UNIQUENESS OF HYPERSPACES OF INDECOMPOSABLE ARC CONTINUA

Rodrigo Hernández-Gutiérrez, Alejandro Illanes and Verónica Martínez-de-la-Vega

March 8, 2013

Abstract

Given a metric continuum X, we consider the hyperspace $C_n(X)$ of all nonempty closed subsets of X with at most n components. In this paper we prove that if $n \neq 2$, X is an indecomposable continuum such that all its proper nondegenerate subcontinua are arcs and Y is a continuum such that $C_n(X)$ is homeomorphic to $C_n(Y)$, then X is homeomorphic to Y (that is, X has unique hyperspace $C_n(X)$).

Subject Mathematics Classification: Primary 54B20, Secondary: 54F15
Key Words and Phrases: Continuum, hyperspace, indecomposability, rigidity, unique hyperspace, wire.

1. INTRODUCTION

A continuum is a nondegenerate compact connected metric space. Given a continuum X, we consider the following hyperspaces of X.

- $2^X = \{ A \subset X : A \text{ is nonempty and closed in } X \}$, $C_n(X) = \{ A \in 2^X : A \text{ has at most } n \text{ components} \}$,
- $F_n(X) = \{ A \in 2^X : A \text{ has at most } n \text{ points} \}$,
- $C(X) = C_1(X)$.

All hyperspaces are considered with the Hausdorff metric H.

The hyperspace $F_n(X)$ is known as the n-th symmetric product of X. The hyperspace $F_1(X)$ is an isometric copy of X embedded in each one of the hyperspaces.

A hyperspace $K(X) \in \{ 2^X, C_n(X), F_n(X) \}$ is said to be rigid provided that for each homeomorphism $h : K(X) \to K(X)$, we have, $h(F_1(X)) = F_1(X)$. The continuum X is said to have unique hyperspace $K(X)$ provided that the following implication holds: if Y is a continuum such that $K(X)$ is homeomorphic to $K(Y)$, then X is homeomorphic to Y.

1
Uniqueness of hyperspaces has been widely studied (see for example [3], [4], [6], [7], [8] and [11] for recent references). A detailed survey of what is known about this subject can be found in [12]. In the study of hyperspaces, a useful technique is to find a topological property that characterizes the elements of \(F_1(X) \) in the hyperspace \(K(X) \). When it is possible to find such a characterization, the hyperspace \(K(X) \) is rigid. This technique has been used in studying uniqueness of hyperspaces, so both topics are closely related.

Rigidity of hyperspaces was introduced in [8]. Rigidity of symmetric products was studied in [7].

A continuum \(X \) is indecomposable if it cannot be put as the union of two of its proper subcontinua. The continuum \(X \) is said to be arc continuum if each one of its nondegenerate proper subcontinuum is an arc. Examples of indecomposable arc continua are the Buckethandle continuum and the solenoids [16, 2.8 and 2.9].

As a consequence of Theorem 5 in [7] and Theorem 9 of [3], it follows that if \(X \) is an indecomposable arc continuum and \(n \neq 3 \), then \(X \) has unique hyperspace \(F_n(X) \), the case \(n = 3 \) remains unsolved.

In this paper we prove that if \(X \) is an indecomposable arc continuum, then \(X \) has unique hyperspaces \(C_n(X) \) and \(C_n(X) \) is rigid for every \(n \neq 2 \). The case \(n = 2 \) remains unsolved.

2. DEFINITIONS AND CONVENTIONS

A map is a continuous function. Suppose that \(d \) is a metric for \(X \). Given \(\varepsilon > 0 \), \(p \in X \) and \(A \subseteq 2^X \), let \(B(\varepsilon,p) \) be the \(\varepsilon \)-open ball around \(p \) in \(X \), \(N(\varepsilon,A) = \{ p \in X : \text{there exists } a \in A \text{ such that } d(p,a) < \varepsilon \} \) and \(B^H(\varepsilon,A) = \{ B \subseteq 2^X : H(A,B) < \varepsilon \} \) (we write \(B_X(\varepsilon,p) \) and \(N_X(\varepsilon,A) \) when the space \(X \) needs to be mentioned). A simple \(n \)-od is a finite graph \(G \) that is the union of \(n \) arcs emanating from a single point, \(v \), and otherwise disjoint from one another. The point \(v \) is called the vertex of \(G \). Simple 3-ods are called simple triods. Given subsets \(A_1, \ldots, A_m \) of \(X \), let \(\langle A_1, \ldots, A_m \rangle = \{ B \subseteq 2^X : B \cap A_i \neq \emptyset \text{ for each } i \in \{1, \ldots, m\} \text{ and } B \subseteq A_1 \cup \ldots \cup A_m \} \).

We denote by \(S^1 \) the unit circle in the Euclidean plane. A free arc in the continuum \(X \) is an arc \(\alpha \) with end points \(a \) and \(b \) such that \(\alpha - \{a,b\} \) is open in \(X \).

Proceeding as in Lemma 2.1 of [5] and using Lemma 1.48 of [15], the following lemma can be proved.
LEMMA 1. Let X be a continuum and let A be a connected subset of 2^X such that $A \cap C_n(X) \neq \emptyset$. Let $A_0 = \bigcup\{A : A \in \mathcal{A}\}$. Then
(a) A_0 has at most n components,
(b) if A is closed in 2^X, then $A_0 \in C_n(X)$,
(c) for each $A \in \mathcal{A}$, each component of A_0 intersects A.

A *wire* in a continuum X is a subset α of X such that α is homeomorphic to one of the spaces $(0, 1)$, $[0, 1)$, $[0, 1]$ or S^1 and α is a component of an open subset of X. By [15, Theorem 20.3], if a wire α in X is compact, then $\alpha = X$. So, if a wire is homeomorphic to $[0, 1]$ or S^1, then X is an arc or a simple closed curve. Given a continuum X, let

$$W(X) = \bigcup\{\alpha \subset X : \alpha \text{ is a wire in } X\}.$$

The continuum X is said to be *wired* provided that $W(X)$ is dense in X.

Notice that if α is a free arc of a continuum X and p, q are the end points of α, then $\alpha - \{p, q\}$ is a wire in X. Thus, a continuum for which the union of its free arcs is dense is a wired continuum. Therefore, the class of wired continua includes finite graphs, dendrites with closed set of end points, almost meshed continua [6], compactifications of the ray $[0, \infty)$, compactifications of the real line and indecomposable arc continua.

An *m-od* in a continuum X is a subcontinuum B of X for which there exists $A \in C(B)$ such that $B - A$ has at least m components. By [13, Theorem 70.1], a continuum X contains an m-od if and only if $C(X)$ contains an m-cell. Given $A, B \in 2^X$ such that $A \subsetneq B$, an *order arc* from A to B is a continuous function $\alpha : [0, 1] \to C(X)$ such that $\alpha(0) = A$, $\alpha(1) = B$ and $\alpha(s) \subsetneq \alpha(t)$ if $0 \leq s < t \leq 1$. It is known [15, Theorem 1.25] that there exists an order arc from A to B if and only if $A \subsetneq B$ and each component of B intersects A.

Given a continuum X and $n \in \mathbb{N}$, let

$$W_n(X) = \{A \in C_n(X) : \text{each component of } A \text{ is contained in a wire of } X\};$$
and
$$Z_n(X) = \{A \in W_n(X) : \text{there is a neighborhood } \mathcal{M} \text{ of } A \text{ in } C_n(X) \text{ such that } \text{the component } \mathcal{C} \text{ of } \mathcal{M} \text{ that contains } A \text{ is a } 2n\text{-cell} \}.$$

We will use the following two results of [8].

LEMMA 2 [8, Lemma 2]. Let X be an indecomposable arc continuum. Then X is a wired continuum.

THEOREM 3 [8, Theorem 8]. Let X be a continuum and let $n \geq 3$. Then

$$W_1(X) = \{A \in W_n(X) - Z_n(X) : A \text{ has a basis } \mathcal{B} \text{ of neighborhoods of } A \text{ in } C_n(X) \text{ such that for each } \mathcal{U} \in \mathcal{B}, \text{ if } \mathcal{C} \text{ is the component of } \mathcal{U} \text{ that contains } A, \text{ then } \mathcal{C} \cap Z_n(X) \text{ is connected}\}.$$
2. INDECOMPOSABLE ARC CONTINUA

THEOREM 4. If \(X \) is an indecomposable arc continuum, then \(X \) has unique hyperspaces \(C_n(X) \) and \(C_n(X) \) is rigid for every \(n \neq 2 \).

Proof. For \(n = 1 \), the uniqueness of \(C(X) \) was shown in Theorem 2.3 of [1]. In the proof of Theorem 3 of [14], it was shown that if \(h : C(X) \to C(X) \) is a homeomorphism, then \(h(F_1(X)) = F_1(X) \). That is, \(C(X) \) is rigid.

Suppose then that \(n \geq 3 \). Let \(Y \) be a continuum such that there exists a homeomorphism \(h : C_n(X) \to C_n(Y) \). Let \(Y_0 \in C_n(Y) \) be such that \(h(X) = Y_0 \).

Claim 1. The only element that arcwise disconnects \(C_n(X) \) is \(X \) and \(C_n(X) - \{X\} \) has uncountably many arc components.

We prove Claim 1. By Corollary 2.2 of [10] \(C_n(X) - \{X\} \) has uncountably many arc components. Let \(A \in C_n(X) - \{X\} \). Let \(C \) be the arc component of \(C_n(X) - \{A\} \) such that \(X \in C \). We claim that \(C = C_n(X) - \{A\} \). Take \(D \in C_n(X) - \{A\} \). If \(D \) is not contained in \(A \), take an order arc \(\alpha \) from \(D \) to \(X \). Notice that for each \(t \in [0,1] \), \(\alpha(t) \neq A \). Then \(\text{Im} \alpha \subseteq C \) and \(D \in C \). Now consider the case that \(D \subseteq A \). Then, we have that \(A \) is not a one-point set. Reasoning as in Theorem 11.3 of [15], it follows that if \(A \) is not connected, then there is an arc joining \(D \) and \(X \) in \(C(X) - \{A\} \). Thus, we assume that \(A \) is connected. Let \(B \in C(X) - \{X\} \) be such that \(A \subseteq B \). Then \(A \) and \(B \) are arcs. Let \(F \) be a finite set containing exactly one point in each one of the components of \(D \). Then \(F \in F_n(X) \subseteq C_n(X) \). Let \(\beta \) be an order arc joining \(F \) and \(D \). Notice that \(\text{Im} \beta \subseteq C_n(X) - \{A\} \). It is easy to show that there exists an arc \(\gamma \) in \(F_n(B) \) joining \(F \) and an element \(E \subseteq B - A \). By the first case, \(E \in C \). Since \(\text{Im} \beta \subseteq C_n(X) - \{A\} \), we conclude that \(D \in C \). We have shown that \(C = C_n(X) - \{A\} \). Hence, \(C_n(X) - \{A\} \) is arcwise connected. This ends the proof of Claim 1.

Claim 2. \(Y_0 \in C(Y) \) and \(Y_0 \) is indecomposable.

To prove Claim 2 observe that if \(Y_0 \) is disconnected, then reasoning as in Theorem 11.3 of [15] it can be proved that \(C_n(Y) - \{Y_0\} \) is arcwise connected. Since \(h \) is a homeomorphism, this contradicts Claim 1. Hence, \(Y_0 \) is connected. Now, suppose that \(Y_0 \) is decomposable. By Lemma 2.4 of [10], \(C_n(Y) - \{Y_0\} \) has at most two arc components. Since \(h \) is a homeomorphism, Claim 1 implies that \(C_n(Y) - \{Y_0\} \) has uncountably many arc components. This contradiction ends the proof of Claim 2.

Claim 3. Let \(k = 2n + 1 \). Then \(C_n(Y) \) does not contain \(k \)-cells.

Suppose, contrary to Claim 3, that \(C_n(Y) \) contains a \(k \)-cell. Then there exists a \(k \)-cell \(\mathcal{M} \) in \(C_n(X) \). Let \(m = \max \{i \in \{1, \ldots, n\} : \mathcal{M} \cap (C_i(X) - \)
that $C_{i-1}(X) \neq \emptyset$. Since $\mathcal{M} \cap (C_m(X) - C_{m-1}(X))$ is a nonempty open subset of \mathcal{M}, there exists $A \in \mathcal{M} \cap (C_m(X) - C_{m-1}(X)) - \{X\}$. Let \mathcal{N} be a k-cell such that $A \in \mathcal{N} \subset \mathcal{M} \cap (C_m(X) - C_{m-1}(X)) - \{X\}$ and let $B = \bigcup\{C : C \in \mathcal{N}\}$. Since A has m components, we can take small enough \mathcal{N} in such a way that B has at least m-components and $B \neq X$. By Lemma 1, if $C \in \mathcal{N}$, then C intersects each component of B. Since $A \subset B$, we have that B has exactly m components. Let B_1, \ldots, B_m be the components of B. Then each B_i is an arc or a one-point set. Given $C \in \mathcal{N}$, $C \in \langle B_1, \ldots, B_m \rangle \cap C_n(X)$ and, by the choice of m, C has exactly m components. Thus, the components of C are the sets $C \cap B_1, \ldots, C \cap B_m$. Let $\varphi : \mathcal{N} \rightarrow C(B_1) \times \cdots \times C(B_m)$ be given by $\varphi(C) = (C \cap B_1, \ldots, C \cap B_m)$. It is easy to check that φ is continuous and one-to-one. Hence, \mathcal{N} can be embedded in $C(B_1) \times \cdots \times C(B_m)$. Since $C([0,1])$ is a 2-cell, we conclude that \mathcal{N} can be embedded in a j-cell for some $j \leq 2m \leq 2n$. This implies that $k \leq 2n$. This contradiction proves Claim 3.

Claim 4. If $Z \in C(Y) - F_1(Y)$ and $Y_0 \not\in Z$, then Z is decomposable.

Suppose, contrary to Claim 4, that Z is indecomposable. Notice that $Z \neq Y$. Let \mathcal{B} be the arc component of $C_n(Y) - \{Z\}$ such that $Y \in \mathcal{B}$. By Theorem 70.1 of [13] and Claim 3, Y does not contain $(2n+1)$-ods. By Lemma 2.3 of [10], the set $\mathcal{K} = \{K \subset Z : K$ is composant of Z and $\langle K \rangle \cap C_n(Y) \cap \mathcal{B} \neq \emptyset\}$ has at most $2n$ elements. Since Z has infinitely many composants [16, Theorem 11.15], we can take a composant K_0 of Z such that $K_0 \not\in \mathcal{K}$. Fix a point $z_0 \in K_0$. Then $\{z_0\} \not\in \mathcal{B}$. This proves that $C_n(Y) - \{Z\}$ is arcwise disconnected. Since h is a homeomorphism, $C_n(X) - \{h^{-1}(Z)\}$ is arcwise disconnected. By Claim 1, $X = h^{-1}(Z)$ and $Z = h(X) = Y_0$, a contradiction. Therefore, Z is decomposable.

Claim 5. If $Z \in C(Y) - F_1(Y)$ and $Y_0 \not\in Z$, then Z is an arc.

In order to prove Claim 5, let $W = h^{-1}(C_n(Z))$. Since $Y_0 \notin C_n(Z)$, we have that $X = h^{-1}(Y_0) \notin W$. Let $B = \bigcup\{D : D \in W\}$. By Lemma 1, $B \in C_n(X)$. Let B_1, \ldots, B_m be the components of B, where $m \leq n$. By Corollary 2.2 of [10], the arc component of $C_n(X) - \{X\}$ that contains $Z_0 = h^{-1}(Z)$ is a set of the form $\langle K_1, \ldots, K_r \rangle \cap C_n(X)$, where $r \leq n$ and K_1, \ldots, K_r are composants of X. Since $C_n(Z)$ is arcwise connected, W is an arcwise connected set and $X \notin W$. Since $Z_0 \in W$, $W \cap \langle K_1, \ldots, K_r \rangle \cap C_n(X)$. This implies that $B \subset K_1 \cup \ldots \cup K_r$ and then $B \neq X$. Hence, each B_i is an arc or a one-point set.

We claim that Z is locally connected.

Suppose to the contrary that Z is not connected im kleinen at some element $z_0 \in Z$. Then there exist an open subset U of Z and a sequence of points $\{z_j\}_{j=1}^{\infty}$ in U such that $z_0 \in U$, $\lim jz_j = z_0$ and if E_j is the component of U containing z_j ($j \in \mathbb{N} \cup \{0\}$), then E_0, E_1, E_2, \ldots are all different. Note that $U \neq Z$. Let V
be an open subset of \(Z \) such that \(z_0 \in V \) and \(\text{cl}_Z(V) \subset U \). For each \(j \in \mathbb{N} \), we assume that \(z_j \in V \) and we take the component \(D_j \) of \(\text{cl}_Z(V) \) such that \(z_j \in D_j \). We may assume that \(\lim D_j = D_0 \) for some \(D_0 \subset C(Z) \). Then \(z_0 \in D_0 \subset E_0 \), \(D_j \subset E_j \) and \(D_j \cap \text{bd}_Z(V) \neq \emptyset \) \cite[Theorem 20.3]{15} for each \(j \in \mathbb{N} \). Thus, \(D_0 \cap \text{bd}_Z(V) \neq \emptyset \) and \(D_0 \) is nondegenerate. Fix a nondegenerate continuum \(D \) such that \(z_0 \in D \subset D_0 \cap V \).

Since \(\text{cl}_Z(V) \neq Z \), we can choose pairwise disjoint nondegenerate subcontinua \(G_1, \ldots, G_{n-1} \) of \(Z \) contained in \(Z - \text{cl}_Z(V) \). By Claim 4, each \(G_i \) is decomposable. It is easy to show that the decomposibility of \(G_i \) implies that \(G_i \) contains a 2-od. So, we may assume that each \(G_i \) is a 2-od. For each \(i \in \{1, \ldots, n-1\} \), let \(R_i \subset C(G_i) \) be such that \(G_i - R_i \) is disconnected. By the proof of \cite[Theorem 1.100]{15}, there exists a 2-cell \(g_i \) in \(C(G_i) \) such that \(R_i, G_i \subset g_i \) and for each \(L \subset g_i \), \(R_i \subset L \subset G_i \). Let \(\mathcal{G} = \{ \{y\} \cup L_1 \cup \ldots \cup L_{n-1} \subset C_n(Z) : y \in D \text{ and } L_i \subset g_i \text{ for each } i \in \{1, \ldots, n-1\} \} \). Notice that \(\mathcal{G} \) is homeomorphic to \(D \times g_1 \times \ldots \times g_{n-1} \), so \(\dim(\mathcal{G}) \geq 2n - 1 \) \cite[Remark at the end of section 4 of Chapter III]{9}. Let

\[
\mathcal{M} = h^{-1}(\mathcal{G}).
\]

Then \(\mathcal{M} \) is a subcontinuum of \(C_n(X) \) such that \(\mathcal{M} \subset W \) and \(\dim(\mathcal{M}) \geq 2n - 1 \). Notice that \(X \notin \mathcal{M} \).

Let

\[
m_0 = \max\{i \in \{1, \ldots, n\} : \mathcal{M} \cap (C_i(X) - C_{i-1}(X)) \neq \emptyset\}.
\]

Now we show that \(m_0 = n \). If \(m_0 = 1 \), then \(\mathcal{M} \subset C(X) \cap W \). This implies that each element of \(\mathcal{M} \) is contained in \(B_1 \cup \ldots \cup B_m \). Thus, \(\mathcal{M} \subset C(B_1) \cup \ldots \cup C(B_m) \). Since each \(C(B_i) \) is a one-point set or a 2-cell, we conclude that \(2n - 1 \leq \dim(\mathcal{M}) \leq 2 \). Hence, \(n = 1 \), contrary to our assumption. Therefore, \(m_0 \geq 2 \).

Let \(M_0 \in \mathcal{M} \cap (C_{m_0}(X) - C_{m_0-1}(X)) \). Let \(M_1, \ldots, M_{m_0} \) be the components of \(M_0 \). Suppose that \(M_0 = h^{-1}(\{y_0\} \cup L_1^{(0)} \cup \ldots \cup L_{n-1}^{(0)}) \), where \(y_0 \in D \) and \(L_i^{(0)} \subset g_i \) for each \(i \in \{1, \ldots, n-1\} \). Let \(\varepsilon > 0 \) be such that the sets \(N(\varepsilon, M_1), \ldots, N(\varepsilon, M_{m_0}) \) are pairwise disjoint. Since \(X \notin \mathcal{M}, M_0 \neq X \), so we can ask that \(X \neq N(\varepsilon, M_1) \cup \ldots \cup N(\varepsilon, M_{m_0}) \).

Since \(C_{m_0-1}(X) \) is closed in \(C_n(X) \) and \(h^{-1} \) is continuous, there exists a nondegenerate continuum \(D' \) of \(D \) and for each \(i \in \{1, \ldots, n-1\} \) there exists a 2-cell \(g_i' \) such that \(L_i^{(0)} \subset g_i' \subset g_i \), \(H(D_0, h^{-1}(L_i)) < \varepsilon \) and \(h^{-1}(L_i) \notin C_{m_0-1}(X) \) for each \(L_i \subset g_i' \). Let \(L_i \subset g_i' \) for each \(i \in \{1, \ldots, n-1\} \).

Given \(L \subset g_i' \), \(h^{-1}(L) \in \mathcal{M} \), then \(h^{-1}(L) \in (N(\varepsilon, M_1), \ldots, N(\varepsilon, M_{m_0})) \), so \(h^{-1}(L) \) has at most \(m_0 \) components and, by definition of \(m_0 \), \(h^{-1}(L) \) has at most \(m_0 \) components. Thus, \(h^{-1}(L) \) has exactly \(m_0 \) components. Since \(h^{-1}(L) \in (N(\varepsilon, M_1), \ldots, N(\varepsilon, M_{m_0})) \cap C_n(X) \), we have that the components
of $h^{-1}(L)$ are the sets $h^{-1}(L) \cap N(\varepsilon, M_1), \ldots, h^{-1}(L) \cap N(\varepsilon, M_{m_0})$. Let $L_0 = \bigcup \{ h^{-1}(L) : L \in \mathcal{G}' \}$. By Lemma 1, L_0 has at most m_0 components, but $L_0 \in \langle N(\varepsilon, M_1), \ldots, N(\varepsilon, M_{m_0}) \rangle \cap C_n(X)$, so L_0 has exactly m_0 components and they are $L_0 \cap N(\varepsilon, M_1), \ldots, L_0 \cap N(\varepsilon, M_{m_0})$. This implies that each set $L_0 \cap N(\varepsilon, M_i)$ is an arc or a one-point set. Notice that \mathcal{G}' is homeomorphic to $D^r \times \mathcal{G}'_1 \times \ldots \times \mathcal{G}'_{n-1}$, so $\dim(\mathcal{G}') \geq 2n - 1$ and $\dim(h^{-1}(\mathcal{G}')) \geq 2n - 1$.

Notice that the map $\psi : \mathcal{G}' \rightarrow C(L_0 \cap N(\varepsilon, M_1)) \times \ldots \times C(L_0 \cap N(\varepsilon, M_{m_0}))$ given by $\psi(L) = (h^{-1}(L) \cap N(\varepsilon, M_1), \ldots, h^{-1}(L) \cap N(\varepsilon, M_{m_0}))$ is an embedding. This shows that $\dim(C(L_0 \cap N(\varepsilon, M_1)) \times \ldots \times C(L_0 \cap N(\varepsilon, M_{m_0}))) \geq 2n - 1$. Since for each $i \in \{1, \ldots, m_0\}$, $C(L_0 \cap N(\varepsilon, M_i))$ is either a one-point set or a 2-cell [13, Theorem 5.1], we obtain that $2m_0 \geq \dim(C(L_0 \cap N(\varepsilon, M_1)) \times \ldots \times C(L_0 \cap N(\varepsilon, M_{m_0})))$. Thus, $m_0 \geq n$. Hence, $m_0 = n$.

Since $M_0 \in \mathcal{M} \subset W$, we have $M_0 \subset B$ and by Lemma 1, each B_i intersects M_0. Since B is a finite union of arcs or one-point sets, there exist pairwise disjoint subarcs (or one-point sets), Q_1, \ldots, Q_n of B such that for each $i \in \{1, \ldots, n\}$, $M_i \subset \int_B(Q_i)$. Then $M_0 \in C_n(X) \cap W \cap \langle \int_B(Q_1), \ldots, \int_B(Q_n) \rangle$, which is an open subset of W. We are going to see that each Q_i is an arc.

Since $C_n(X) - C_{n-1}(X)$ is open in $C_n(X)$ and $M_0 \in \mathcal{M}(C_n(X) - C_{n-1}(X))$, there exists $\varepsilon_0 > 0$ and for each $i \in \{1, \ldots, n - 1\}$ there exists a 2-cell L_i such that $B_Z(\varepsilon_0, y_0) \subset V$, $L_i(0) \subset L_i \subset \mathcal{G}_i$ and $h^{-1}(L) \subset \langle \int_B(Q_1), \ldots, \int_B(Q_n) \rangle \cap C_n(X) \cap W$ for each $L \in \mathcal{L}$, where

$$\mathcal{L} = \{A \cup L_1 \cup \ldots \cup L_{n-1} \in C_n(Z) : H(A, \{y_0\}) < \varepsilon_0 \} \text{ and } L_i \in \mathcal{L}_i \text{ for each } i \in \{1, \ldots, n-1\}.$$

Fix a sequence $\{y_m\}_{m=1}^\infty$ in Z such that $\lim y_m = y_0$ and $y_m \in P_m$ for each $m \in \mathbb{N}$. Let $N_0 \in \mathbb{N}$ be such that $y_m \in B_Y(\frac{2}{m}, y_0)$ for each $m \geq N_0$. For each $m \geq N_0$, choose a subcontinuum P_m of Z such that $\dim(P_m) = \frac{2}{m}$ and $y_m \in P_m$. Then $P_m \subset V$, so $P_m \subset D_m$. Taking a subsequence if necessary, we may assume that $\lim P_m = P_0$ for some $P_0 \in C(Z)$ and $\lim C(P_m) = P$ and some $P \subset C(Z)$. Then $y_0 \in P_0$, $\dim(P_0) = \frac{2}{m}$ and $P \subset C(P_0)$. Then $P_0 \subset D_0$. Fix points $p_0, q_0 \in P_0$ such that $p_0 \neq q_0$ and choose sequences $\{p_m\}_{m=N_0}^\infty$, $\{q_m\}_{m=N_0}^\infty$ is Z such that $\lim p_m = p_0$, $\lim q_m = q_0$ and for each $m \geq N_0$, $p_m, q_m \in P_m$. Given $m \geq N_0$, choose order arcs α_m, β_m from $\{p_m\}$ to P_m and $\{q_m\}$ to P_m, respectively. Let $T_m = \text{Im} \alpha_m$ and $S_m = \text{Im} \beta_m$. We may assume also that $\lim T_m = T_0$ and $\lim S_m = S_0$, for some $T_0, S_0 \in C(C(P_0))$. By [15, Remark 1.34], each of the sets T_0 and S_0 are images of respective order arcs from $\{p_0\}$ to P_0 and $\{q_0\}$ to P_0. Notice that $T_1(P_0) \cup T_0 \cup S_0 \subset P$.

Given $m \in \{0, N_0, N_0 + 1, \ldots\}$ and a subcontinuum A of P_m, since $A \subset P_m \subset B_Y(\varepsilon_0, y_0)$, $H(A, \{y_0\}) < \varepsilon_0$. Thus, for each choice of elements $L_i \in L_i$ ($i \in \{1, \ldots, n-1\}$), $A \cup L_1 \cup \ldots \cup L_{n-1} \in \mathcal{L}$.

Given $L \in \mathcal{L}$, $h^{-1}(L) \in \langle \int_B(Q_1), \ldots, \int_B(Q_n) \rangle \cap C_n(X) \cap W$. Since Q_1, \ldots, Q_n are pairwise disjoint, we have that $h^{-1}(L)$ has exactly n components.
and they are $h^{-1}(L) \cap Q_1, \ldots, h^{-1}(L) \cap Q_n$. Let $\mathcal{A} = C(Q_1) \times \ldots \times C(Q_n)$. Define $\sigma : \mathcal{L} \to \mathcal{A}$ by $\sigma(L) = (h^{-1}(L) \cap Q_1, \ldots, h^{-1}(L) \cap Q_n)$. Clearly, σ is an embedding. By [15, Theorem 2.1], $\dim[C(P_0)] \geq 2$. Since \mathcal{L} contains a topological copy of $C(P_0) \times \mathcal{L}_1 \times \ldots \times \mathcal{L}_{n-1}$ and the dimension of this set is $\dim[C(P_0)] + 2(n - 1) \geq 2n$ [9, Remark at the end of section 4 of Chapter III], we have that $\dim[\mathcal{A}] \geq 2n$. Since each $C(Q_i)$ is a one-point set or a 2-cell, $\dim[\mathcal{A}] \leq 2n$, so $\dim[\mathcal{A}] = 2n$. This implies that each Q_i is an arc and \mathcal{A} is a $2n$-cell.

Since $F_1(P_0) \subset \mathcal{P}$, we have $\dim(\mathcal{P}) \geq 1$. To finish the proof that Z is locally connected, we analyze two cases.

Case 1. $\dim(\mathcal{P}) \geq 2$.

In this case, let $\mathcal{L}_0 = \{ \mathcal{A} \subset \mathcal{L} \cap \mathcal{L}_i : \mathcal{A} \subset \mathcal{P} \}$, for each $i \in \{1, \ldots, n-1\}$. Since \mathcal{L}_0 is homeomorphic to $\mathcal{L} \times \mathcal{P}$, $\dim(\mathcal{L}_0) \geq 2n$. Since $\sigma|_{\mathcal{L}_0} : \mathcal{L}_0 \to \mathcal{A}$ is an embedding, $\dim(\mathcal{L}_0) = 2n$. By [9, Theorem IV 3], $\dim(\mathcal{A})$ is nonempty. Let $\mathcal{L} = A \cap L_1 \cup \ldots \cup L_{n-1} \subset C_0(Z)$ such that $A \subset \mathcal{P}$ and $L_i \subset \mathcal{L}_i$ for each $i \in \{1, \ldots, n-1\}$. Since $A \subset \mathcal{P} = \lim C(P_m)$, there exists a sequence $\{A_m\}_{m=1}^{\infty}$ in $C(Z)$ such that $\lim A_m = A$ and $A_m \subset C(P_m)$ for each $m \in \mathbb{N}$. Then $\dim(\mathcal{A}_m \cup L_1 \cup \ldots \cup L_{n-1}) = \dim(\mathcal{A} \cap L_1 \cup \ldots \cup L_{n-1})$. Since \mathcal{L}_0 is one-to-one, $A_m \cap L_1 \cup \ldots \cup L_{n-1} \subset \mathcal{L}_0$. This implies that $A_m \cap L_1 \cup \ldots \cup L_{n-1} = A' \cup L'_1 \cup \ldots \cup L'_{n-1}$, where $A' \subset \mathcal{P}$ and $L'_i \subset \mathcal{L}_i$ for each $i \in \{1, \ldots, n-1\}$. Intersecting these sets with $B_{C_n(Z)}(\varepsilon_0, \{y_0\})$, we obtain that $A_m = A'$. This is a contradiction since $A_m \subset C(P_m)$, $A' \subset \mathcal{P} \subset C(P_0)$ and $P_0 \cap P_m = \emptyset$. Therefore, this case is impossible.

Case 2. $\dim(\mathcal{P}) = 1$.

Let S^+ (respectively, S^-) be the upper (lower) half of S^1. Since $F_1(P_0) \cap (T_0 \cup S_0) = \{\{y_0\}, \{q_0\}\}$, by Urysohn’s lemma for metric spaces, there exists a map $f : F_1(P_0) \cup T_0 \cup S_0 \to S^1$ such that $f(F_1(P_0)) = S^-$, $f(\{q_0\}) = \{(-1, 0)\}$, $f(\{y_0\}) = \{(1, 0)\}$ and $f(T_0 \cup S_0) = S^+$. Since $\dim(\mathcal{P}) = 1$, by [9, Theorem VI 4] the map f can be extended to a map (we also call f to the extension) $f : \mathcal{U} \to S^1$, where \mathcal{U} is an open subset of $C(Z)$ such that $\mathcal{P} \subset \mathcal{U}$. Since $\dim(T_m \cup S_m) = \dim(T_0 \cup S_0)$ and $\lim F_1(P_m) = F_1(P_0)$, there exists $m \geq N_0$ such that $C(P_m) \subset \mathcal{U}$, $f(T_m \cup S_m) \subset N_{S^1}(\frac{1}{10}, S^+)$, $f(F_1(P_m)) \subset N_{S^1}(\frac{1}{10}, S^-)$, $f(\{p_m\}) \subset N_{S^1}(\frac{1}{10}, \{(-1, 0)\})$ and $f(\{q_m\}) \subset N_{S^1}(\frac{1}{10}, \{(1, 0)\})$. Lemma 5.12 of [17] and the fact that $F_1(P_m) \cap (T_m \cup S_m) = \{p_m, q_m\}$ imply that $f|F_1(P_m) \cap T_m \cup S_m$ cannot be lifted (that is, there is not a map $f_1 : F_1(P_m) \cup T_m \cup S_m \to \mathbb{R}$ such that $f|F_1(P_m) \cup T_m \cup S_m = (\cos f_1, \sin f_1)$). But, by [2, Lemma 13], $f|C(P_m)$ can be lifted. Since $F_1(P_m) \cup T_m \cup S_m \subset C(P_m)$, we conclude that $f|F_1(P_m) \cup T_m \cup S_m$ can be lifted. This contradiction proves that this case is also impossible.

Therefore, we have shown that Z is locally connected.
Now, suppose that Z contains a simple triod T, we may assume that $T \neq Z$, so we can construct arcs J_1, \ldots, J_{n-1} in Z such that T, J_1, \ldots, J_{n-1} are pairwise disjoint. Since $C(T) \times C(J_1) \times \ldots \times C(J_{n-1})$ is naturally embedded in $C_n(Z)$, by [13, Examples 5.1 and 5.4], $C(T) \times C(J_1) \times \ldots \times C(J_{n-1})$ contains a $(2n+1)$-cell. This contradicts Claim 3 and ends the proof that Z does not contain simple triods. Hence, Z is an arc or a simple closed curve. Using an order arc from Z to Y, it is possible to construct a subcontinuum Z_1 of Y such that $Z \subseteq Z_1$ and $Y_0 \not\subseteq Z_1$. Thus, we can apply what we have proved to Z_1 and conclude that Z_1 is an arc or a simple closed curve. Therefore, Z is an arc. This completes the proof of Claim 5.

Claim 6. If $D \in C_n(Y)$ and $Y_0 \not\subseteq D$, then $D \in W_n(Y)$. Moreover, $W_n(X) = C_n(X) - \{X\}$.

We prove the first part of Claim 6, the second one can be made with similar arguments. Let V be an open subset of Y such that $D \subseteq V$ and $Y_0 \not\subseteq \text{cl}_Y(V)$. Let Z be a component of V. Let W be the component of V containing Z. By Claim 5, Z is an arc or a one-point set. Let B be the component of $\text{cl}_Y(V)$ such that $Z \subseteq B$. Then B is nondegenerate. By Claim 5, B is an arc. By [16, Theorem 12.10], $\text{cl}_Y(W) \cap (Y - V) \neq \emptyset$. Thus, W is not compact. Then W is a noncompact connected subset of B. Hence, W is homeomorphic either to $(0, 1)$ or $(0, 1)$. That is, W is a wire. This ends the proof of Claim 6.

Claim 7. If $Z \in C(Y) - F_1(Y)$ and $Y_0 \not\subseteq Z$, then $h^{-1}(Z)$ is connected.

We prove Claim 7. Let $A = h^{-1}(Z)$. By Claim 6, $Z \in W_1(Y)$, and by Theorem 3, $Z \not\subseteq Z_n(Y)$. Since $A \neq X$, by Claim 6, $A \in W_n(X)$. Since h is a homeomorphism, $Z \not\subseteq Z_n(Y)$ and the definition of $Z_n(X)$ is given in terms of topological properties that are preserved under homomorphisms, we obtain that $A \not\subseteq Z_n(X)$. By Theorem 3, Z has a basis \mathcal{B} of neighborhoods in $C_n(Y)$ such that for each $V \in \mathcal{B}$, if C is the component of V that contains Z, then $C \cap Z_n(Y)$ is connected. Since $Y_0 \not\subseteq Z$, we can ask that for each $V \in \mathcal{B}$ and each $B \in V$, $Y_0 \not\subseteq B$, then by Claim 6, $B \in W_n(Y)$ and $h(V) \not\subseteq V$. Using the fact that h is a homeomorphism and the second part of Claim 6, it is easy to show that if $V \in \mathcal{B}$ and C is the component of V that contains Z, then $h^{-1}(C) \cap Z_n(X) = h^{-1}(C \cap Z_n(Y))$. Define $h^{-1}(\mathcal{B}) = \{h^{-1}(V) \in C_n(X) : V \in \mathcal{B}\}$. Then $h^{-1}(\mathcal{B})$ is a basis of neighborhoods of A in $C_n(X)$. Given $V \in \mathcal{B}$ and C the component of V that contains Z, the equality $h^{-1}(C) \cap Z_n(X) = h^{-1}(C \cap Z_n(Y))$ implies that $h^{-1}(C) \cap Z_n(X)$ is connected. Hence, we can apply Theorem 3 to conclude that $A \in W_1(X)$. In particular, A is connected. Hence, $h^{-1}(Z)$ is connected.

Claim 8. Let K_1, \ldots, K_r be composants of X, where $r \leq n$. Then $C(X) \subseteq \text{cl}_{C_n(X)}((K_1, \ldots, K_r) \cap C_n(X))$.

We prove Claim 8. Since $C(X) - (\{X\} \cup F_1(X))$ is dense in $C(X)$, it is enough to show that $C(X) - (\{X\} \cup F_1(X)) \subseteq \text{cl}_{C_n(X)}((K_1, \ldots, K_r) \cap C_n(X))$. 9
Let \(E \subseteq C(X) \setminus \{ \{X\} \cup F_1(X) \) . Then \(E \) is an arc. Let \(a_1, a_2 \) be the end points of \(E \). Let \(K \) be a composant of \(X \). Given \(i \in \{ 1, 2 \} \), let \(A_i(K) = \{ p \in E : \) there exists a sequence \(\{ B_m \}_{m=1}^\infty \) in \(\langle K \rangle \cap C(X) \) converging to a subcontinuum \(B \) of \(E \) and \(p, a_i \in B \). Since \(K \) is dense in \(X \), \(\{ a_i \} \in A_i(K) \). It is easy to show that \(A_i(K) \) is closed in \(E \) and that if \(p \in A_i(K) \), then the arc \(E \) joining \(a_i \) and \(p \) is contained in \(A_i(K) \). Thus \(A_i(K) \) is a subcontinuum of \(E \).

We claim that \(E = A_1(K) \cup A_2(K) \). Take \(p \in E \setminus \{ a_1, a_2 \} \). Let \(\{ p_m \}_{m=1}^\infty \) be a sequence in \(X \) such that \(\lim p_m = p \). Let \(\mu : C(X) \to [0, 1] \) be a Whitney map, where \(\mu(X) = 1 \) ([13, Theorem 13.4]). Using order arcs, it is possible to find a subcontinuum \(B_m \) of \(X \) such that \(p_m \in B_m \) and \(\mu(B_m) = \mu(E) \), for each \(m \in \mathbb{N} \). We may assume that \(\lim B_m = B \) for some \(B \in C(X) \). For each \(m \in \mathbb{N} \), since \(E \neq X \), we have that \(B_m \neq X \). This implies that \(B_m \in \langle K \rangle \cap C(X) \). Notice that \(p \in B \). Since \(E \) and \(B \) are proper subcontinua of \(X \), \(E \cup B \) is a subcontinuum of \(X \), so \(E \cup B \) is an arc. Since \(\mu(E) = \mu(B) \), it is not possible that \(B \subseteq E \). This implies that \(a_1 \in B \) or \(a_2 \in B \).

For each \(m \in \mathbb{N} \), let \(\alpha_m : [0, 1] \to C(B_m) \) be an order arc from \(\{ p_m \} \) to \(B_m \). We may assume that \(\lim \text{Im} \alpha_m = \gamma \) for some \(\gamma \in C(C(X)) \). By [15, Remark 1.34], \(\gamma \) is the image of an order arc \(\alpha : [0, 1] \to C(X) \) that joins \(\{ p \} \) to \(B \). Let \(s_0 = \{ s \in [0, 1] : \gamma(s) \cap \{ a_1, a_2 \} \neq \emptyset \} \). Given \(s < s_0 \), \(\gamma(s) \cap \{ a_1, a_2 \} = \emptyset \). \(\gamma(s) \) intersects the arc \(E \) and \(\gamma(s) \) is contained in the arc \(E \cup B \). This implies that \(\gamma(s) \in E \). Hence, \(\gamma(s_0) \subseteq E \). Since \(\gamma(s_0) \) belongs to \(\lim \text{Im} \alpha_m \), \(\gamma(s_0) \) satisfies the conditions in the definition of \(A_i(K) \), this allows us to conclude that \(p \in A_1(K) \cup A_2(K) \). We have shown that \(E = A_1(K) \cup A_2(K) \).

In the case that \(r = 1 \), by the connectedness of \(E \), we conclude that there exists a point \(p \in A_1(K_1) \cap A_2(K_1) \). Let \(\{ B_m \}_{m=1}^\infty \) and \(\{ C_m \}_{m=1}^\infty \) be sequences in \(\langle K_1 \rangle \cap C(X) \) converging to respective subcontinua \(B \) and \(C \) of \(E \) satisfying \(p, a_1 \in B \) and \(p, a_2 \in C \). Then \(B \cup C \) is a subcontinuum of \(E \) containing \(a_1 \) and \(a_2 \). Thus, \(E = B \cup C \). Hence, \(E = \lim B_m \cup C_m \). Since \(B_m \cup C_m \in \langle K_1 \rangle \cap C_n(X) \) for each \(m \in \mathbb{N} \), we conclude that \(E \in eC_n(X)(\langle K_1 \rangle \cap C_n(X)) \).

In the case that \(r \geq 2 \), take the natural order in \(E \) such that \(a_1 < a_2 \). By the connectedness of \(E \), we can choose points \(p_1 \in A_1(K_1) \cap A_2(K_1) \) and \(p_2 \in A_1(K_2) \cap A_2(K_2) \). We can assume that \(p_1 \leq p_2 \). Let \(\{ B_m \}_{m=1}^\infty \) and \(\{ C_m \}_{m=1}^\infty \) be sequences in \(\langle K_1 \rangle \cap C(X) \) and \(\langle K_2 \rangle \cap C(X) \), respectively, converging to subcontinua \(B \) and \(C \), respectively, of \(E \) satisfying \(p_1, a_1 \in B \) and \(p_2, a_2 \in C \). Thus, \(E = B \cup C \) and \(E = \lim B_m \cup C_m \). For each \(i \in \{ 3, \ldots, r \} \), choose a sequence \(\{ x_m^{(i)} \}_{m=1}^\infty \) in \(K_i \) such that \(\lim x_m^{(i)} = a_i \). For each \(m \in \mathbb{N} \), let \(E_m = B_m \cup C_m \cup \{ x_m^{(3)}, \ldots, x_m^{(r)} \} \). Then \(E_m \in \langle K_1, \ldots, K_r \rangle \cap C_n(X) \) and \(\lim E_m = E \). This ends the proof of Claim 8.

Claim 9. \(Y_0 = Y \).

Since \(C_n(X) \setminus \{ X \} \) has uncountably many arc components (Claim 1), \(C_n(Y) \setminus \{ Y_0 \} \) has uncountably many arc components. Let \(G \) be an arc component of
$C(Y) - \{Y_0\}$ such that $Y \notin \mathcal{G}$. Given $G \in \mathcal{G}$, if $G \not\subseteq Y_0$, then an order arc from G to Y is a path connecting G to Y without passing through Y_0, a contradiction. Thus, $G \subset Y_0$ and $\mathcal{G} \subset C_n(Y_0)$. By [10, Corollary 2.2] $h^{-1}(\mathcal{G})$ is of the form $h^{-1}(\mathcal{G}) = (K_1, \ldots, K_r) \cap C_n(X)$ for some $r \leq n$ and composants K_1, \ldots, K_r of X. Suppose that $Y_0 \neq Y$. Take a point $y \in Y - Y_0$. Then there exists a nondegenerate subcontinuum Z of Y such that $y \in Z \subset Y - Y_0$. Let $E = h^{-1}(Z)$. By Claim 7, E is a subcontinuum of X. By Claim 8, $E \in \text{cl}_{C_n(X)}((K_1, \ldots, K_r) \cap C_n(X))$. Then $Z \in \text{cl}_{C_n(Y)}(h((K_1, \ldots, K_r) \cap C_n(X))) = \text{cl}_{C_n(Y)}(\mathcal{G}) \subset C_n(Y_0)$ and $Z \subset Y_0$. This contradicts the choice of Z and completes the proof of Claim 9.

We have shown that Y is an indecomposable continuum (Claim 2) such that each one of its nondegenerate proper subcontinua are arcs (Claim 5). Moreover, $h^{-1}(Z) \in C(X)$ for each $Z \in C(Y)$ (this follows from Claim 7). Thus, Y satisfies the initial conditions we had for X. By symmetry, we can conclude that $h(W) \in C(Y)$ for each $W \in C(X)$. Hence, $h|C(X) : C(X) \to C(Y)$ is a homeomorphism. By the proof of Theorem 3 of [14], $h(F_1(X)) = F_1(Y)$. This proves that X has unique hyperspace $C_n(X)$ and $C_n(X)$ is rigid. ■

QUESTION 5. Suppose that X is a wired continuum. Is it true that $C_2(X)$ is not rigid? It would be interesting to determine if $C_2(X)$ is rigid for the Buckethandle continuum (see [16, 2.9] for a description), the solenoids (see [16, 2.8] for a description) or the cone over the Cantor set.

QUESTION 6 [12, Problem 23]. Suppose that X is an indecomposable arc continuum. Does X have unique hyperspace $C_2(X)$? It would be interesting to solve this question for the case that X is the buckethandle or a solenoid.

REFERENCES

R. Hernández-Gutiérrez
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, A.P. 61-3, Xangari, Morelia, Michoacán, 58089, México

A. Illanes and V. Martínez-de-la-Vega
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, México, 04510, D.F.

E-mail addresses:
rod@matem.unam.mx,
ilanes@matem.unam.mx,
vmvm@matem.unam.mx

This paper was partially supported by the project "Hiperespacios topológicos (0128584)" of Consejo Nacional de Ciencia y Tecnología (CONACYT), 2009; and the project "Teoría de Continuos, Hiperespacios y Sistemas Dinámicos" (IN104613) of PAPIIT, DGAPA, UNAM.