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Los grupos como los hombres son conocidos por sus acciones.1

G. Moreno

Our main purpose is to introduce the study of the mapping class group. We try to “know the group by its
actions.” Following mainly [FM08], we describe some sets on which the group acts and how this translates
into properties of the group itself.2

1 The mapping class group

We denote by Sng,b an orientable surface of genus g with b boundary components and n punctures (or marked
points). The mapping class group of a surface S = Sng,b is the group ΓS (Γng,b) of isotopy classes of orientation-
preserving self-homeomorphisms of S. We require the self-homeomorphism to be the identity on the boundary
components and fixes the set of punctures. When including orientation-reversing self-homeomorphisms of S
we use the notation Γ±S . The mapping class groups of the annulus A and the torus T = S1 are ΓA ∼= Z and
ΓT ∼= SL2(Z).

We define the pure mapping class group PΓS by asking that the punctures remain pointwise fixed. If S is a
surface with n punctures then PΓS is related to ΓS by the short exact sequence 1 → PΓS → ΓS → Symn → 1.

For a surface S with χ(S) < 0, let S′ = S\{p}. The Birman exact sequence is

1 −→ π1(S) Push−−−→ PΓS′
F−→ PΓS → 1.

Here F is the map induced by the inclusion S′ ↪→ S. For an element γ ∈ π1(S) we consider the isotopy
defined by “pushing” the base point along γ. Then Push(γ) is defined to be the homeomorphism at the end
of the isotopy.

In this text we will not distinguish between “isotopic” and “homotopic”, and between “diffeomorphic” and
“homeomorphic” with respect to surfaces and curves. This is a classical fact for dimension 2 (see [FM08]).

2 The “outer action” on π1(S)

There isn’t a well-defined action of Γ±S on π1(S) but only an “outer action”: Γ±S → Out(π1(S)), given by [φ] 7→
[φ∗]. Here Out(π1(S)) is the group of outer automorphisms of π1(S), i.e., the quotient Aut(π1(S))/ Inn(π1(S)).

The Dehn-Nielsen-Baer Theorem

This “outer action” gives an algebraic characterization of the mapping class group of closed surfaces.

Theorem 2.1 (Dehn-Nielsen-Baer). If S = Sg is a closed surface with genus g > 0, then the group
homomorphism Γ±S → Out(π1(S)) is an isomorphism.

1Groups as men are known by their actions.
2 See also [Iva02] for a survey about mapping class groups.
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Proof. (sketch) Since S is closed, it is a K(π1(S), 1), and any based map is determined up to homotopy by
its action on the fundamental group. Therefore the map is injective. Take [Φ] ∈ Out(π1(S)), where Φ is a
representative automorphism. Using again the fact that S is a K(π1(S), 1), we can get a continuous map
φ : S → S that realizes Φ. Moreover, since πi(S) = 0 for i > 1 we can apply Whitehead’s Theorem to conclude
that φ is a homotopy equivalence. Surjectivity follows from the next result for closed hyperbolic3 surfaces: if S
is a closed surface with χ(S) < 0, any homotopy equivalence of S is homotopic to a homeomorphism. The idea
is that we can get a pants decomposition4 of the surface and reduce to the case of getting a homeomorphism
for each pair of pants, which can be done by an application of the Alexander trick (see [FM08]).

3 The action on the complex of curves

The complex of curves C(S) is the flag complex with 1-skeleton defined as follows. The vertices are isotopy
classes of essential (non null-isotopic) simple closed curves in S. A vertex is connected to another vertex by
an edge if they have disjoint representatives. We denote the full subcomplex with vertices corresponding to
non-separating curves by N (S). It turns out that this simplicial complex is connected when 3g−3+n+b ≥ 2,
and the mapping class group ΓS acts transitively on its vertices.

The mapping class group is finitely generated

A Dehn twist Tc about a simple closd curve c on S is the homeomorphism of S defined as follows. Let N
be a tubular neighborhood of c in S, parametrized by the annulus {z = (r + 1)e2πiθ : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 1}.
We define Tc as (1 + r)e2πiθ 7→ (1 + r)e2πi(θ+r) on N and the identity on S\N . We now show how the action
of ΓS on N (S) implies that ΓS is generated by finitely many Dehn twists.

Theorem 3.1 (Dehn). Let S a surface of genus g > 0. The group PΓS is finitely generated by Dehn twists
about nonseparating curves. In particular, this is also true for ΓS if S is a closed surface.

Proof. (sketch) The proof is done by induction on the genus and the number of punctures.
First we prove that PΓS is generated by Dehn twists. Consider a mapping class f ∈ PΓS and a non-

separating curve c. The connectedness of N (S) and some properties of Dehn twists imply that there is a
product of Dehn twists taking f(c) to c. Thus, after post-composing with this product we may assume that
f fixes the vertex c of N (S). Let Sc be the surface resulting from cutting S along c and consider f as an
element of ΓSc . By induction f is a product of Dehn twists about non-separating curves as an element of
PΓSc and thus, up to a power of Tc, as an element of PΓS .

It remains to show the group is finitely generated. The group PΓS acts transitively on the vertices of
N (S). Fix a vertex c0 and for each PΓS-orbit of edges choose one representative that is adjacent to c0. Let
D be the subcomplex of N (S) spanned by these edges. By definition, N (S) =

⋃
g∈ΓS

gD. The subcomplex D
has finitely many vertices c0, c1, · · · , cn and there exist gi ∈ ΓS such that gi(c0) = ci. Therefore if StabΓ(ci)
is the stabilizer of ci, then StabΓ(ci) = gi StabΓ(c0)g−1

i . The connectedness of N (S) implies that a set of
generators for ΓS is given by {g ∈ ΓS : gD ∩D 6= ∅} =

⋃n
i=0 gi[StabΓ(c0)]g−1

i . The proof reduces then to an
induction argument using the Birman exact sequence to show that StabΓ(c0) is finitely generated.

There are specific sets of Dehn twists that generate ΓS , such as the Lickorish and the Humphries gener-
ators. The latter ones can be used to prove that the center of Γg is trivial for g ≥ 3. Moreover, Theorem 3.1
together with the “lantern relation” and the fact that all Dehn twists about non-separating curves in S are
conjugate in S imply (see [FM08]):

Theorem 3.2. If S = Sg with g ≥ 3, then H1(ΓS ; Z) = 0.

4 The action on the arc complex

Consider now a surface S = Sg,b with g ≥ 1 and b ≥ 1 and a finite subset V of ∂S. We define an arc in (S, V )
to be an embedding α : [0, 1] → S such that α(0), α(1) ∈ V and α−1(∂S) = {0, 1}. We call α essential if it
is not isotopic to an arc in ∂S.

The arc complex A(S, V ) is the flag complex with 1-skeleton given as follows: the vertices are isotopy
classes (rel V ) of essential arcs in (S, V ); two vertices are connected by an edge if we can realize these isotopy

3See [BP92] and [Kat92] for definitions and properties.
4 See Section 6.1.
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classes disjointly. Hatcher proved in [Hat91] that the arc complex A(S, V ) is contractible. The idea is to fix
an essential arc β in (S, V ) and construct a continuous flow from all of A(S, V ) onto the closed star of β,
which is itself contractible.

The mapping class group is finitely presented

The group Γg,b acts on the vertices of A(S, V ). We can extend this action to get a simplicial action of
Γg,b on A(S, V ). The action of Γg,b on such a contractible complex will give us:

Theorem 4.1. The group Γg,b with g ≥ 1 and b ≥ 1 is finitely presented.

Proof. (sketch) Consider a model of K(Γ, 1) for Γ := Γg,b with universal cover EΓ. Since the diagonal
action of Γ on the contractible space EΓ×A(S, V ) is free, then EΓ×ΓA(S, V ) is a K(Γ, 1). It turns out that
EΓ×ΓA(S, V ) is a complex of spaces whose underlying complex is A(S, V )/Γ: the vertices are K(π, 1) models
for each vertex stabilizer and the edges are K(π, 1) models for each edge stabilizer crossed with intervals.

For each vertex β, let Sβ be the surface resulting by cutting along the arc β. Then, we can identify
StabΓ(β) with ΓSβ

= Γg′,b′ with g′ ≤ g and b′ < b, which by induction is finitely presented. Similary for
each edge e of A(S, V ), the stabilizer StabΓ(e) is finitely generated. Therefore, for each vertex and edge in
our complex we may take the associated space to have finite 2-skeleton. We get then a homotopy equivalent
complex of spaces with finite 2-skeleton which is a K(Γ, 1).

Furthermore Harer (see [Har85] and references in therein) used the action of ΓS on the arc complex to
prove:

Theorem 4.2 (Harer). Let S be Sg or S1
g with g ≥ 4; then H2(ΓS ; Z) ∼= Z.

Another proof of Theorem 4.2 is due to Pitsch who applied Hopf’s formula to Wajnryb’s explicit presen-
tation of ΓS (see [FM08]).

5 The action on the first homology of the surface

The symplectic representation and the Torelli group

The action of ΓS on the first homology of the surface gives us a natural linear representation of ΓS
in GL(2g; Z). Moreover, algebraic intersection number gives a symplectic form ı̂ on homology, so that
(H1(Sg; Z), ı̂) is a symplectic Z-module. Since the homeomorphisms don’t change intersection numbers,ΓS
preserves the symplectic form ı̂ and we get a symplectic representation

ψSp : ΓS → Sp(2g; Z).

The kernel of ψSp is called the Torelli group IS . It is known that ψSp is surjective, so we get a short exact

sequence 1 → IS −→ ΓS
ψSp−−→ Sp(2g; Z) → 1.

Later in Theorem 6.5 we explain the role of another action of ΓS in proving that IS is torsion free. This
implies that the symplectic representation contains all the information about the torsion of ΓS . On the
other hand, we can think of the Torelli group as encoding the information that ψSp hides. Some examples
of elements in IS are Dehn twists about separating curves and bounding pairs TaT−1

b , where a and b are
homologous non-separating curves. In fact, Birman and Powell showed that IS is generated by these kinds
of elements and Johnson proved that it is generated by finitely many bounding pairs. We denote by KS the
subgroup of IS generated by Dehn twists about separating curves.

Let π = π1(Sg,1) and π′ denote the commutator of π. For a surface Sg,1 we take the base point of π
on the boundary component. Then we get a well-defined action of Γg,1 on π. Since Ig,1 acts trivially on
H1(Sg,1) ∼= π/π′, Johnson’s idea was to look at its action on the lower central series of π:

1 → π′/[π, π′] → π/[π, π′] → π/π′ → 1.

Then he defines τ : Ig,1 → Hom(π/π′, π′/[π, π′]), the Johnson homomorphism, as f 7→ {x 7→ f(e)e−1}, where
e ∈ π/[π, π′] that projects on x. Moreover, Johnson proved in [Joh83] that

Theorem 5.1 (Johnson). The Johnson homomorphism τ surjects on Λ3(H1(Sg,1)) and has kernel Kg,1.
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6 The action on Teichmüller space

6.1 A definition of Teichmüller space

Let S be a topological surface with χ(S) < 0,which we refer to as the model surface. As a set, Teichmüller
space is defined as TS = {(X,φ)}/ ∼, where

• X is a surface with a complete, finite area hyperbolic metric and geodesic boundary.

• φ : S → X is a homeomorphism, called the marking.

• (X1, φ1) ∼ (X2, φ2) if there is an isometry I : X1 → X2 so that I ◦ φ1 is isotopic to φ2.

There is a bijection between TS and DF(π1(S),PSL2(R))/PSL2(R), the set of conjugacy classes of discrete
and faithful representations of π1(S) on PSL2(R). Under this identification we can endow TS with the quotient
topology from the compact-open topology in Hom(π1(S),PSL2(R)).

Fenchel-Nielsen coordinates

The Fenchel-Nielsen coordinates give a parametrization to Teichmüller space that makes it homeomorphic
to Euclidean space.

First we consider the simpliest hyperbolic surface which is the pair of pants P := S0,3, since each essential
simple closed curve in P is homotopic to a boundary component and χ(P ) = −1. In this case the marking is
equivalent to a labeling of the boundary components, and hyperbolic structures on P are uniquely determined
by the lengths of the boundary components. Although we can give coordinates to the Teichmüller space of a
surface with boundary or with punctures, here we just sketch the procedure for closed surfaces. Let us consider
a maximal collection of non-isotopic disjoint simple closed curves in a hyperbolic surface Sg. By cutting the
surface along the 3g − 3 curves of a such collection, we get a decomposition of Sg in −χ(Sg) = 2g − 2 + b
pairs of pants that we refer as a pants decomposition of S.

Theorem 6.1 (Fenchel-Nielsen). The Teichmüller space Tg, with g > 1, is homeomorphic to R6g−6.

Proof. (sketch) The idea is to take a pants decomposition P of the topological surface Sg and parametrize
each point in [(X,φ)] ∈ Tg by two parameters associated to each of the 3g − 3 curves in the decompositon.
For each curve ci ∈ P we consider its length `X(φ(ci)). The length parameters uniquely determine the
hyperbolic structure of each piece of the pants decomposition. The second parameter associated to ci is
called a twist parameter. Roughly speaking, the twist parameters keep track of how the hyperbolic structure
X on the topological surface S is recovered by “gluing” together the pairs of pants of the decomposition5.
Conversely, given such parameters we can construct a marked hyperbolic surface that represents a point in Tg.
The continuity of the maps follows from observing how the associated representations of π1(S) in PSL2(R)
change by continuously varying the length and twist parameters.

The Teichmüller metric

The uniformization theorem allows us to establish a bijection between isomorphism classes of marked
closed Riemann surfaces of genus g ≥ 2 and isometry classes of marked closed hyperbolic surfaces. Hence we
can think of the points of TS as parametrizing marked complex structures on S up to biholomorphism.

We consider the analytic approach to Teichmüller theory in order to endow TS with a metric. Given
[(X,φ)], [(Y, ψ)] ∈ TS , the Teichmüller distance is defined as dT (X,Y ) = infK{ 1

2 log(K)}, where K is taken
over all the dilations of quasiconformal maps from X to Y which are homotopic to ψ ◦φ−1. The Teichmüller
existence and uniqueness theorems imply that this infimum is realized uniquely by a Teichmüller map and
guarantee that this metric is well defined. It turns out that this endows TS with a complete metric that
induces the same topology previously defined (see [FM08]). In some sense this “measures” how far two
conformal structures are from being conformally equivalent. Moreover, geodesics in the Teichmüller metric
are unique.

5See [Thu] or [FM08] for a specific definition.
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6.2 The action of ΓS on TS

There is a natural action of ΓS on TS given by changing the marking: f · [(X,φ)] = [(X,φ◦ψ−1)], where ψ is a
homeomorphism representing the mapping class f . Moreover, the action of ΓS preservesK-quasiconformality,
therefore ΓS acts by isometries of the Teichmüller metric on TS . Observe that isometric surfaces are identified
under the action of ΓS .

The fixed points of the action

Observe that f ∈ TS fixes a point [(X,φ)] ∈ TS if for a representative diffeomorphism ψ of f , the
composition φ ◦ψ−1 ◦ φ−1 is isotopic to an isometry on the hyperbolic surface X. But that means that such
a representative ψ acts as an isometry of S with the pullback metric induced by φ : S → X.

Theorem 6.2. For a closed surface S = Sg of genus g ≥ 2 endowed with any hyperbolic metric, the group
Isom(S) of isometries of S is finite.

Proof. By looking at a lift on H2 we see that the unique isometry that is isotopic to the identity is the
identity itself. Then Isom(S) is a discrete group. The Myers-Steenrod Theorem implies that Isom(S) is a
compact group, thus finite.

Actually there is a bound (see [FM08]) on the order of the group Isom(S) that only depends on the
genus g of the surface: |Isom(S)| ≤ 84(g − 1). Hence, any element f ∈ ΓS that fixes a point in TS has a
diffeomorphism representative which is finite order. In particular, torsion free subgroups of ΓS act freely on
TS . When f ∈ ΓS has prime order, Smith theory can be applied to its action on TS to prove that it has a
fixed point. By an induction argument this follows for any f ∈ ΓS of finite order. From the above remarks
we get the following useful result:

Theorem 6.3. A mapping class of finite order can be represented by a diffeomorphism of finite order.

The action is properly discontinuous

It turns out that the above action of ΓS is properly discontinuous. The proof of this fact is based on
the description of elements of TS in terms of lengths of curves on the surface. The raw length spectrum of
[(X,φ)] ∈ TS is the set rls(X) = {`X(c) : c is an isotopy class of simple closed curves}, where `X(c) is the
length of the geodesic representative of φ(c).

• The raw length spectrum of a point X ∈ TS is a closed and discrete subset of R.

• It turns out that any point in TS is determined by its marked length spectrum: we can pick a set of
simple closed curves {c1, c2, . . . , c9g−9} on the surface S so that their length spectrum determines the
Fenchel-Nielsen coordinates uniquely, i.e., the map [(X,φ)] 7→ {`X(c1), `X(c2), . . . , `X(c9g−9)} from TS
to R9g−9 is injective.

• Moreover, Wolpert proved that a K-quasiconformal map f : X1 → X2 between two points X1, X2 ∈ TS
can only increase or decrease the length of an isotopy class of simple closed curves by a bounded amount,
namely `X2 (c)

K ≤ `X1(c) ≤ K`X2(c).

From the above remarks it follows that the set {Y ∈ Br(X) : rls(X) = rls(Y )} is finite for any fixed
r > 0.

Theorem 6.4 (Fricke). The action of ΓS on TS is properly discontinuous.

Proof. Take K any compact subset of TS and consider A = {f ∈ ΓS : f(K) ∩K 6= ∅}. Since ΓS acts by
isometries on TS and K is compact it follows that

⋃
f∈A f(K) ⊂ B, where B is a closed Teichmüller ball of

diameter r > 0. Now we translate the question into the raw length spectrum context: For any X ∈ K, the
set {f(X) : f ∈ A} ⊂ {Y ∈ B : rls(X) = rls(Y )} which is finite. Moreover, {g ∈ ΓS : g fixes X} is also
finite. Hence A must be finite.
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6.3 Existence of finite index torsion free subgroups of ΓS

First we relate the above results regarding the fixed points of the action on TS to get more information about
the symplectic representation ψSp : ΓS → Sp(2g; Z).

Proposition 6.5. Finite order elements of ΓS are faithfully represented by ψSp.

Proof. (Sketch) A finite order element of ΓS is represented by a diffeomorphism φ of finite order that actually
acts as an isometry in S with some hyperbolic metric. Since an isometry is determined by its action on a
point and a frame, it follows that the fixed points of φ are isolated. An application of the Lefscheftz fixed
point theorem then implies that ψSp(φ) cannot act by the identity matrix on H1(Sg; Z).

For a given natural number m, we can consider the reduction mod m Sp(2g; Z) → Sp(2g; Z/mZ). The
kernel of this homomorphism, denoted by Sp(2g; Z)[m], is a finite index normal subgroup of Sp(2g; Z). It is
known that for m ≥ 3 and g ≥ 1, this group is torsion free (see [FM08]). With the symplectic representation
ψSp, for each m ∈ N we set the level m congruence subgroup of ΓS to be ΓS [m] := ψ−1

Sp (Sp(2g; Z)[m]). Now
we combine this with the Proposition 6.5 to get:

Proposition 6.6. ΓS [m] is finite index for any m ∈ N and it is torsion free for m ≥ 3 and g ≥ 1.

Hence, for m ≥ 3 and g ≥ 1, the subgroup ΓS [m] acts freely and properly discontinuously on TS .

6.4 The quotient space

The quotient MS = TS/ΓS is called moduli space. Since TS is contractible and the action is properly
discontinuous, Mg has the structure of an aspherical orbifold. We can think of moduli space as parametrizing
either hyperbolic structures on S up to isometry, complex structures on S up to conformal equivalence, or
conformal classes of Rimannian metrics on S.

For each X ∈ ΓS we can consider the length `(X) of the shortest geodesic on X. Moduli space is not
compact, since the length parameters of the Fenchel-Nielsen coordinates can be arbitrarily small. However,
it has an exhaustion by compact sets:

Theorem 6.7 (Mumford’s compactness criterion). If Sg is a closed surface with genus g ≥ 2, then
Mε

S = {X ∈MS : `(X) ≥ ε} is compact for any ε > 0.

It turns out that moduli space has one end: for every compact set K ⊂MS , the space MS\K has only
one component whose closure is not compact. Moreover, any loop in MS can be freely homotoped outside
K. On the other hand, MS is simply connected for g ≥ 1, but has orbifold fundamental group ΓS .

Earle-Eells proved that for g ≥ 2 the topological group Diff0(Sg) is contractible. From the short exact
sequence 1 → Diff0(Sg) → Diff+(Sg) → Γg → 1 and Whitehead’s theorem it follows that

Proposition 6.8. For g ≥ 2, BDiff+(Sg) is a K(Γg, 1).

Here BDiff+(Sg) denotes the classifying space of the topological group Diff+(Sg). From the theory of
classifying spaces we can conclude that given a space B (Hausdorff and paracompact) there is a bijection
between isomorphism classes of oriented Sg-bundles over B and conjugacy classes of representations ρ :
π1(B) → Γg. Moreover, H∗(Γg; Z) ∼= H∗(BDiff+(Sg); Z), which means that the elements of H∗(Γg; Z) are
precisely characteristic classes of surface bundles (see [Mor01]).

Moduli space vs mapping class group: Rational cohomology6

Now we can put together the information that we have about the action on TS . Consider a K(ΓS , 1)
with universal cover EΓS . Take Γ′ a torsion free and finite index normal subgroup of ΓS . Then the diagonal
action of both ΓS and Γ′ on EΓS×TS is free and properly discontinuous and we get a commutative diagram:

BΓ′ = EΓS ×Γ′ TS
p //

π

��

TS/Γ′

π′

��

H∗(BΓ′; Q)G H∗(TS/Γ′; Q)G
∼=oo

BΓS = EΓS ×ΓS
TS

q // TS/ΓS = MS H∗(BΓS ; Q)

∼=π∗

OO

H∗(MS ; Q)
q∗oo

π′∗∼=

OO

6For more relations between moduli space and the mapping class group see Harer’s survey [Har88].
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We denote Γg/Γ′ by G. The group Γ′ acts freely and properly discontinuously on Tg, therefore the map p
induced by the projection on TS is a G-equivariant homotopy equivalence. On the other hand, since π and
π′ are G-coverings and G is finite, we can define transfer maps7 that give us the vertical isomorphisms in
rational homology on the right diagram. Therefore H∗(MS ; Q) ∼= H∗(ΓS ; Q).

7 Other actions of the mapping class group

7.1 The action on measured foliations

By a singular foliation F we mean a decomposition of S into a disjoint union of 1-dimensional submanifolds
(the leaves of F) and a finite set of singularities. A transverse measure on F is a measure µ on arcs that
are transverse to F that is invariant under “leaf-preserving” isotopies. Given (F , µ) there is an atlas on
S\{singular points of F} with transition maps (x, y) 7→ (f(x, y), c ± y), such that (F , µ) is the pullback of
the horizontal foliation on R2 with transverse measure |dy|.

There is a natural action of Homeo(S) on the set of measured foliations given by φ·(F , µ) = (φ(F), φ∗(µ)).
This induces an action of ΓS on MFS , the set of isotopy classes of measured foliations, where we identify
Whitehead moves, i.e. collapsing and uncollapsing leaves connecting singularities. Moreover, we get an action
of ΓS on PMFS , the set of projective classes of measured foliations.

Thurston gave a topology to MFS ∪PMFS that makes it homeomorphic to a closed ball. By analizing
the fixed points of the action of ΓS on this ball, he gave a classification of the mapping classes that corresponds
to Theorem 7.1 stated below.

7.2 The action on geodesic rays

Let X be a Riemann surface of genus g with atlas {(Ui, zi)}. A holomorphic quadratic differential q on X
is specified by a collection {φi(zi)dz2

i : φi is holomorphic} invariant under change of coordinates. Up to
multiplicity, q has exactly 4g − 4 zeros. Let Zq denote the set of zeros of q. We can give X a natural atlas
so that q is either of the form zkdz2 near the points in Zq or of the form dz2 elsewhere. We associate to q
the horizontal foliation Fq with leaves the smooth paths γ(t) on X such that q(γ′(t)) > 0 and with singular
points the set Zq. Moreover, we can associate to q an Euclidean length and area that gives a flat metric to
S\Zq. We denote by QD(X) the C-vector space of holomorphic quadratic differentials on X.

In Section 6.1 we mentioned a map that minimizes the deformation of the complex structure: the Te-
ichmüller map. More precisely, it is defined as a homeomorphism f : (X, qX) → (Y, qY ), equipped with a
quadratic differential qX ∈ QD(X), such that f(ZqX

) ⊂ ZqY
and is of the form (x+ iy) 7→ (

√
Kx+ i 1√

K
y),

in natural coordinates for qX and qY . Such an f has dilation K, which can be thought as the streching factor
in the direcion of the foliations.

Given a point [(X,ψ)] ∈ TS and some q ∈ QD(X), we can generate a one-parameter family of Teichmüller
maps {fK : X → YK}K>0 streching in the horizontal direction of the quadratic differential q. Therefore we
get a one-parameter family of points Ray((X, q), ψ) := {[(YK , fK ◦ ψ)]}K≥1 in TS . This corresponds to a
geodesic ray in the Teichmüller metric that starts at the point [(X,ψ)] and “goes in the direction determined
by q”. Since ΓS acts on TS by isometries it preserves geodesic rays. Therefore we have an action of ΓS on
the set of geodesic rays defined by f ·Ray((X, q), ψ) = Ray((X, q), ψ ◦φ−1), where φ is a representative of f .

The Nielsen-Thurston Classification Theorem

The group ΓS acts on TS by isometries. We can give a classification of mapping classes in terms of the
translation distance τ(f) := infX∈TS

dT (X, f(X)), where f ∈ Γs ⊂ Isom(TS). We say that f is elliptic if
τ(f) = 0 and the infimum is achieved, parabolic if τ(f) is not achieved, and hyperbolic if τ(f) > 0 and it is
achieved. Bers proved this is precisely the Nielsen-Thurston classification.

Theorem 7.1. (Nielsen-Thurston classification) Any element f ∈ ΓS satisfies one of the following:

1. f is periodic: fn = 1 for some n ∈ N.

2. f is reducible: f fixes a collection of disjoint isotopy classes of simple closed curves in S.

3. f is pseudo-Anosov: There are two transverse measured foliations (Fs, µs) and (Fu, µu) and some λ > 0
such that f · (Fs, µs) = (Fs, λµs) and f · (Fu, µu) = (Fu, λ−1µu).

7See [Hai95] and [Bro94].
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Proof. (sketch) Being elliptic corresponds to fixing a point in TS ; therefore by Theorem 6.2, elliptic mapping
classes are periodic. Let f be parabolic and {Xn} ⊂ TS be such that dT (Xn, f(Xn)) converges to τ(f). The
proper discontinuity of the action of Γs on TS implies that the projection of this sequence to MS leaves
every compact set. In particular, this is true for Mumford’s exhaustion of MS by compact sets, thus and
lim
n→∞

`(Xn) = 0. Together with the collar lemma, this condition will yield a collection of closed curves on S

that is fixed by f . Finally, we consider the hyperbolic case and take [(X,φ)] ∈ TS so that dT (X, f(X)) = τ(f).
Let γ be the unique geodesic in TS from X to f ·X. The minimality of τ(f) implies that f fixes γ. Translating
this into the action of ΓS on geodesic rays, we get that f has the local expression of a pseudo-Anosov.

Periodic and reducible mapping classes fix, up to a power, at least an isotopy class of simple closed curves.
On the other hand, under the iteration of a pseudo-Anosov the lenght of any simple closed curve grows. As a
consequence, we get from Theorem 7.1 a useful criteria: f ∈ ΓS is pseudo-Anosov if f is not reducible neither
periodic. Some interesting dynamical properties of pseudo-Anosov are given in terms of density: any leaf
of Fs or Fu is dense in the surface, any pseudo-Anosov has dense orbit, and, moreover, its set of periodic
points is dense in the surface.
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