space Xn Range `(Vn) ≤ χVn

≤ Type

Mn n ≥ 2i i+ 1 i (0, i)
[10, Thm 4.1]

Confn(M) n ≥ 2i i+ 1 i (i+ 2− d, i)
dimM = d ≥ 3 (0, i) if ∂M 6= Ø
[10, Thm 4.2]

(2i, 2i) if Σ closed
Confn(Σ) n ≥ 4i 2i+ 1 2i (0, 2i) if ∂Σ 6= Ø
dim Σ = 2 n ≥ 5i (3i− 1, 2i) O/W
Thm 4.3.3

Mg,n n ≥ 6i 2i+ 1 2i (4i, 2i)
with g ≥ 2
Thm 4.5.1

PModng,r n ≥ 4i 2i+ 1 2i (0, 2i)

2g + r > 2
and r > 0
Thm 4.5.1

PModn(M) n ≥ 3i i+ 1 i (2i, i)
dimM ≥ 3 n ≥ 2i (0, i) if ∂M 6= Ø
Thm 4.5.2

B PDiffn(M) n ≥ 3i i+ 1 i (2i, i)
dimM ≥ 3
Thm 4.5.6
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• Theorems 4.5.2 and 4.5.6 below apply to irreducible, compact, orientable 3-manifolds

M with nonempty boundary satisfying conditions (i)-(iv) in [27, Section 3].

4.1.2 Other results

FI[G]-modules. Let G be a group. In Section 4.4 we introduce the notion of an FI[G]-

module: it is a functor V from the category FI to the category G-Mod of G-modules over

R. This definition incorporates the action of a group G on our sequences of Sn-representations

and allows us to take V as twisted coefficients for cohomology. For X, a path-connected space

with fundamental group G, and p ≥ 0, we are interested in the FI-module Hp(X;V ) over

R given by n 7→ Hp(X;Vn). Our major result in Section 4.4 is Theorem 4.4.1 which uses

finite generation of an FI[G]-module V to obtain finite generation and, when R = Q, specific

bounds for the new FI-modules Hp(X;V ). This is our tool to prove the base of the induction

in the spectral sequence argument for Theorems 4.5.1, 4.5.2 and 4.5.6.

Remark: It was pointed out to me by Ian Hambleton that FI[G]-modules can be understood

in the framework of modules over EI-categories. An EI-category Γ is a small category in which

each endomorphism is an isomorphism. An FI[G]-module corresponds to a left RΓ-module,

where R is the group ring ZG and Γ is the EI-category FI. The theory of RΓ-modules and

its homological algebra have been developed and applied in the context of transformation

groups (see for example [15, Chapter I.11]).

Manifolds with boundary. If we assume that M is a manifold with non-empty bound-

ary, the examples above of configuration spaces and pure mapping class groups have the

extra structure of an FI#-module that allows us to conclude the following results from the

arguments in Section 4.5.3.

Theorem 4.1.1. Let Σ = Σg,r be a connected compact oriented surface with non-empty

boundary (r > 0). For any i ≥ 0 and n ≥ 0, each of the following invariants of PModng,r is

given by a polynomial in n of degree at most 2i:
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• The ith rational Betti number bi(PModng,r) and the ith mod-p Betti number of PModng,r.

• The rank of Hi(PModng,r; Z) and the rank of the p-torsion part of Hi(PModng,r Z).

Theorem 4.1.2. Let M be a manifold with non-empty boundary that satisfies the hypothesis

of Theorem 4.5.2. For n ≥ 0 each of the following is given by a polynomial in n:

• bi(PModn(M)) and the ith mod-p Betti number of PModn(M).

• The rank of Hi(PModn(M); Z) and the rank of the p-torsion part of Hi(PModn(M); Z).

The polynomial is of degree at most i for rational Betti numbers and degree at most 2i in the

other cases.

Closed Surfaces. For a fixed n ≥ 0, we can relate the mapping class group of a closed

surface with the one of a surface with non-empty boundary. Let

δg : PModng,1 → PModng

be the group homomorphism induced by gluing a disk to the boundary component. The

following result is part of the so called Harer’s stability Theorem and was proved initially by

Harer ([23]). A proof of it with the improved bounds that we use can be found in [47].

Theorem 4.1.3. If i ≤ 2
3g, we have following isomorphism:

Hi(δg) : Hi(PModng,1; Z)→ Hi(PModng ; Z).

When the genus of the surface is large, by combining the previous result with Theorem

4.1.1 we obtain the following information in the case of closed surfaces.

Theorem 4.1.4. If g ≥ max{2, 3
2i}, then each of the following invariants of PModng is given

by a polynomial in n for n ≥ 0:

• the i-th rational Betti number bi(PModng )
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• the rank of Hi(PModng ; Z)

• the rank of the p-torsion part of Hi(PModng ; Z)

In each case the polynomial is of degree at most 2i.

Cohomological stability of some wreath products. Let {Kn} be a sequence of groups

with surjections Kn � Sn. Given a group G the wreath product G o Kn is the semidirect

product Gn oKn, where Kn acts on Gn through the surjection Kn � Sn.

Notation: The surface pure braid group is the group π1
(

Confn(Σg,r)
)

and will be denoted

by Pn(Σg,r). The surface braid group is π1
(

Confn(Σg,r)/Sn
)

and we use Bn(Σg,r) to denote

it. When g = 0 and r = 1, these are the pure braid group Pn and the braid group Bn,

respectively. On the other hand, the braid permutation group Σ+
n is the group of string

motions that preserve orientation of the circles (see [48, Section 8] for a precise definition).

In Section 4.6 we discuss how our previous results and the closure of finite generation of

FI-modules under tensor products can be used to get information about homological stability

of some wreath products.

Theorem 4.1.5. Let G be any group of type FP∞ and let Kn be one of the following groups:

(i) The symmetric group Sn,

(ii) The surface braid group Bn(Σg,r), with g, r ≥ 0,

(iii) The mapping class group Modng,r, with 2g + r > 2,

(iv) The mapping class group Modn(M), where M is a smooth connected manifold of di-

mension d ≥ 3 such that the hypotheses in Theorem 4.5.2 are satisfied,

(v) The braid permutation group Σ+
n .

Then the wreath product G oKn satisfies rational homological stability.
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Remarks: In general we do not have explicit stable ranges. The following is known about

stable ranges:

• For (i) we get the stable range n ≥ 2i. Homological stability is known to hold integrally

in this case for n ≥ 2i + 1 (see [29, Propositions 1.6]). Therefore our bound suggests

that the possible failure of injectivity when n = 2i should come from torsion.

• For the case (ii), Hatcher–Wahl have shown that if r > 0 the group GoBn(Σg,r) satisfies

integral homological stability when n ≥ 2i+ 1 ([29, Propositions 1.7]). Rationally, the

stable range has been improved to n ≥ 2i by Randall-Williams (see [40, Theorem A]).

4.1.3 Speculation on the existence of non-tautological classes in Mg,n

The tautological ring of Mg,n is defined to be a subring RH∗(Mg,n) of the cohomol-

ogy ring H∗
(
Mg,n; Q

)
generated by certain “geometric classes”: the kappa-classes κj ∈

H2j(Mg,n; Q
)
, for j ≥ 0, and the psi-classes ψi ∈ H2(Mg,n; Q

)
, for 1 ≤ i ≤ n. In

RH∗(Mg,n), the class κj has grading j and ψi has grading 1 (half the cohomological grad-

ing). We refer the reader to [17, Section 1] for precise definitions of the tautological rings of

Mg,n and Mg,n.

In [10, Section 5.1] it is proved that RH∗(Mg,•) is a graded FI-module of finite type

for g ≥ 2. This follows from the fact that this graded FI-module is a quotient of the free

commutative algebra

Q
[
{κj : j ≥ 0} ∪ {ψi : 1 ≤ i ≤ n}

]
,

where Sn acts trivially on the kappa-classes and permutes the psi-classes. From this de-

scription, we can see that for any k ≥ 0 the weight of the FI-module RHk(Mg,•) is at

most k. As a consequence we obtain an upper bound for the length of the representation

`
(
RHk(Mg,n)

)
≤ k + 1.

On the other hand, Faber and Pandharipande studied in [17] the Sn-action onH∗(Mg,n; Q)

and get an upper bound for the length of the irreducible representations occurring in the tau-
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tological ring RH∗(Mg,n). Their interest is to exhibit, by other methods (counting, bound-

ary geometry), several classes of Hodge type that cannot be tautological classes because the

lengths of the corresponding Sn-representations are larger than their upper bound. In par-

ticular, they have established the existence of many non-tautological cohomology classes on

M2,21. They obtained that `
(
RHk(Mg,n)

)
≤ k + 1 ([17, Section 4]). Since RHk(Mg,n)

surjects onto RHk(Mg,n), that implies that `
(
Rk(Mg,n)

)
≤ k+ 1, which is the same bound

that we obtained directly with the FI-module approach. In contrast, their method involves

studying representations induced from the boundary strata.

Finally we would like to point out that from Table 1 we have the upper bounds

`
(
H2k(Mg,n; Q)

)
≤ 4k + 1.

This, contrasted with `
(
RHk(Mg,n)

)
≤ k + 1, suggests that there is room for the existence

of non-tautological classes Mg,n and that an approach à la Faber and Pandharipande could

demonstrate that some explicit classes are non-tautological. However, we have no indication

that our bounds are sharp. As matter of fact, the only completely known case shows evidence

of the contrary since H2(Mg,n; Q
)

= RH1(Mg,n) has length 2.

4.2 A spectral sequence argument

In this section we present the general spectral sequence argument that will give us finite

generation and specific bounds in Theorems 4.3.3 and 4.4.4. We basically apply the idea

used in the proof of [10, Theorem 4.2] to a more general context.

Setting: Suppose that we have a first quadrant spectral sequence of FI-modules E
p,q
∗ over Q

converging to a graded FI-module H∗(E) over Q. Let α and β be two non-negative constants

such that 2α ≤ β. In what follows, we assume that for any p, q ≥ 0 the FI-module E
p,q
2 is

finitely generated with injectivity degree at most βq and surjectivity degree at most αp+βq.
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In our applications below, E
p,q
∗ is either a Leray, Leray–Serre or Hochschild–Serre spectral

sequence.

Lemma 4.2.1. For any p, q ≥ 0 and r ≥ 3, the FI-module E
p,q
r is finitely generated with

injectivity degree at most αp+βq+(β−α)r+(α−2β) and surjectivity degree at most αp+βq.

Proof. Finite generation of an FI-module is closed under subquotients. To verify the stated

stability type we proceed by induction on r ≥ 3. The base of induction is the case r = 3. To

compute E
p,q
3 we consider the complex of FI-modules

E
p−2,q+1
2

// E
p,q
2

// E
p+2,q−1
2 ,

where the left map is the differential d
p−2,q+1
2 and the right map is d

p,q
2 . By hypothesis the left

hand side term in the previous complex has surjectivity degree at most α(p− 2) +β(q+ 1) =

αp+ βq + (β − 2α). The middle term has stability type at most
(
βq, αp+ βq

)
and the right

hand side term has injectivity degree at most β(q − 1). Hence, by applying [10, Proposition

2.45] to the complex of FI-modules above, we obtain that the quotient FI-module

E
p,q
3 ≈ ker d

p,q
2 / im d

p−2,q+1
2

has injectivity degree at most

max
(
αp+ βq + (β − 2α), βq

)
= αp+ βq + (β − 2α) = αp+ βq + (β − α)(3) + (α− 2β)

since 2α ≤ β, and surjectivity degree at most

max
(
αp+ βq, βq − β

)
= αp+ βq

since α, β ≥ 0.

Now suppose that the statement is true for E
p,q
r . To compute E

p,q
r+1 we consider the

65



complex of FI-modules

E
p−r,q+r−1
r

// E
p,q
r

// E
p+r,q−r+1
r ,

where the left map is the differential d
p−r,q+r−1
r and the right map d

p,q
r . By induction, the

left hand side term in the previous complex has surjectivity degree at most αp + βq + (β −

α)(r + 1) + (α− 2β). The middle term has stability type at most

(
αp+ βq + (β − α)r + (α− 2β), αp+ βq

)
.

Finally the right hand side term has injectivity degree at most αp+βq+α−β. By applying

again [10, Proposition 2.45] we get the desired stability type for the quotient

E
p,q
r+1 ≈ ker d

p,q
r / im d

p−r,q+r−1
r .

For a given i ≥ 0 and 0 ≤ p ≤ i, we have that E
p,i−p
∞ = E

p,i−p
i+2 . From Lemma 4.2.1 we

get the immediate corollary.

Corollary 4.2.2. The FI-module E
p,i−p
∞ has injectivity degree at most

αp+ β(i− p) + (β − α)(i+ 2) + (α− 2β) = (2β − α)i+ (α− β)p− α ≤ (2β − α)i− α

and surjectivity degree at most

αp+ β(i− p) = βi+ (α− β)p ≤ βi.

As assumed at the beginning of this section, the spectral sequence E
p,q
∗ converges to

a graded FI-module H∗(E). From Lemma 4.2.1 and Corollary 4.2.2 we can conclude the
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following about the stability type of each FI-module Hi(E).

Theorem 4.2.3. Suppose that we have a first quadrant spectral sequence of FI-modules E
p,q
∗

over a Noetherian ring R converging to a graded FI-module H∗(E;R) over R. If the FI-

module E
p,q
2 is finitely generated, then the FI-module Hi(E;R) is finitely generated, for any

i ≥ 0.

Furthermore, asume that R = Q and that for any p, q ≥ 0 the FI-module E
p,q
2 has

injectivity degree at most βq and surjectivity degree at most αp + βq , where α, β ≥ 0 such

that 2α ≤ β. Then, the FI-module Hi(E) = Hi(E; Q) is finitely generated with stability type

at most ((2β − α)i− α, βi).

Proof. The first statement follows from the fact that finite generation of an FI-module over

a Noetherian ring R is closed under subquotients ([11, Theorem 1.1]).

For each i ≥ 0, there is a natural filtration of Hi(E) by FI-modules

0 ⊆ F ii ⊆ F ii−1 ⊆ . . . ⊆ F i1 ⊆ F i0 = Hi(E), (4.1)

where, for 0 ≤ p ≤ i, the successive quotients F ip/F
i
p+1 ≈ E

p,i−p
∞ . The second statement

for the case k = Q follows from combining the bounds in Lemma 4.2.2 with [10, Proposition

2.46], which states injectivity and surjectivity degrees for filtrations of FI-modules satisfying

the conditions above.

4.2.1 Spectral sequences and FI#-modules

We conclude this section with an argument that allows us to take advantage of the extra

structure of finitely generated FI#-modules to get information about the cases where k is a

field of arbitrary characteristic or Z. This follows essentially the proof of [10, Theorem 4.7].

Setting: Suppose that we have a first quadrant spectral sequence of FI-modules E
p,q
∗ over

k converging to a graded FI#-module H∗(E; k) over k. Let α and β be two non-negative
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constants such that α ≤ β. Assume that for any p, q ≥ 0 each term E
p,q
2 is an FI#-module

which is finitely generated in degree ≤ αp+ βq.

Theorem 4.2.4. Let k be any field or Z. For any i ≥ 0 the FI#-module Hi(E; k) is finitely

generated in degree ≤ βi.

Proof. Suppose first that k is a field. We have that E
p,q
2 is an FI#-module which is finitely

generated in degree ≤ αp + βq. [10, Corollary 2.27] allows to relate this upper bound on

the degree of generation with the dimension of the k-vector space E
p,q
2 (n) and conclude

that dimk E
p,q
2 (n) = O(nαp+βq). Since E

p,q
∞ is a subquotient of E

p,q
2 and k is a field, then

dimk E
p,q
∞ (n) = O(nαp+βq). Finally for each i ≥ 0, from the filtration (4.1) of Hi(E; k), we

have that dimkH
i(E; k) = O(nβi) (since αp + β(i − p) ≤ βi for any 0 ≤ p ≤ i). Hence,

by applying again [10, Corollary 2.27] we get the desired implication. The case when k = Z

can be treated similarly because the rank of a Z-module is non-increasing when passing to

submodules.

4.3 Sequences of cohomology groups as FI-modules (part I)

In this section we revisit two examples of FI-modules that are key ingredients to understand

our main examples in Section 4.5.

4.3.1 The FI-module H i(M •; k)

Given M a topological space, consider the co-FI-space M•. It is the functor that assigns

n 7→Mn := M × · · · ×M︸ ︷︷ ︸
n

. Morphisms are defined as follows:

If f ∈ HomFI(m,n), then f∗ : Mn →Mm is given by f∗(x1, . . . , xn) = (xf(1), . . . , xf(m)).

For each i ≥ 0 we compose with the contravariant functor Hi( ; k) to get an FI-module over

a field k.
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Proposition 4.3.1. Let M be a connected CW-complex with dimk

(
Hi(M ; k)

)
<∞ for any

i ≥ 0. Then Hi(M•; k) is an FI#-module finitely generated over any field k. If k = Q then

it has weight ≤ i and has stability type at most (0, i).

Proof. This is a consequence of the Künneth formula. As pointed out in [10, Section 4]

the graded FI-module H∗(M•; k) coincides, apart from signs, with the graded FI-module

H∗(M ; k)⊗• (see [10, Definition 2.71]) which is a finitely generated FI#-module since M

is connected and dimk

(
Hi(M ; k)

)
< ∞. When k = Q, it can actually be shown that

Hi(M•; Q) is a direct sum of FI#-modules of the form M(Wj), where Wj is some Sj-

representation and each summand satisfies that j ≤ i (see for example [30, Proposition 6.5]).

Then the weight and the stability type claimed in Proposition 4.3.1 follow.

Similarly, if G is a group, we can consider the co-FI-group G•. If G is a group of type

FP∞ (see for example [7, Chapter VIII] for definition), then the CW-complex M = K(G, 1)

satisfies the hypotheses in Proposition 4.3.1 and it follows that the FI#-module Hi(G•; k) =

Hi(M•; k) is finitely generated .

4.3.2 Cohomology of configuration spaces

Let k be any field and let M be a connected, oriented manifold of dimension d ≥ 2

and assume that dimk

(
H∗(M); k)

)
< ∞. Since the inclusion Confn(M) ↪→ Mn is Sn-

equivariant, we get a corresponding map of co-FI-spaces Conf•(M) → M•. We recall here

how a spectral sequence argument can be used to obtain finiteness conditions for the FI-

modules Hq
(

Conf•(M); k
)
.

Let us take, together for all n, the Leray spectral sequences of Confn(M) ↪→ Mn. The

functoriality of the Leray spectral sequence implies that we have a spectral sequence of FI-

modules

E
p,q
∗ = E

p,q
∗ (Conf•(M)→M•)

converging to the graded FI-module H∗(Conf•(M); k).
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Using this spectral sequence, finite type of this graded FI-module has been proved over

any field k in [11, Proposition 4.1]. For the case when k = Q and the dimension of M is

d ≥ 3, particular bounds for the stability degree have been obtained.

Theorem 4.3.2 ([10], Theorem 4.2 ). Let M be a connected, oriented manifold of dimension

d ≥ 3. For any i ≥ 0, the FI-module Hi(Conf•(M); Q) has weight ≤ i and stability type at

most (i+ 2− d, i).

We now focus in the case where Σ is a connected, oriented surface (d = 2). Following

the approach in [10, Section 4] we get a better bound for the degree of the FI-module

Hi
(

Conf•(Σ); Q
)

and get the specific bounds for the stability type.

Theorem 4.3.3. Let Σ be a connected, oriented manifold of dimension 2. For any i ≥ 0,

the FI-module Hi(Conf•(Σ); Q) is finitely generated of weight ≤ 2i and has stability type at

most (2i, 2i) when Σ is a closed surface, at most (0, 2i) when ∂Σ is nonempty, and at most

(3i− 1, 2i) otherwise.

Proof. We have a spectral sequence of FI-modules

E
p,q
∗ = E

p,q
∗ (Conf•(Σ)→ Σ•)

converging to the graded FI-module H∗(Conf•(Σ)). For any p, q ≥ 0 the FI-module E
p,q
2 is

the direct sum of FI-modules of the form M(Wk) where Wk is a certain Sk-representation.

Moreover, each summand satisfies k ≤ p+ 2q (see [9, Section 3.3.]). Hence, for every p, q ≥ 0

we have that E
p,q
2 is finitely generated in degree ≤ p + 2q and has stability type at most

(0, p+2q). This is precisely the setting needed for our spectral sequence argument in Section

4.2 with constants α = 1 and β = 2. Then for each i ≥ 0 the FI-module Hi(Conf•(Σ)) is

finitely generated with stability type at most (3i− 1, 2i).

In addition, Totaro proved in [42, Theorem 3] that if M is a smooth complex projective

variety, then E∞
(

Confn(M) ↪→ Mn
)

= E3. This is the case when Σ is a closed surface.
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Therefore we can use Lemma 4.2.1 to improve the bounds for the stability type of E
p,i−p
∞ to

be at most (2i, 2i), which gives the corresponding bounds stated before.

On the other hand, if ∂Σ is nonempty, [10, Proposition 4.6] implies that Hi(Conf•(Σ))

has an FI#-module structure and the injectivity degree is 0.

Finally, observe that for any 0 ≤ i and 0 ≤ p ≤ i the FI-module E
p,i−p
∞ is a subquotient

of the FI-module E
p,i−p
2 of weight p+2q. It follows that weight(E

p,i−p
∞ ) ≤ 2i−p ≤ 2i, which

implies that Hi(Conf•(Σ)) has weight at most 2i.

Remark: In [10, Section 2.6] finite generation of an FI-module is related with representation

stability. In particular, Theorem 4.3.3 together with [10, Proposition 2.58] imply that the

sequence Hi(Confn(Σ); Q) is uniformly representation stable and we recover the stable range

of n ≥ 4i for the cases when Σ is closed or has non-empty boundary, which was first obtained

in [9, Theorem 1].

It follows from [10, Proposition 4.6] that Hi(Conf•(M);R) is an FI#-module for any com-

mutative ring R, when the manifolds M has non-empty boundary . The argument of Section

4.2.1 implies the following result.

Theorem 4.3.4 (Theorem 4.7 in [10]). Let M be a connected, oriented manifold of dimension

d ≥ 2 which is the interior of a compact manifold with non-empty boundary. Let k be any

field or Z, then for each i ≥ 0 the FI#-module Hi(Conf•(M); k) over k is finitely generated

by O(n2i) elements.

4.4 FI[G]-modules

Here we introduce the notion on an FI[G]-module. Basically we want to incorporate the

action of a group G on our sequences of Sn-representations. These types of FI-modules will

allow us to construct new FI-modules by taking cohomology with twisted coefficients. We

will see how in some situations we can use finite generation of the original FI[G]-module to
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get finite generation and specific bounds for the new FI-modules. In Section 4.4.2 we use this

setting in spectral sequence arguments for cohomology of fibrations and groups extensions.

Definition 4.1. Let R be any commutative ring and let G be a group. An FI[G]-module V

over R is a functor from the category FI to the category G-ModR of G-modules over R. We

say that an FI[G]-module V is finitely generated if it is finitely generated as an FI-module.

Similarly an FI#[G]-module V over R is a functor from the category FI# to the category

G-ModR.

FI[G]-modules and consistent sequences compatibles with G-actions: For an FI[G]-

module V , for each σ ∈ Sn the induced linear automorphim σ∗ : Vn → Vn is a G-map. Hence

the Sn-action and the G-action on Vn commute. If we denote by φn the map obtained by

applying V the standard inclusion In (i.e. φn = V (In)), we have that {Vn, φn} is a consistent

sequence of Sn-representations compatible with G-actions as defined in Section 3.3.

4.4.1 Getting new FI-modules from FI[G]-modules

Let V be an FI[G]-module over R. Consider a path connected space X with fundamental

group G. For each integer p ≥ 0 we have a covariant functor Hp(X; ) from the category

G-ModR to the category ModR. Hence we have a new FI-module Hp(X;V ) over R where

Hp(X;V )n := Hp(X;Vn), the pth cohomology of X with local coefficients in the G-module

Vn (see [26, Section 3.H]). Moreover the functor H∗(X;V ) given by H(X;V )n := H∗(X;Vn)

is a graded FI-module over R.

Theorem 4.4.1 (Cohomology with coefficients in a f.g. FI[G]-module). Let G be the funda-

mental group of a connected CW complex X with finitely many cells in each dimension. If

V is a finitely generated FI[G]-module over a Noetherian ring R, then for every p ≥ 0, the

FI-module Hp(X;V ) is finitely generated over R.

Moreover, if R = Q and V has weight ≤ m and stability degree N , then the FI-module

Hp(X;V ) has weight ≤ m and stability degree N .
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Proof. Given that G = π1(X), the universal cover X̃ of X has a G-equivariant cellular chain

complex. Since X has finitely many cells in each dimension, for each p ≥ 0 the group Cp(X̃)

is a free G-module of finite rank, say Cp(X̃) ≈ (ZG)dp . A preferred G-basis x1, . . . , xdp
can

be provided by selecting a p-cell in X̃ over each cell in X.

For each p ≥ 0 and n ∈ N we have an isomorphism of G-modules HomG(Cp(X̃), Vn) ≈

V
⊕dp
n , given by h 7→

(
h(x1), . . . , h(xdp

)
)
. Moreover, for any morphism φ : Vm → Vn, the

following diagram commutes:

HomG(Cp(X̃), Vm)

≈
��

φ◦ //HomG(Cp(X̃), Vn)

≈
��

V
⊕dp
m

φ⊕dp
//
V
⊕dp
n

Therefore the FI[G]-module Cp(X;V ) given by Cp(X;V )n := HomG(Cp(X̃), Vn) is pre-

cisely the direct sum of FI[G]-modules V ⊕dp . Therefore, finite generation of the FI-module

Hp(X;V ) follows since it is a subquotient of the finitely generated FI-module Cp(X, V ).

If R = Q, since the weight of an FI-module does not increase when taking extensions, then

we have that V ⊕dp is finitely generated of weight ≤ m. Moreover, V ⊕dp has stability degree

N because V has stability degree N . Furthermore, the FI-module Hp(X;V ) is obtained from

the complex of FI-modules

Cp−1(X, V )
δp−1 // Cp(X, V )

δp // Cp+1(X, V )

where we have that each FI-module has stability degree N and is finitely generated of degree

≤ m. The weight of an FI-module is preserved under subquotients and from [10, Proposition

2.45] applied to the previous complex we get the desired stability degree.

Remark: For each integer p ≥ 0 we have a covariant functor Hp(G; ) from G-ModR to

ModR (see [7]). Hence, if V is an FI[G]-module, we have the FI-module Hp(G;V ) given by
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Hp(G;V )n := Hp(G;Vn). If G is a group of type FP∞, then the space X = K(G, 1) satisfies

the hypotheses of Theorem 4.4.1 and the FI-module Hp(X;V ) is precisely Hp(G;V ).

The case of FI#[G]-modules: Next we state the equivalent result to Theorem 4.4.1 when

we take coefficients in a finitely generated FI#[G]-module.

Theorem 4.4.2 (Cohomology with coefficients in a f.g. FI#[G]-module). Let k be any field

or Z and suppose that G is the fundamental group of a connected CW complex X with finitely

many cells in each dimension. If V is an FI#[G]-module over k finitely generated in degree

≤ m, then for every p ≥ 0, the FI#-module Hp(X;V ) is finitely generated in degree ≤ m.

Proof. Clearly Hp(X;V ) is a covariant functor from FI# to Modk. First suppose that k is

any field. Keeping the notation from the previous proof we have that

dimk C
p(X, Vn) = dimk V

⊕dp
n = O(nm).

By hypothesis and [10, Corollary 2.27] it follows that dimk Vn = O(nm). Then dimension

over k of the subquotient Hp(X, Vn) is O(nm) and [10, Corollary 2.27] gives us the desired

conclusion. A similar argument applies for k = Z considering rank instead of dimension.

4.4.2 FI[G]-modules and spectral sequences

Let X be a connected CW complex with finitely many cells in each dimension and let x ∈ X

be a fixed base point. Suppose that the fundamental group π1(X, x) is G. Consider a functor

from FIop to the category Fib(X) of fibrations over X (a co-FI-fibration over X). Let

En → X

be the fibration associated to n, and Hn the fiber over the basepoint x. We denote by E the

co-FI space of total spaces n7→ En and by H the co-FI space of fibers n7→ Hn. We can think

of E → X as a pointwise fibration over X with “fiber” H.
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Let us take, together for all n, the Leray-Serre spectral sequences associated to each

fibration En → X. The functoriality of the Leray-Serre spectral sequence implies that we

have a spectral sequence of FI-modules

E
p,q
∗ = E

p,q
∗
(
E → X

)
converging to the graded FI-module H∗(E).

The E2-page of this spectral sequence is the FI[G]-module

E
p,q
2 = Hp(X;Hq(H)

)
Remark: Observe that for any q ≥ 0 and n ≥ 1, we get an action of the fundamental

group G on Hq(Hn; Q) from the n-th fibration, which gives to the FI-module Hq(H;R) the

structure of an FI[G]-module over R.

With this setting, we want to use Theorem 4.4.1 and the spectral argument given in

Section 4.2 to determine finiteness conditions for the graded FI-module H∗(E;R) given that

we know that the FI[G]-module Hq(H;R) is finitely generated over R and we have upper

bounds for its degree and its stability degree when R = Q.

The typical situation that we will have in the examples in Section 4.5 below is that the

FI[G]-module Hq(H; Q) is finitely generated of weight ≤ βq with stability degree ≤ βq, for

some positive constant β. Then Theorem 4.4.1 gives us the following information about the

E2-page.

Lemma 4.4.3. Suppose that for any q ≥ 0 the FI[G]-module Hq(H; Q) is finitely generated

of weight ≤ βq with stability degree ≤ βq. Then, for any p, q ≥ 0, the FI-module E
p,q
2 =

Hp
(
X;Hq(H)

)
has weight ≤ βq and stability degree ≤ βq.

For a given i ≥ 0 and 0 ≤ p ≤ i, the FI-module E
p,i−p
∞ is a subquotient of E

p,i−p
2 . Since

the weight of an FI-module cannot increase when taking subquotients, it follows that the
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FI-module E
p,i−p
∞ is finitely generated of weight ≤ βi. Moreover, the spectral sequence gives

a natural filtration of Hi(E) by FI-modules

0 ⊆ F ii ⊆ F ii−1 ⊆ . . . ⊆ F i1 ⊆ F i0 = Hi(E),

where, for 0 ≤ p ≤ i, the FI-module F ip is an extension of F ip+1 by E
p,i−p
∞ of weight ≤ βi.

Since, by definition, the weight of an FI-module is preserved under extensions, therefore

Hi(E) has weight at most βi.

Furthermore, we have precisely the setting described in Section 4.2 for constants α = 0

and β > 0 and Theorem 4.2.3 takes the following form.

Theorem 4.4.4. For any i ≥ 0 the FI-module Hi(E; Q) is finitely generated of weight at

most βi and has stability type at most (2βi, βi).

The case of group extensions: Let G be a group of type FP∞. Consider a functor

from FIop to the category of group extensions with quotient G and isomorphisms of such (a

co-FI-group extension of G). Let

1→ Hn → En → G→ 1

be the group extension associated to n and denote by E and H the corresponding co-FI

groups n7→ En and by n7→ Hn. For each group extension there is an associated fibration

K(En, 1)→ K(G, 1)

with fiber over a fixed base point x ∈ K(G, 1) an Eilenberg-Maclane space K(Hn, 1). Observe

that the space K(G, 1) has the homotopy type of a connected CW complex with finitely many

cells in each dimension since G is of type FP∞. Hence, this gives us a functor from FIop

to Fib(K(G, 1)) as in the setting of Section 4.4.2 and we obtain the conclusion of Theorem

4.4.4 about the FI-modules Hi(E).
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Remarks: The Leray-Serre spectral sequence associated to the fibration above corresponds

to the Hochschild-Serre spectral sequence associated to the original group extension. Notice

that we could have considered this spectral sequence in our previous discussion.

The Hochschild-Serre spectral sequence and FI#-modules: Assume that we have

a functor from FI#op to the category of group extensions with quotient G, and not just

from FIop as before. By taking the Hochschild-Serre spectral sequence associated to each

group extension with coefficients in any field k or Z, we obtain with a first quadrant spectral

sequence of FI#-modules converging to the graded FI#-modules H∗(E; k). Furthermore,

suppose that for any q ≥ 0 the FI#-module Hq(H; k) is finitely generated over k in degree

≤ βq, for some β > 0. Then Theorem 4.4.2 implies that for any p, q ≥ 0, the FI#-module

E
p,q
2 is finitely generated in degree ≤ βq. Since we have the setting from Section 4.2.1 with

α = 0 and β > 0, we can conclude that for any i ≥ 0 the FI#-module Hi(E, k) is finitely

generated in degree ≤ βi.

4.5 Sequences of cohomology groups as FI-modules (part II)

Let us apply the perspective described in Section 4.4 to understand other sequences of co-

homology groups as finitely generated FI-modules. Most of these sequences were already

considered in Chapter 3. We will see here how the FI-module approach allows us to obtain

more information.

4.5.1 Moduli spaces Mg,n and pure mapping class groups of surfaces

Let 2g + r > 2 and consider the functor from FIop to the category of group extensions of

G = Modg,r given as follows. The group extension associated to n is

1→ π1(Confn(Σrg))→ PModn(Σg,r)→ Modg,r → 1.
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This is the Birman exact sequence introduced by Birman in [5]. A proof of the exactness

can be found in [18]. To see that this association is indeed functorial we refer the reader to

Section 3.4.1.

From [11, Proposition 4.1] we have that Hq
(
π1[Confn(Σrg)]; k

)
= Hq

(
Confn(Σrg); k

)
is a

finitely generated FI[G]-module over any field k. When k = Q, it follows from Theorem 4.3.3

that it has weight ≤ 2q and stability degree ≤ 2q. From our discussion in Section 4.4.2 with

β = 2, we obtain the following statement.

Theorem 4.5.1. Let k be a field. For any i ≥ 0 and 2g+r > 2 the FI-module Hi
(

PMod•g,r; k
)

is finitely generated over k. If k = Q, it has weight ≤ 2i and stability type at most (4i, 2i).

4.5.2 Pure mapping class groups for higher dimensional manifolds

Let M be a smooth connected manifold of dimension d ≥ 3 and suppose that the fundamental

group π1(M) has trivial center or Diff(M) is simply connected. Moreover, we assume that

Mod(M) is of type FP∞.

Consider the functor from FIop that associates to each n the group extensions of Mod(M)

1 // π1(Confn(M̊)) // PModn(M) // Mod(M) // 1, (4.2)

where M̊ denotes the interior of M . For a proof of the existence of this Birman exact

sequence see Lemma 3.5.2.

Let p = (p1, . . . , pn) ∈ Confn(M̊) be a fixed base point. Since d ≥ 3, then from [4,

Theorem 1] it follows that the fundamental group

π1(Confn(M̊), p) ≈ π1(Confn(M), p) ≈ π1(Mn, p) ≈
n∏
i=1

π1(M, pi).

Hence the FI-module Hq
(
π1(Conf•(M̊); k)

)
is precisely Hq

(
π1(M)•; k

)
. If the group

π1(M) is of type FP∞, then from Proposition 4.3.1 we have that this FI[G]-module is finitely
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generated over k and has weight ≤ q with stability degree ≤ q when k = Q. From our

discussion in Section 4.4.2 with β = 1 we can conclude the following result.

Theorem 4.5.2. Let M be a smooth connected manifold of dimension d ≥ 3 such that π1(M)

is of type FP∞ (e.g. M compact). Suppose that π1(M) has trivial center or that Diff(M) is

simply connected and assume that the group Mod(M) is of type FP∞. Then for any field k

and i ≥ 0 the FI-module Hi
(

PMod•(M); k
)

is finitely generated over k and has weight ≤ i

and stability type at most (2i, i) when k = Q.

4.5.3 The case of manifolds with boundary

When the surface Σg,r in Section 4.5.1 or the manifold M in Section 4.5.2 has nonempty

boundary, the cohomology of the corresponding pure mapping class groups actually has an

FI#-module structure.

Proposition 4.5.3. Let k be a field or Z and i ≥ 0. If M is a connected smooth manifold

of dimension d ≥ 2 with nonempty boundary, then the FI-module Hi
(

PMod•(M); k
)

has the

structure of an FI#-module. In particular, Hi
(

PMod•(M)
)

has injectivity degree 0 (when

k = Q).

Proof. We just prove that PMod•(M) has the structure of an FI#-group. Consider (A,B, ψ) ∈

HomFI#(m,n) where A ⊂ [m], B ⊂ [n] and ψ : A → B is a bijection. In particular the

orders |A| = |B|. The corresponding morphism

(A,B, ψ)∗ : PModm(M)→ PModn(M)

is induced from the following composition:

PDiffm(M)
|A // PDiff |A|(M)

ψ // PDiff |B|(M)
Υ◦cϕ // PDiffn(M).

The map |A : PDiffp → PDiffpA(M) is given by restricting the configuration p ∈
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Confm(M) to the configuration pA : A ↪→M in Conf |A|(M).

Abusing notation, ψ : PDiff|A|(M) → PDiff |B|(M) corresponds to the isomporphism

PDiffpA ≈ PDiffpA◦ψ−1
induced by taking pA : A ↪→M to the embedding pA◦ψ−1 : B ↪→M

in Conf |B|(M), using the bijection ψ : A→ B.

Let R be a collar neighborhood of one component of ∂M and fix a diffeomorphism

ϕ : M → M\R. Then, conjugation by ϕ gives us the identification cϕ : PDiff |B|(M) ≈

PDiff |B|(M \R). Finally, we can extend any diffeomorphism h ∈ Diff
(
(M \R) rel ∂(M \R)

)
to a diffeomorphism Υ(h) ∈ Diff(M rel ∂M) by letting Υ(h) = h in M \R and Υ(h) be the

identity in R. Therefore we obtain a group homomorphism

Υ : PDiffq(M \R)→ PDiffΨB,[n](q)(M),

that takes any diffeomorphism h that fixes the configuration q : B ↪→ (M \ R) in

Conf |B|(M \ R) to a diffeomorphism Υ(h) of M that fixes the configuration ΨB,[n](q) :

[n] ↪→M in Confn(M) as defined in [10, Proof of Proposition 4.1].

When a Birman sequence exists (hypothesis of Theorems 4.5.1 and 4.5.2), we do have a

co-FI#-group extension of Mod(M). Moreover, Theorem 4.3.4 states the finite generation of

the cohomology of configuration spaces of manifolds with boundary. Hence, the argument at

the end of Section 4.4 implies the following results.

Theorem 4.5.4. Let k be any field or Z. For any i ≥ 0, 2g+ r > 2 and r > 0 the FI-module

Hi
(

PMod•g,r; k
)

has the structure of an FI#-module which is finitely generated in degree

≤ 2i.

Theorem 4.5.5. Let k be any field or Z. Let M be a smooth connected manifold of dimension

d ≥ 3 with non-empty boundary that satisfies the hypotheses of Theorem 4.5.2. Then, for any

i ≥ 0, the FI-module Hi
(

PMod•(M); k
)

has the structure of an FI#-module that is finitely

generated in degree ≤ 2i.
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From the classification of FI#-modules given in [10, Theorem 2.24] and the cases when

k is either Z or the fields Q or Z/pZ in Theorems 4.5.4 and 4.5.5, we obtain Theorems 4.1.1

and 4.1.2, respectively.

4.5.4 Classifying spaces for some diffeomorphism groups

Let M be a connected and compact smooth manifold of dimension d ≥ 3. We have a fiber

bundle

B PDiffn(M)→ BDiff(M rel ∂M) (4.3)

where the “fiber” is given by Diff(M rel ∂M)/PDiffn(M) ≈ Confn(M̊), the configuration

space of n ordered points in M̊ , the interior of M . This gives us a functor from FIop to the

category Fib
(
BDiff(M rel ∂M)

)
. The hypotheses in the Theorem below give the setting

needed to apply the arguments in Section 4.4.2 with β = 1 to get the desired conclusion.

Theorem 4.5.6. Let M be a connected real manifold of dimension d ≥ 3. Suppose that

the classifying space BDiff(M rel ∂M) has the homotopy type of a CW-complex with finitely

many cells in each dimension. Then, the FI-module Hi(B PDiff•M ; k) is finitely generated

over k, for any field k and i ≥ 0, and has weight ≤ i and stability type at most (2i, i) when

k = Q.

4.6 Application to cohomology of some wreath products

Let G be a group of type FP∞. The wreath product GoSn is the semidirect product GnoSn,

where Sn acts on Gn by permuting the coordinates. Therefore there is a split short exact

sequence

1→ Gn → G o Sn → Sn → 1

For any i ≥ 0 and any partition λ, a transfer argument implies that the dimension of

Hi
(
G oSn;V (λ)n

)
is equal to the multiplicity of V (λ)n in Hi

(
Gn; Q

)
. But, from Proposition
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4.3.1 and [10, Proposition 2.58], this multiplicity is constant for n ≥ 2i . Hence we obtain

cohomological stability for the group G oSn with coefficients in any Sn-representation for any

n ≥ 2i.

More generally, let PK be a co-FI-group given by n 7→ PKn. Assume that there is a

sequence of groups Kn such that, for each n, we have the following short exact sequence:

1→ PKn → Kn → Sn → 1

The wreath product G oKn is the semidirect product GnoKn, where Kn acts on Gn via

the surjection Kn → Sn. Therefore there is a split short exact sequence

1→ Gn × PKn → G oKn → Sn → 1

On the other hand, for any i ≥ 0, the naturality of the Künneth formula implies the

following isomorphism of FI-modules:

Hi(G• × PK) =
⊕
p+q=i

Hp(G•)⊗Hq(PK).

Suppose that the graded FI-module H∗(PK) is known to be of finite type. In [10,

Proposition 2.61] is proved that finite generation is closed under tensor products, therefore

the FI-modules Hp(G•) ⊗ Hq(PK) are finitely generated for p, q ≥ 0 such that p + q = i.

Moreover,

weight
(
Hp(G•)⊗Hq(PK)

)
≤ weight

(
Hp(G•)

)
+ weight

(
Hp(PK)

)
.

It follows that the consistent sequence Hi(Gn × PKn; Q) is monotone and uniformly repre-

sentation stable (although we do not always get a specific stable range).

As before, the dimension of Hi
(
G oKn;V (λ)n

)
is given by the multiplicity of V (λ)n in

Hi
(
Gn × PKn; Q

)
, which is eventually constant by uniform representation stability. There-
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fore we have that Hi
(
G oKn;V (λ)n

)
≈ Hi

(
G oKn+1;V (λ)n

)
for any n sufficiently large. In

particular, we obtain rational homological stability for the groups G oKn.

Parts (ii), (iii) and (iv) of Theorem 4.1.5 follow from applying the above discussion to the

short exact sequences:

1→ Pn(Σg,r)→ Bn(Σg,r)→ Sn → 1

1→ PModng,r → Modng,r → Sn → 1

1→ PModn(M)→ Modn(M)→ Sn → 1

To obtain Theorem 4.1.5 part (v), we consider the co-FI-groups PΣ• and Σ+
• , which are

functors from FIop to Gp given by n 7→ PΣn, the pure string motion group (see definition

in [48, Sections 1 & 2]) and n 7→ Σ+
n , the braid permutation group, respectively. In [48,

Theorem 6.4] Wilson proved that for any k ≥ 0 the sequence
{
Hk(PΣn; Q)

}
satisfies uniform

representation stability with stable range n ≥ 4k. Therefore, [10, Theorem 1.14] implies that

for any k ≥ 0 the FI-module Hk(PΣ•) is finitely generated.

The co-FI-groups Σ+
• and PΣ• are related by the following short exact sequence:

1→ PΣn → Σ+
n → Sn → 1,

which give us again the setting discussed above.
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